

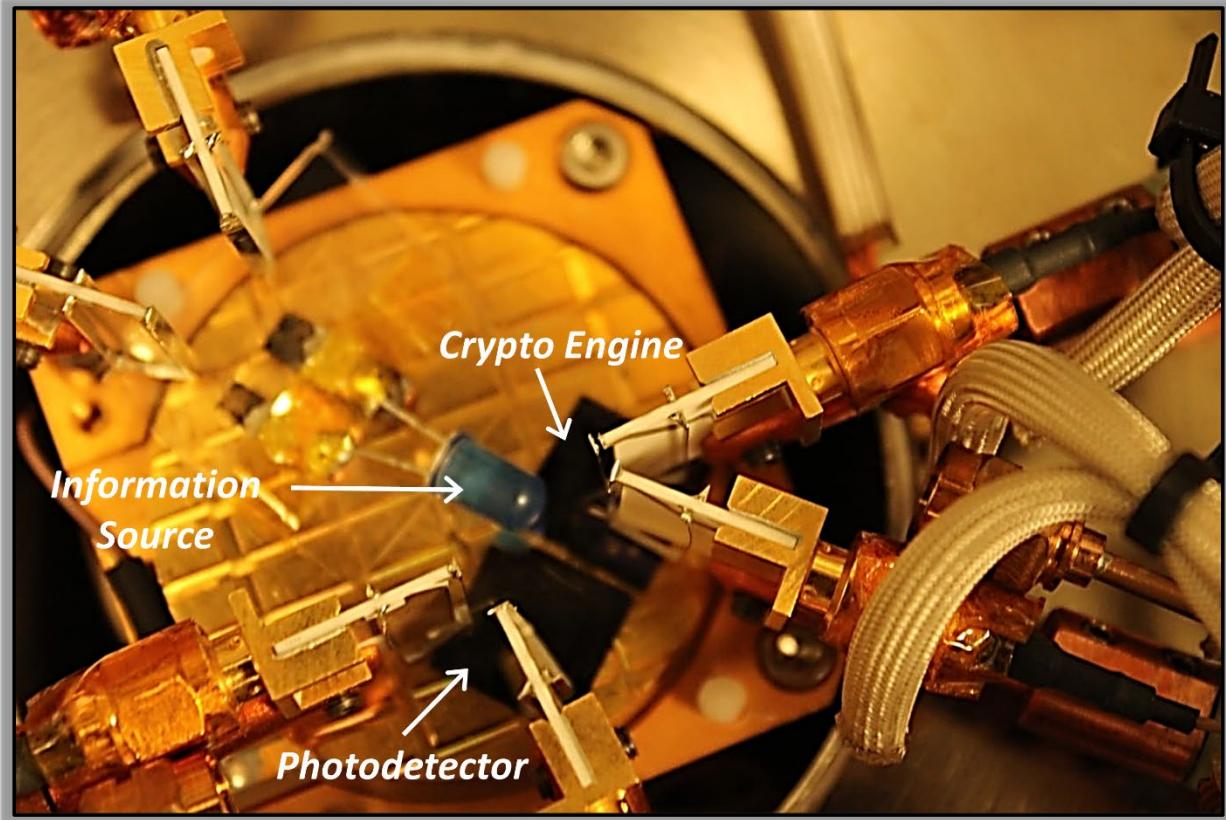
Extended Data

A Low-Power Biomimetic Cryptography Engine for *All-In-One* IoT based on Programmable and Multifunctional MoS₂ FETs

Akhil Dodda¹ and Saptarshi Das^{1,2,3,}*

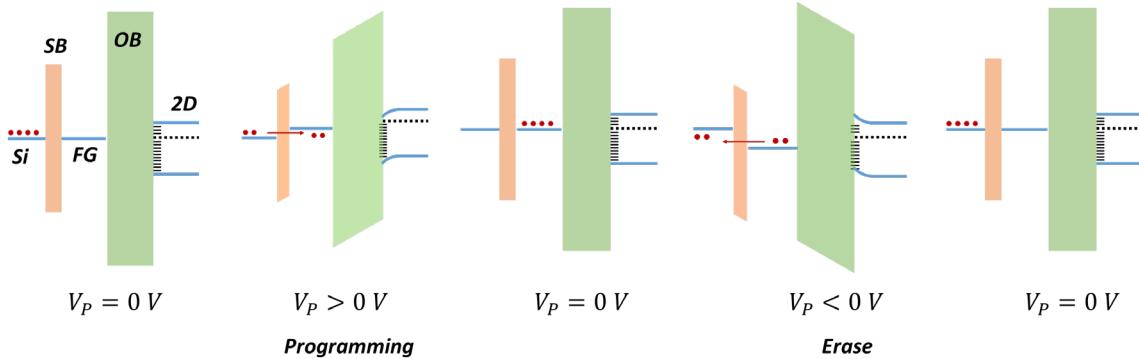
¹Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, USA

²Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802, USA

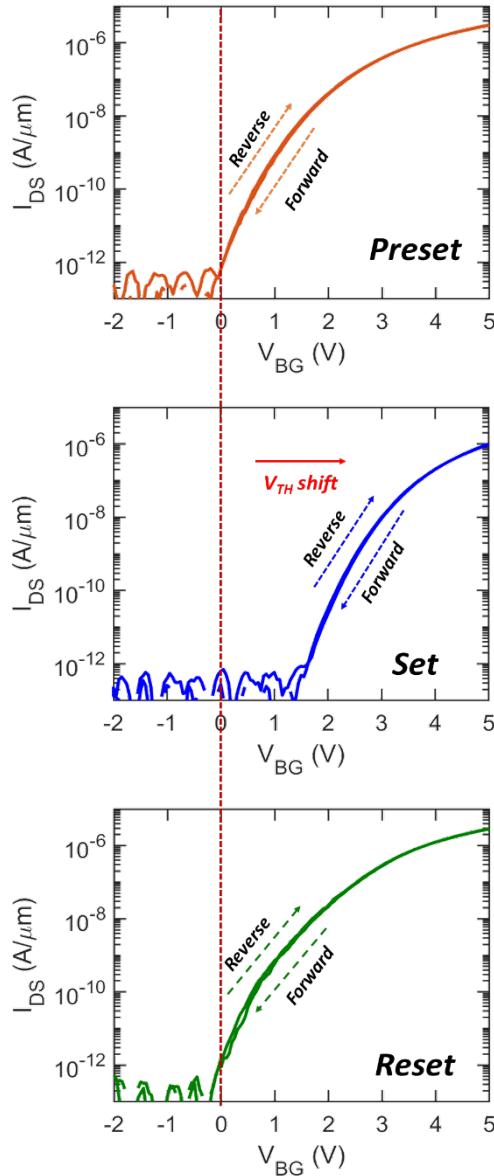

³Materials Research Institute, Pennsylvania State University, University Park, PA 16802, USA

Extended Data 1

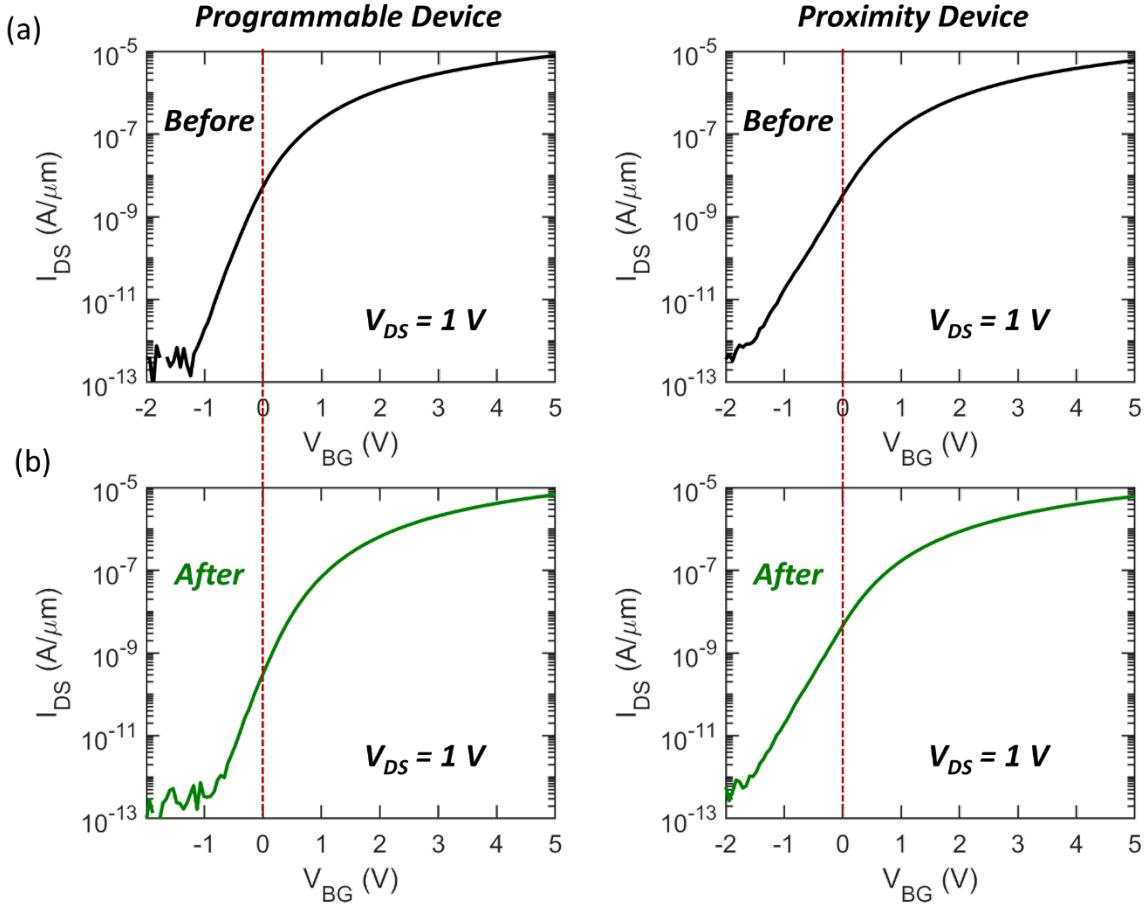
Table S1: Benchmarking Emerging IoT Platforms


Material	Sensing	Storage	Security	Reference
2D	MoS ₂	Y	N	[1]
	MoS ₂ , WS ₂ , MoSe ₂ , WSe ₂	N	Y (Electronic)	[2]
	WSe ₂ /MoS ₂ /h-BN/HfS ₂ /WSe ₂ /MoS ₂	N	Y (Electronic)	[3]
	Graphene/MoS _{2-x} O _x /Graphene	N	Y (Electronic)	[4]
	Graphene/MoS ₂	N	Y (Electronic)	[5]
	Graphene/h-BN/MoS ₂	N	Y (Electronic)	[6]
	Graphene/h-BN/MoS ₂	N	Y (Electronic)	[7]
	Graphene/MoS ₂	Y	Y (Optical)	[8]
	h-BN/WSe ₂ -h-BN/WSe ₂	Y	Y (Optical)	[9]
	MoS ₂ /PTCDA	Y	Y (Optical)	[10]
	MoS ₂ /Au-Nano Particles	Y	Y (Optical)	[11]
	WSe ₂ /h-BN	Y	Y (Optical)	[12]
	MoS ₂ /PbS	Y	Y (Optical)	[13]
	BP/Al ₂ O ₃	N	Y (Electronic)	[14]
	BP/h-BN/MoS ₂	N	Y (Electronic)	[15]
	BP/Al ₂ O ₃ /BP/Al ₂ O ₃	N	Y (Electronic)	[16]
	MoS ₂ /Metal Nano Crystal	N	Y (Electronic)	[17]
	MoS ₂	Y	N	[18]
	MoS ₂	Y	Y (Electronic)	[19]
	MoS ₂ /PZT	Y	Y (Electronic)	[20]
	WSe ₂	Y	N	[21]
	MoO _x /MoS ₂	N	Y (Electronic)	[22]
	MoS ₂	N	N	Y [23]
Oxide Based Memristors	Ag:SiO ₂ or MgO/HfO ₂ :Ag	N	Y (Electronic)	N [24]
	TiN/TaO _x /HfAl _x O _x /TiN	N	Y (Electronic)	N [25]
	ITO/LaAlO ₃ /SrTiO ₃	N	Y (Electronic)	N [26]
	Ag ₂ S	N	Y (Electronic)	N [27]
	Indium Gallium Zinc Oxide (IGZO)	N	Y (Electronic)	Y [28]
	Al ₂ O ₃ /TiO _{2-x}	N	Y (Electronic)	Y [29]
	Ag:SiO ₂	N	Y (Electronic)	Y [30]
	Ag:SiO ₂	N	Y (Electronic)	Y [31]
2D	This Work	Y	Y (Electronic)	Y

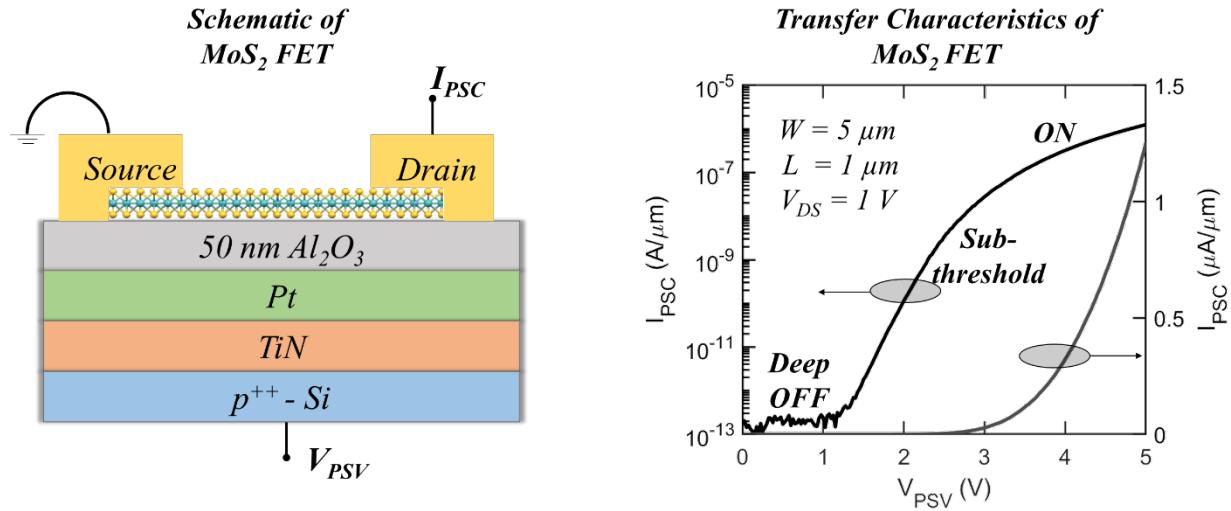
Extended Data 2


Figure S1: Experimental setup of all-in-one IoT platform. We have used two chips both containing MoS₂ FETs for the prototype demonstration. One of the chips is used as the photodetector, whereas the other chip is used as the encoder. The encoding chip contains the current adder (CA), look-up-table based white Gaussian noise (WGN) generator, and the artificial neuron (AN). A blue light emitting diode (LED) is used as the source of information. Due to limited number of probes available in our measurement system, we performed the experiments in the following sequence: first, the 8×8 pixelated image of the letter 'N' was converted to a 64×1 array of LED voltages ($V_{LED} = 0$ V for dark pixel and $V_{LED} = 5$ V for the bright pixel). In this step we converted the spatial information into a temporal one. Next, we obtained the corresponding photocurrent (I_{PH}) response from the MoS₂ photodetector by illuminating the LED. Naturally, I_{PH} is also a 64×1 array. Next, we programmed 64 MoS₂ FETs in the encoder chip and recorded the corresponding current $I_{NOISE} = [I_1 I_2 I_3 \dots I_{64}]$ at $V_{BG} = 0$ V. The threshold voltages of these FETs were programmed such that the conductance values (G_M) at $V_{BG} = 0$ V follow random Gaussian distribution of a predefined standard deviation (σ). Next, we used the current adder to add these two arrays, i.e. I_{PH} and I_{NOISE} , and obtain another 64×1 array of the post-synaptic voltage (V_{PSV}). Finally, this 64×1 array of V_{PSV} was applied to the AN to obtain 64×1 array of the postsynaptic current. These experiments were repeated for different (σ) and for different encoding threshold (V_{ST}) of the AN.

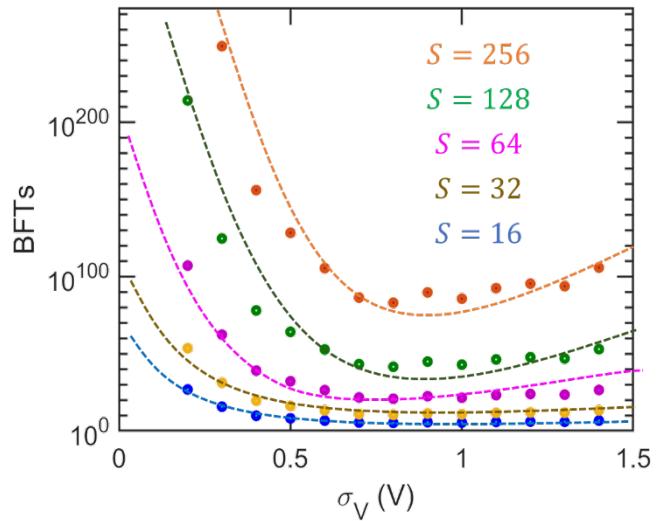
Extended Data 3


Figure S2: Energy band diagrams showing the programming and erase operations. The interface between the control gate (CG) i.e. p^{++} -Si and the floating gate (FG), i.e. TiN/Pt metal stack is characterized by a Schottky barrier (SB), which is shown as a rectangular potential barrier for simplicity. Further, 50 nm Al_2O_3 is represented by an oxide barrier (OB). The OB is much wider and taller compared with the SB. This gate stack closely resembles the FG configuration used in non-volatile flash memories. When a “Write” programming pulse, V_P , is applied to the CG, charge carriers tunnel from the p^{++} -Si into the Pt/TiN FG and remains trapped even when V_P is released. These negative fixed charges on the FG screen the electric field from CG and thereby makes the V_{TH} more positive. The total amount of charge injected into the FG, and hence shift in V_{TH} of the MoS_2 field effect transistor (FET) can be controlled by the amplitude, and duration, of the “Write” programming pulses. The device can also be restored to its initial state by removing the trapped charges from the FG by applying a negative V_P or ‘erase’ pulse to the CG.

Extended Data 4


Figure S3: Transfer characteristics of representative MoS₂ FET measured at $V_{DS} = 1$ V before programming (Preset), after programming (Set), and after erasing (Reset).

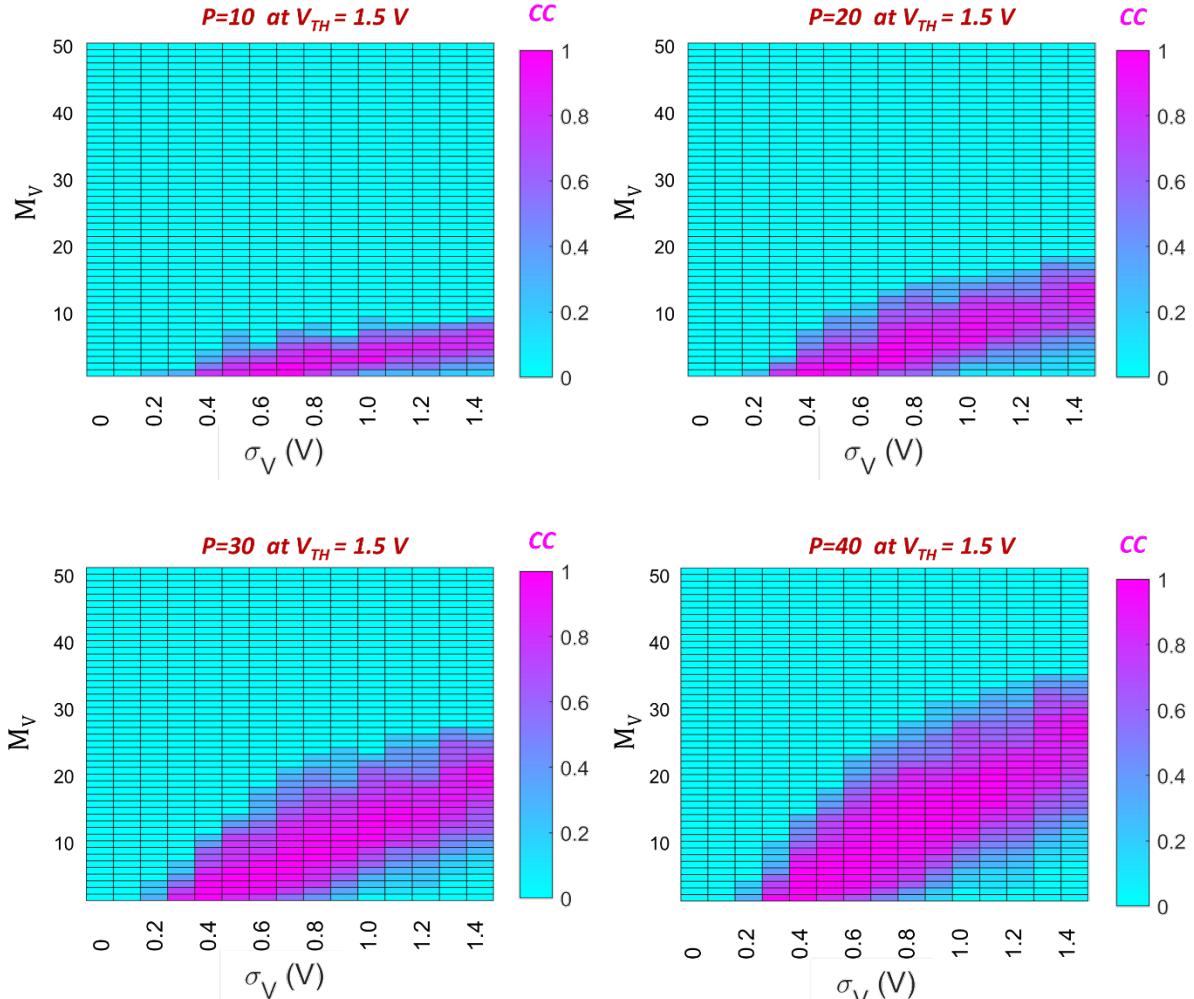
Extended Data 5


Figure S4: a) Transfer characteristics of two adjacent MoS₂ FETs one of which is intended to be programmed while the other one is intended to be kept at its original state. b) Corresponding transfer characteristics after the intended device has been programmed. As expected, the programmed device showed a positive shift in threshold voltage, whereas the not-programmed device remains unaltered following the initial transfer characteristics. This confirms the fact that although our back-gate stack is global, programming operation can be performed on individual MoS₂ FETs without impacting the adjacent devices

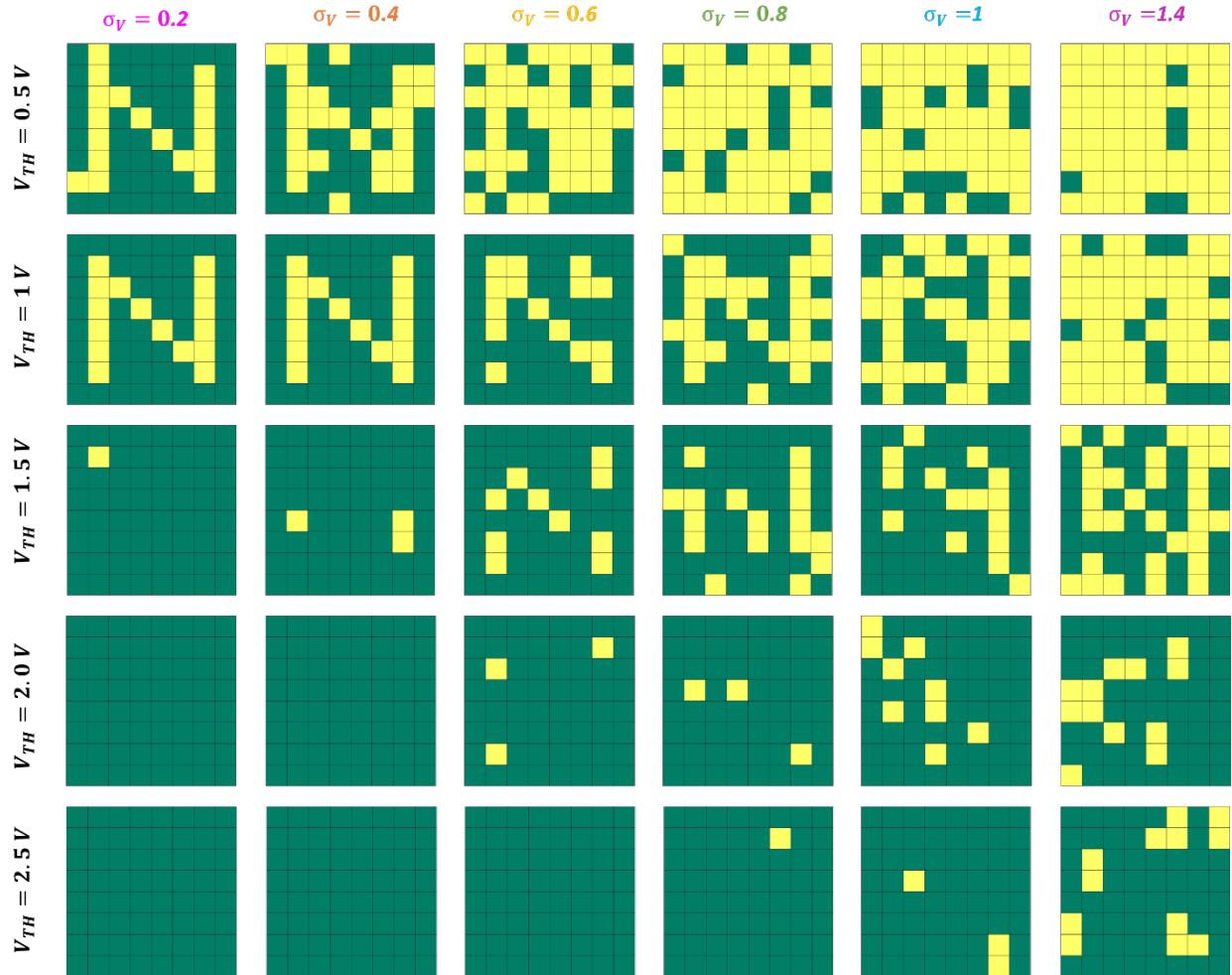
Extended Data 6

Figure S5: Schematic and transfer characteristics of the MoS_2 artificial neuron (AN) with pre-synaptic voltage (V_{PSV}) applied to the back-gate terminal and post-synaptic current (I_{PSC}) measured at the drain terminal with a drain bias, $V_{\text{DS}} = 1 \text{ V}$, in both linear and logarithmic scale. The encoding threshold was programmed to be $V_{\text{TH}} = 1.5 \text{ V}$, such that the presynaptic voltage pulses (V_{PSV}) obtained from the MoS_2 white Gaussian noise adder (WGNA) are primarily subthreshold with occasional threshold crossing events due to the addition of the white Gaussian noise (WGN).

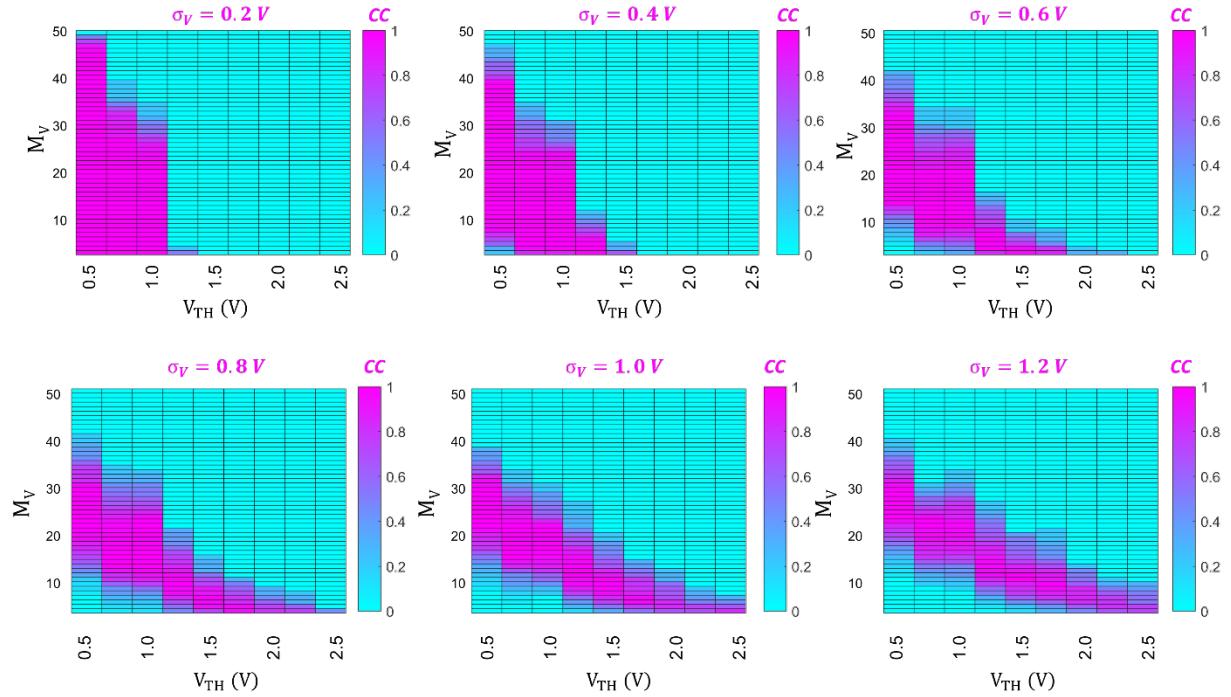
Extended Data 7


Figure S6: BFTs required to decode the letter 'N' as a function S for different σ_V .

Extended Data 8


Figure S7: Decoding of the images of the letter 'N', for different σ_V and for different number of mandated votes (M_V) required to mark a pixel as bright for $P = 50$.

Extended Data 9


Figure S8: Colormap of CC between the original and the decrypted image of the letter 'N' as a function of σ_V and M_V , when encryption is done by different size of encoding population (P) with encoding threshold of $V_{TH} = 1.5$ V. As expected, the optimum number of M_V for accurate decryption is found to be different for similar σ_V . Therefore, without the prior knowledge of the σ_V and P , used by the biomimetic encoder it is difficult to decode the information.

Extended Data 10

Figure S9: The encryption of the letter 'N', by encoders with different V_{TH} , at different σ_V . If $V_{PSV} > V_{TH}$, the encryption process or the communication is insecure. For V_{TH} values slightly greater than V_{PSV} , there are more threshold crossing events even for low σ_V , whereas, for V_{TH} values further from V_{PSV} , there are limited threshold crossing events even for high σ_V .

Extended Data 11

Figure S10: The colormap of CC between the original and the decrypted image of the letter 'N' as a function of V_{TH} of the encoder and M_V mandated by the decoder for various σ_V at a given population size of $P=50$.

References

- [1] O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, "Ultrasensitive photodetectors based on monolayer MoS₂," *Nat Nanotechnol*, vol. 8, pp. 497-501, Jul 2013.
- [2] R. Ge, X. Wu, M. Kim, J. Shi, S. Sonde, L. Tao, *et al.*, "Atomristor: Nonvolatile Resistance Switching in Atomic Sheets of Transition Metal Dichalcogenides," *Nano Lett*, vol. 18, pp. 434-441, Jan 10 2018.
- [3] C. Liu, X. Yan, X. Song, S. Ding, D. W. Zhang, and P. Zhou, "A semi-floating gate memory based on van der Waals heterostructures for quasi-non-volatile applications," *Nat Nanotechnol*, vol. 13, pp. 404-410, May 2018.
- [4] M. Wang, S. Cai, C. Pan, C. Wang, X. Lian, Y. Zhuo, *et al.*, "Robust memristors based on layered two-dimensional materials," *Nature Electronics*, vol. 1, pp. 130-136, 2018.
- [5] S. Bertolazzi, D. Krasnozhon, and A. Kis, "Nonvolatile memory cells based on MoS₂/graphene heterostructures," *ACS Nano*, vol. 7, pp. 3246-52, Apr 23 2013.
- [6] M. S. Choi, G. H. Lee, Y. J. Yu, D. Y. Lee, S. H. Lee, P. Kim, *et al.*, "Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices," *Nat Commun*, vol. 4, p. 1624, 2013.
- [7] Q. A. Vu, Y. S. Shin, Y. R. Kim, V. L. Nguyen, W. T. Kang, H. Kim, *et al.*, "Two-terminal floating-gate memory with van der Waals heterostructures for ultrahigh on/off ratio," *Nat Commun*, vol. 7, p. 12725, Sep 2 2016.
- [8] K. Roy, M. Padmanabhan, S. Goswami, T. P. Sai, G. Ramalingam, S. Raghavan, *et al.*, "Graphene-MoS₂ hybrid structures for multifunctional photoresponsive memory devices," *Nat Nanotechnol*, vol. 8, pp. 826-30, Nov 2013.
- [9] S. Seo, S. H. Jo, S. Kim, J. Shim, S. Oh, J. H. Kim, *et al.*, "Artificial optic-neural synapse for colored and color-mixed pattern recognition," *Nat Commun*, vol. 9, p. 5106, Nov 30 2018.
- [10] S. Wang, C. Chen, Z. Yu, Y. He, X. Chen, Q. Wan, *et al.*, "A MoS₂ /PTCDA Hybrid Heterojunction Synapse with Efficient Photoelectric Dual Modulation and Versatility," *Adv Mater*, vol. 31, p. e1806227, Jan 2019.
- [11] D. Lee, E. Hwang, Y. Lee, Y. Choi, J. S. Kim, S. Lee, *et al.*, "Multibit MoS₂ Photoelectronic Memory with Ultrahigh Sensitivity," *Adv Mater*, vol. 28, pp. 9196-9202, Nov 2016.
- [12] D. Xiang, T. Liu, J. Xu, J. Y. Tan, Z. Hu, B. Lei, *et al.*, "Two-dimensional multibit optoelectronic memory with broadband spectrum distinction," *Nat Commun*, vol. 9, p. 2966, Jul 27 2018.
- [13] Q. Wang, Y. Wen, K. Cai, R. Cheng, L. Yin, Y. Zhang, *et al.*, "Nonvolatile infrared memory in MoS₂/PbS van der Waals heterostructures," *Sci Adv*, vol. 4, p. eaap7916, Apr 2018.
- [14] H. Tian, B. Deng, M. L. Chin, X. Yan, H. Jiang, S. J. Han, *et al.*, "A Dynamically Reconfigurable Ambipolar Black Phosphorus Memory Device," *ACS Nano*, vol. 10, pp. 10428-10435, Nov 22 2016.
- [15] D. Li, X. Wang, Q. Zhang, L. Zou, X. Xu, and Z. Zhang, "Nonvolatile Floating-Gate Memories Based on Stacked Black Phosphorus-Boron Nitride-MoS₂Heterostructures," *Advanced Functional Materials*, vol. 25, pp. 7360-7365, 2015.

- [16] Y. T. Lee, J. Lee, H. Ju, J. A. Lim, Y. Yi, W. K. Choi, *et al.*, "Nonvolatile Charge Injection Memory Based on Black Phosphorous 2D Nanosheets for Charge Trapping and Active Channel Layers," *Advanced Functional Materials*, vol. 26, pp. 5701-5707, 2016.
- [17] J. Wang, X. Zou, X. Xiao, L. Xu, C. Wang, C. Jiang, *et al.*, "Floating gate memory-based monolayer MoS₂ transistor with metal nanocrystals embedded in the gate dielectrics," *Small*, vol. 11, pp. 208-13, Jan 14 2015.
- [18] A. Dodda, A. Oberoi, A. Sebastian, T. H. Choudhury, J. M. Redwing, and S. Das, "Stochastic resonance in MoS₂ photodetector," *Nat Commun*, vol. 11, p. 4406, Sep 2 2020.
- [19] D. Jayachandran, A. Oberoi, A. Sebastian, T. H. Choudhury, B. Shankar, J. M. Redwing, *et al.*, "A low-power biomimetic collision detector based on an in-memory molybdenum disulfide photodetector," *Nature Electronics*, vol. 3, pp. 646-655, 2020.
- [20] A. Lipatov, P. Sharma, A. Gruverman, and A. Sinitskii, "Optoelectrical Molybdenum Disulfide (MoS₂)--Ferroelectric Memories," *ACS Nano*, vol. 9, pp. 8089-98, Aug 25 2015.
- [21] L. Mennel, J. Symonowicz, S. Wachter, D. K. Polyushkin, A. J. Molina-Mendoza, and T. Mueller, "Ultrafast machine vision with 2D material neural network image sensors," *Nature*, vol. 579, pp. 62-66, Mar 2020.
- [22] A. A. Bessonov, M. N. Kirikova, D. I. Petukhov, M. Allen, T. Ryhanen, and M. J. Bailey, "Layered memristive and memcapacitive switches for printable electronics," *Nat Mater*, vol. 14, pp. 199-204, Feb 2015.
- [23] B. Shao, T. H. Choy, F. Zhou, J. Chen, C. Wang, Y. J. Park, *et al.*, "Crypto primitive of MOCVD MoS₂ transistors for highly secured physical unclonable functions," *Nano Research*, 2020.
- [24] Z. Wang, S. Joshi, S. E. Savel'ev, H. Jiang, R. Midya, P. Lin, *et al.*, "Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing," *Nat Mater*, vol. 16, pp. 101-108, Jan 2017.
- [25] P. Yao, H. Wu, B. Gao, S. B. Eryilmaz, X. Huang, W. Zhang, *et al.*, "Face classification using electronic synapses," *Nat Commun*, vol. 8, p. 15199, May 12 2017.
- [26] S. Wu, L. Ren, J. Qing, F. Yu, K. Yang, M. Yang, *et al.*, "Bipolar resistance switching in transparent ITO/LaAlO₃/SrTiO₃ memristors," *ACS Appl Mater Interfaces*, vol. 6, pp. 8575-9, Jun 11 2014.
- [27] T. Ohno, T. Hasegawa, T. Tsuruoka, K. Terabe, J. K. Gimzewski, and M. Aono, "Short-term plasticity and long-term potentiation mimicked in single inorganic synapses," *Nat Mater*, vol. 10, pp. 591-5, Jun 26 2011.
- [28] S. Das, H. Y. Chen, A. V. Penumatcha, and J. Appenzeller, "High performance multilayer MoS₂ transistors with scandium contacts," *Nano Lett*, vol. 13, pp. 100-5, Jan 09 2013.
- [29] H. Nili, G. C. Adam, B. Hoskins, M. Prezioso, J. Kim, M. R. Mahmoodi, *et al.*, "Hardware-intrinsic security primitives enabled by analogue state and nonlinear conductance variations in integrated memristors," *Nature Electronics*, vol. 1, pp. 197-202, 2018.
- [30] R. Zhang, H. Jiang, Z. R. Wang, P. Lin, Y. Zhuo, D. Holcomb, *et al.*, "Nanoscale diffusive memristor crossbars as physical unclonable functions," *Nanoscale*, vol. 10, pp. 2721-2726, 2018.
- [31] H. Jiang, D. Belkin, S. E. Savel'ev, S. Lin, Z. Wang, Y. Li, *et al.*, "A novel true random number generator based on a stochastic diffusive memristor," *Nat Commun*, vol. 8, p. 882, Oct 12 2017.

[32] N. Ge, J. H. Yoon, M. Hu, E. J. Merced-Grafals, N. Davila, J. P. Strachan, *et al.*, "An efficient analog Hamming distance comparator realized with a unipolar memristor array: a showcase of physical computing," *Sci Rep*, vol. 7, p. 40135, Jan 5 2017.