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Table S1: Benchmarking Emerging IoT Platforms 
Material Sensing Storage Security Reference 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

         2D 

MoS2 Y N N [1] 
MoS2, WS2, 

MoSe2, WSe2  
N Y (Electronic) N [2] 

WSe2/MoS2/h-
BN/HfS2 

/WSe2/MoS2 

N Y (Electronic) N [3] 

Graphene/MoS2-x 
Ox/Graphene 

N Y (Electronic) N [4] 

Graphene/MoS2 N Y (Electronic) N [5] 
Graphene/h-

BN/MoS2 
N Y (Electronic) N [6] 

Graphene/h-
BN/MoS2 

N Y (Electronic) N [7] 

Graphene/MoS2  Y Y (Optical) N [8] 
h-BN/WSe2-  
h-BN/WSe2 

Y Y (Optical) N [9] 

MoS2/PTCDA Y Y (Optical) N [10] 
MoS2/Au-Nano 

Particles 
Y Y (Optical) N [11] 

WSe2/h-BN Y Y (Optical) N [12] 
MoS2/PbS Y Y (Optical) N [13] 
BP/Al2O3 N Y (Electronic) N [14] 

BP/h-BN/MoS2  N Y (Electronic) N [15] 
BP/Al2O3 
/BP/Al2O3 

N Y (Electronic) N [16] 

MoS2/Metal 
Nano Crystal 

N Y (Electronic) N [17] 

MoS2 Y N N [18] 
MoS2 Y Y (Electronic) N [19] 

MoS2/PZT Y Y (Electronic) N [20] 
WSe2 Y N N [21] 

MoOx/MoS2 N Y (Electronic) N [22] 
MoS2 N N Y [23] 

 
 
 
 
 
 

Oxide 
Based 

Memristors 

Ag:SiO2 or 
MgO/HfO2:Ag 

N Y (Electronic) N [24] 

TiN/TaOx 
/HfAlyOx/TiN 

N Y (Electronic) N [25] 

ITO/LaAlO3 
/SrTiO3 

N Y (Electronic) N [26] 

Ag2S 
 

N Y (Electronic) N [27] 

Indium Gallium 
Zinc Oxide 

(IGZO) 

N Y (Electronic) Y [28] 

Al2O3/TiO2–x N Y (Electronic) Y [29] 
Ag:SiO2 N Y (Electronic) Y [30] 
Ag:SiO2 N Y (Electronic) Y [31] 

TiO2 N Y (Electronic) Y [32] 
2D This Work Y Y (Electronic) Y  
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Figure S1: Experimental setup of all-in-one IoT platform. We have used two chips both containing 
MoS2 FETs for the prototype demonstration. One of the chips is used as the photodetector, whereas the 
other chip is used as the encoder. The encoding chip contains the current adder (CA), look-up-table 
based white Gaussian noise (WGN) generator, and the artificial neuron (AN). A blue light emitting 
diode (LED) is used as the source of information. Due to limited number of probes available in our 
measurement system, we performed the experiments in the following sequence: first, the 8×8 pixelated 
image of the letter ‘N’ was converted to a 64×1 array of LED voltages (VLED = 0 V for dark pixel and 
VLED = 5 V for the bright pixel). In this step we converted the spatial information into a temporal one. 
Next, we obtained the corresponding photocurrent (IPH) response from the MoS2 photodetector by 
illuminating the LED.  Naturally, IPH is also a 64×1 array. Next, we programmed 64 MoS2 FETs in the 
encoder chip and recorded the corresponding current 𝐼𝐼𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = [𝐼𝐼1 𝐼𝐼2 𝐼𝐼3 … . 𝐼𝐼64] at 𝑉𝑉𝐵𝐵𝐵𝐵 = 0 V. The 
threshold voltages of these FETs were programmed such that the conductance values (GM) at 𝑉𝑉𝐵𝐵𝐵𝐵 = 0 
V follow random Gaussian distribution of a predefined standard deviation (σ). Next, we used the current 
adder to add these two arrays, i.e. IPH and INOISE, and obtain another 64×1 array of the post-synaptic 
voltage (VPSV). Finally, this 64×1 array of VPSV was applied to the AN to obtain 64×1 array of the 
postsynaptic current. These experiments were repeated for different (σ) and for different encoding 
threshold (VST) of the AN. 
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Figure S2: Energy band diagrams showing the programming and erase operations. The interface 
between the control gate (CG) i.e. p++-Si and the floating gate (FG), i.e. TiN/Pt metal stack is 
characterized by a Schottky barrier (SB), which is shown as a rectangular potential barrier for 
simplicity. Further, 50 nm Al2O3 is represented by an oxide barrier (OB). The OB is much wider and 
taller compared with the SB. This gate stack closely resembles the FG configuration used in non-volatile 
flash memories. When a “Write” programming pulse, VP, is applied to the CG, charge carriers tunnel 
from the p++-Si into the Pt/TiN FG and remains trapped even when VP is released. These negative fixed 
charges on the FG screen the electric field from CG and thereby makes the VTH more positive. The total 
amount of charge injected into the FG, and hence shift in VTH of the MoS2 field effect transistor (FET) 
can be controlled by the amplitude, and duration, of the “Write” programming pulses. The device can 
also be restored to its initial state by removing the trapped charges from the FG by applying a negative 
VP or ‘erase’ pulse to the CG.  
  



5 
 

Extended Data 4 

 

 

  

Figure S3: Transfer characteristics of representative MoS2 FET measured at VDS = 1 V before 
programming (Preset), after programming (Set), and after erasing (Reset).  
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Figure S4: a) Transfer characteristics of two adjacent MoS2 FETs one of which is intended to be 
programmed while the other one is intended to be kept at its original state. b) Corresponding 
transfer characteristics after the intended device has been programmed. As expected, the 
programmed device showed a positive shift in threshold voltage, whereas the not-programmed 
device remains unaltered following the initial transfer characteristics. This confirms the fact that 
although our back-gate stack is global, programming operation can be performed on individual 
MoS2 FETs without impacting the adjacent devices 
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Figure S5: Schematic and transfer characteristics of the MoS2 artificial neuron (AN) with pre-
synaptic voltage (VPSV) applied to the back-gate terminal and post-synaptic current (IPSC) measured 
at the drain terminal with a drain bias, VDS = 1 V, in both linear and logarithmic scale. The encoding 
threshold was programmed to be 𝑉𝑉𝑇𝑇𝑇𝑇 = 1.5 V, such that the presynaptic voltage pulses (𝑉𝑉𝑃𝑃𝑃𝑃𝑃𝑃) 
obtained from the MoS2 white Gaussian noise adder (WGNA) are primarily subthreshold with 
occasional threshold crossing events due to the addition of the white Gaussian noise (WGN). 
 

Figure S6: BFTs required to decode the letter ‘N’ as a function 𝑆𝑆 for different 𝜎𝜎𝑉𝑉.  
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Figure S7: Decoding of the images of the letter ‘N’ , for different 𝜎𝜎𝑉𝑉 and for different number of 
mandated votes (𝑀𝑀𝑉𝑉) required to mark a pixel as bright for P = 50. 
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Figure S8: Colormap of CC between the original and the decrypted image of the letter ‘N’ as a 
function of 𝜎𝜎𝑉𝑉 and 𝑀𝑀𝑉𝑉, when encryption is done by different size of encoding population (𝑃𝑃) with 
encoding threshold of 𝑉𝑉𝑇𝑇𝑇𝑇 = 1.5 V. As expected, the optimum number of 𝑀𝑀𝑉𝑉 for accurate decryption 
is found to be different for similar 𝜎𝜎𝑉𝑉. Therefore, without the prior knowledge of the 𝜎𝜎𝑉𝑉 and 𝑃𝑃, used 
by the biomimetic encoder it is difficult to decode the information.   
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Figure S9: The encryption of the letter ‘N’, by encoders with different 𝑉𝑉𝑇𝑇𝑇𝑇, at different 𝜎𝜎𝑉𝑉. If 
𝑉𝑉𝑃𝑃𝑃𝑃𝑃𝑃 >  𝑉𝑉𝑇𝑇𝑇𝑇, the encryption process or the communication is insecure. For 𝑉𝑉𝑇𝑇𝑇𝑇 values slightly greater 
than 𝑉𝑉𝑃𝑃𝑃𝑃𝑃𝑃, there are more threshold crossing events even for low 𝜎𝜎𝑉𝑉, whereas, for 𝑉𝑉𝑇𝑇𝑇𝑇 values further 
from 𝑉𝑉𝑃𝑃𝑃𝑃𝑃𝑃, there are limited threshold crossing events even for high 𝜎𝜎𝑉𝑉.  
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Figure S10: The colormap of CC between the original and the decrypted image of the letter ‘N’ as a 
function of 𝑉𝑉𝑇𝑇𝑇𝑇 of the encoder and 𝑉𝑉𝑀𝑀 mandated by the decoder for various 𝜎𝜎𝑉𝑉 at a given population 
size of P=50. 
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