

1 **Supplementary information**

2 **Authors:** Nora Berz Slapø¹, Kjetil Nordbø Jørgensen^{1,4} Torbjørn Elvsåshagen^{1,3}, Stener Nerland^{1,4}, Daniel
3 Roelfs¹, Mathias Valstad^{1,2}, Clara M. F. Timpe^{1,2}, Geneviève Richard¹, Dani Beck¹, Linn Sofie Sæther¹,
4 Maren C. Frogner Werner¹, Trine Vik Lagerberg¹, Ole A. Andreassen¹, Ingrid Melle¹, Ingrid Agartz^{1,4,5}, Lars
5 T. Westlye^{1,2}, Torgeir Moberget^{1,2}, Erik G. Jönsson^{1,5}

6

7 **Author affiliations:** ¹ NORMENT, Division of Mental Health and Addiction, Oslo University Hospital &
8 Institute of Clinical Medicine, University of Oslo, Norway, ² Department of Psychology, University of Oslo,
9 Norway, ³ Department of Neurology, Oslo University Hospital, Oslo, Norway, ⁴ Department of Psychiatric
10 Research, Diakonhjemmet Hospital, Oslo, Norway, ⁵ Centre for Psychiatry Research, Department of Clinical
11 Neuroscience, Karolinska Institutet & Stockholm Health Care Sciences, Stockholm Region, Stockholm, Sweden

12

13 **Corresponding author:** Nora Berz Slapø, M.D., e-mail: n.b.slapo@medisin.uio.no, postal address: Norwegian
14 Centre for Mental Disorders Research, Oslo University Hospital, P.O. Box 4956 Nydalen, Norway.

15 ORCID: 0000-0001-9360-8610

16

17 **Table of contents**

18 1. Supplementary analyses
19 2. Results from supplementary analyses
20 3. Figure tables

21

22 **1. Supplementary analyses**

23 In our supplementary analyses a p- value<0.002 was considered significant after corrected for multiple testing
24 (p=0.05/ number of separate analyses performed in this section (n=24). All statistical analyses were conducted in
25 R version 3.6. (<https://www.r-project.org>, R Core Team, 2014) and figures were produced using the ggplot2
26 package implemented in R (Wickham, 2009).

27

28 **1.1. Correlation between P100 amplitude and V1 structure (surface area and cortical thickness) in the
29 total outlier-pruned sample**

30 Here, we aimed to assess whether the correlation between P100 amplitude and the total V1 SA in a total sample
31 including healthy individuals and patients was similar to what we observed in the main analyses (2.3.2.1.). We
32 performed Pearson correlation analyses in a total sample (n=382) including healthy individuals (n=307) and
33 patients (n=75) with SCZ spectrum (n=30) and BD (n=45). Prior to running the analyses, we adjusted for the
34 effect of age, sex, eTIV, diagnosis and Euler number on total V1 surface area, and for effects of age, sex,
35 diagnosis and standard error for P100 amplitude on P100 amplitude. Further, we repeated correlation test
36 between the P100 amplitude and the V1 thickness (corrected for effects of age, sex, eTIV, diagnosis and Euler
37 number) in the total sample.

38

39 **1.2. Correlation between P100 amplitude and V1 structure (surface area and cortical thickness) in the**
40 **total sample before removing outliers**

41 We ran the same correlation analyses as described in 1.1. in the total sample prior to removing outliers (n=418).

42

43 **1.3. Correlation between P100 amplitude and V1 structure (surface area and cortical thickness) in**
44 **subgroups separated by diagnosis**

45 We performed Pearson correlation analyses in patients with SCZ spectrum and BD separately and tested if the
46 structure- function relationship was significantly different between the two diagnostic groups using the paired r
47 test implemented in R. Prior to running the analyses, we controlled for the effect of age, sex, eTIV and Euler
48 number on total V1 surface area, and for effects of age, sex and standard error for P100 amplitude on P100
49 amplitude. Further, we ran correlation test between the P100 amplitude and the V1 cortical thickness (corrected
50 for effects of age, sex, eTIV, and Euler number) in SCZ spectrum and BD and compared results between the two
51 diagnostic groups.

52

53 **1.4. Spearman and Kendall correlation between P100 amplitude and V1 structure (surface area and**
54 **cortical thickness) in healthy individuals**

55 To ensure that the choice of correlation analyses did not influence results we additionally performed Kendall and
56 Spearman correlation analyses between P100 amplitude and V1 structure (surface area and thickness) in healthy
57 individuals (n=307) and ran the paired r test to assess whether results differed between the different correlation
58 test applied.

59

60 **1.5. Differences in mean total V1 surface area, P100 amplitude, V1 cortical thickness and eTIV between**
61 **healthy individuals, SCZ spectrum and BD**

62 We performed the Welch t- test to compare differences in mean total V1 surface area, mean P100 amplitude,
63 mean V1 thickness and mean eTIV between healthy individuals (n=307) and patients (n=75) and between
64 healthy individuals, SCZ spectrum (n=30) and BD (n=45).

65

66 **2. Results from supplementary analyses**

67 A p- value <0.002 was considered significant after correcting for multiple testing.

68

69 **2.1. Correlation between P100 amplitude and V1 structure (surface area and cortical thickness) in the**
70 **outlier pruned total sample**

71 Pearson correlation analyses revealed a positive relationship between the P100 amplitude and the total V1
72 surface area ($r=0.15$, $p=0.003$), but not V1 cortical thickness ($r=0.029$, $p=0.58$) in the total sample after
73 removing outliers (n=382). See supp Fig 1.

74

75 **2.2. Correlation between P100 amplitude and V1 structure (surface area and cortical thickness) in the**
76 **total sample before removing outliers**

77 The correlation was significant between the P100 amplitude and the total V1 surface area ($r=0.13$, $p=0.009$), but
78 not V1 cortical thickness ($r=0.08$, $p=0.1$) in the total sample prior to removing outliers (n=418). See supp Fig 2.

79

80 **2.3. Correlation between P100 amplitude and V1 structure (surface area and cortical thickness) in**
81 **subgroups separated by diagnosis**

82 Our patients with SCZ spectrum disorder (n=30), showed no significant correlation between the P100 amplitude
83 and the total V1 surface area ($r=0.11$, $p=0.53$) or V1cortical thickness ($r=0.15$, $p=0.39$). Similarly, patients with
84 BD (n=45) showed no significant correlation between the P100 amplitude and the total V1 surface area ($r=0.13$,
85 $p=0.37$) or V1 cortical thickness ($r =0.28$, $p=0.045$). Further, the paired r test revealed non- significant
86 differences in the V1 structure- function relationship between SCZ spectrum and BD.

87

88 **2.4. Spearman and Kendall correlation between P100 amplitude and V1 structure (surface area and**
89 **thickness) in healthy individuals**

90 The paired r test revealed no significant difference in the correlation between P100 amplitude and total V1
91 surface area in healthy individuals when using Spearman vs. Kendall ($z=0.73$, $p=0.46$), Kendall vs. Pearson
92 ($z=0.52$, $p=0.6$) or Pearson vs. Spearman ($z=0.21$, $p=0.83$). Further, no significant difference in the correlation
93 between P100 amplitude and V1 cortical thickness was observed when using Spearman vs. Kendall ($z=0.05$,
94 $p=0.96$), Kendall vs. Pearson ($z=0.4$, $p=0.66$) or Pearson vs. Spearman ($z=0.5$, $p=0.62$) correlation tests.
95

96 **2.5. Differences in mean total V1 surface area, P100 amplitude, V1 cortical thickness and eTIV between
97 healthy individuals, SCZ spectrum and BD**

98 Patients with BD exhibited significantly larger mean V1 cortical thickness compared to healthy individuals
99 ($p=7.9e-07$) and compared to patients with SCZ spectrum ($p=0.001$) disorders. Further, when comparing patients
100 ($n=75$) showed significantly larger V1 cortical thickness compared to healthy individuals ($p=3.5-05$). See supp
101 Fig 6 illustrating differences in means between diagnostic groups.

102

103 **3. Figure tables**

104

105 **3.1. Supp Fig 1 a**

106 Pearson correlation between P100 amplitude and total V1 surface area in the total sample after removing outliers
107 ($n=382$). **b** Pearson correlation between P100 amplitude and V1 cortical thickness in the total sample after
108 removing outliers.

109

110 **3.2. Supp Fig 2 a**

111 Pearson correlation between P100 amplitude and total V1 surface area in the total sample prior to removing
112 outliers ($n=418$). **b** Pearson correlation between P100 amplitude and V1 cortical thickness in the total sample
113 prior to removing outliers.

114 **Supp Fig 3 a**

115 Pearson correlation between P100 amplitude and total V1 surface area in patients with SCZ spectrum ($n=30$) and
116 BD ($n=45$). **b** Pearson correlation between P100 amplitude and V1 cortical thickness in patients with SCZ
117 spectrum and BD.

118

119 **Supp Fig 4 a**

120 Spearman correlation between P100 amplitude and total V1 surface area in
121 healthy individuals (n=307). **b** Spearman correlation between P100 amplitude and V1 cortical thickness in
122 healthy individuals.

123

124 **Supp Fig 5 a**

125 Kendall correlation between P100 amplitude and total V1 surface area in healthy individuals (n=307). **b** Kendall
126 correlation between P100 amplitude and V1 thickness in healthy individuals.

127

128 **Supp Fig 6 a**

129 Differences in mean total V1 surface area between healthy individuals (n=307)), SCZ spectrum (n=30) and BD
130 (n=45). **b** Differences in mean P100 amplitude between healthy individuals, SCZ spectrum and BD. **c**
131 Differences in mean V1 thickness between healthy individuals, SCZ spectrum and BD. **d** Differences in mean
132 estimated total intracranial volume (eTIV) between healthy individuals, SCZ spectrum and BD. P- values from
133 the Welch t- test are shown between each group and indicate whether means are significantly different between
134 groups (p<0.002 = significant).

135

136 **Supp Fig 7 a**

137 Differences in mean total V1 surface area between healthy individuals (n=307) and patients (n=75). **b**
138 Differences in mean P100 amplitude between healthy individuals and patients. **c** Differences in mean V1
139 thickness between healthy individuals and patients. **d** Differences in mean estimated total intracranial volume
140 (eTIV) between healthy individuals and patients. P- values from the Welch t- test are shown between each group
141 and indicate whether means are significantly different between groups (p<0.002 = significant).

142

143

144

145

146

