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Abstract

The proliferation of the SARS-Cov-2 virus to the whole world caused more
than 250,000 deaths worldwide and over 4 million confirmed cases. The severity
of Covid-19, the exponential rate at which the virus proliferates, and the rapid
exhaustion of the public health resources are critical factors. The RT-PCR with
virus DNA identification is still the benchmark Covid-19 diagnosis method. In
this work we propose a new technique for representing DNA sequences: they are
divided into smaller sequences with overlap in a pseudo-convolutional approach,
and represented by co-occurrence matrices. This technique analyzes the DNA

sequences obtained by the RT-PCR method, eliminating sequence alignment.
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Through the proposed method, it is possible to identify virus sequences from a
large database: 347,363 virus DNA sequences from 24 virus families and SARS-
Cov-2. Experiments with all 24 virus families and SARS-Cov-2 (multi-class
scenario) resulted 0.822222 + 0.05613 for sensitivity and 0.99974 £+ 0.00001 for
specificity using Random Forests with 100 trees and 30% overlap. When we
compared SARS-Cov-2 with similar-symptoms virus families, we got 0.97059 +
0.03387 for sensitivity, and 0.99187 £ 0.00046 for specificity with MLP classifier
and 30% overlap. In the real test scenario, in which SARS-Cov-2 is compared
to Coronaviridae and healthy human DNA sequences, we got 0.98824 + 001198
for sensitivity and 0.99860 + 0.00020 for specificity with MLP and 50% overlap.
Therefore, the molecular diagnosis of Covid-19 can be optimized by combining
RT-PCR and our pseudo-convolutional method to identify SARS-Cov-2 DNA
sequences faster with higher specificity and sensitivity.

Keywords: Covid-19 diagnosis, Covid-19 molecular diagnosis, DNA sequences

representation, pseudo-convolutional methods, RT-PCR optimization

1. Introduction

At the end of 2019, the proliferation of the SARS-Cov-2 virus appeared

in the city of Wuhan, China (Zhouef-all, 2020). In a few months, there are

s P020H). Covid-19, as it became known, is a respiratory syndrome. In moderate
cases, it manifests clinically as pneumonia. In critical cases, a disease can lead
to respiratory failure, septic shock, and/or multiple organ dysfunction (MOD)

or failure (MOF) (Cascella”ef all, 2020; Peeri ef all, 2020; Wang et all, 20203).
Besides the severity of the disease, the exponential rate at which the virus
10 proliferates is an aggravating factor. The transmission of the virus often oc-

curs through asymptomatic people. The contagion is given by drops or secre-

countries have been experiencing overcrowding in their hospital centers. Most

medical professionals are working long hours, and the number of pulmonary ven-
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15 tilators is not enough for all patients. This scenario has led dozens of countries
to adopt measures of social isolation. They attempt to contain the dissemina-

tion, and to mitigate the number of people who need hospitalization (Hellewell

Bf_all, 2020; Wilder-Smith & Freedman, 2020; Kraemer ef all, 2020).
In response to this growing pandemic, several companies and research cen-
2 ters worldwide have researched and developed methods for diagnosing Covid-19
(Wang et all, 20200). Among them, rapid tests emerged, which can provide
results in about 30 minutes. One type of rapid test is the Rapid Diagnostic Test
(RDT). Through samples from the patient’s respiratory tract, RDT seeks to
detect the presence of antigens. Antigens are substances that are foreign to the
s body, causing immune responses. These responses produce specific antibodies,
capable of binding to and interacting with the antigen, ensuring the protection
of the organism. Thus, in tests of the RDT type, antibodies are fixed on paper
tapes and placed in plastic capsules, similar to the well-known pregnancy tests.
If the target antigen is present in the patient’s sample at certain concentrations,
s it will attach to the antibodies on the tape, generating a visual signal. Unfor-
tunately, this method has some restrictions. First, it is only possible to detect
in the acute stages of infection, when antigens are expressed. In addition, ef-
ficiency depends on factors such as quality and the collection protocol and the
formulation of reagents. We must also emphasize that the possibility of false
55 positives, when the antibodies present on the tape recognize antigens from other
types of viruses. For these reasons, the sensitivity of the RDT can vary from 34
to 80% (Bruning et all, 2017, WHO, 20204).
Another type of rapid test is based on host antibody detection. In this case,
antibodies are detected in the patient’s blood samples, depending on factors
20 such as age, nutrition, disease severity and medications. However, recent studies

have shown that the immune response is very weak, late or even absent in many

cases of patients confirmed with Covid-19 (IDéhTa“ef all, PO20; Pafel et all, 2020,

Burog et all, 2020; Liefall, PO20; Cin_ef all, PO20; Zhang et all, PU20; Pan_ef all,
2020). This means that this type of detection is often only possible in cases of

s recovered patients. The study (Long et all, 2020) reports 285 patients who tested
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positive for IgG. However, these immune responses were seen 19 days after the
first symptoms. This condition makes testing ineffective in many situations, as
opportunities for treatment and clinical interventions no longer exist. Therefore,
WHO does not currently recommend these types of rapid diagnostic tests for
so Covid-19. The suggestion is to use them in research contexts or as a way of
screening patients, or of potential diagnosis (WHOQ, PO20&).
Therefore, the benchmark for Covid-19 diagnosis is molecular diagnosis or
RT-PCR with DNA sequencing and identification (Pafel’ef-all, 2020; Tahamtan
& “Axdebili, P020). Throat swab samples are usually collected from suspected
ss  patients in this type of analysis. The samples are then placed in tubes with
virus preservation solutions, where the genetic material of the virus can be
extracted. In this case, the single-stranded RNA. In the first phase, reverse
transcription occurs, where a complementary DNA molecule (¢cDNA) to the
virus RNA is synthesized. This process takes place through the DNA polymerase

o0 enzyme. The RNA is then removed, and the Taq DNA polymerase enzyme
produces double-stranded DNA, which is a copy of the virus’s RNA. Then, the
PCR exponentially amplifies fragments of this DNA during successive cycles,
generating millions of copies to be analyzed. In the following, the cDNA is
aligned with sequences from the SARS-Cov2 virus. Sequence alignment is a

es traditional method for analyzing similarity between sequences. Among the most
consolidated methods are BLAST and FASTA. If there is a match between both
sequences, then the patient is confirmed positive. Otherwise, the patient is
considered negative for Covid-19 (Bosco & Di Gangi, 2016; Rizzo ef all, DOTH;
Zhang & Harmon, 2020; Chan et all, 2020).

70 Although so far RT-PCR with DNA identification is considered the most ac-
curate and effective method, there are still some weaknesses. A major limitation
of the sequence alignment methods is the computational complexity and time
consumption. In many cases, patients can take days to receive the diagnosis
due to sample preparation and genomic analysis. Because of this, several stud-

7 ies have proposed alignment free methods for genomic sequences classification.

Most of these methodologies involve a feature extraction method such as spec-
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tral representation of DNA sequences. Thus, the representative attributes of
the sequence can be combined with methods of artificial intelligence, especially
machine learning. This makes possible to separate each analyzed sequence into a

9o class (Covid-19 positive or Covid-19 negative, for example) (Bosco & Di Gangi,
DO16; Rizzo ef all, POTH).

In this work we propose a new technique for representing sequences based
on the analysis of the relationships between nitrogenous bases. This technique
analyzes the DNA sequences obtained by the RT-PCR method, eliminating the

ss alignment process. The idea is as follows: a DNA sequence is divided into n
smaller sequences. Each subsequence i is superimposed with a part of the subse-
quence ¢ — 1 and with a part of the subsequence i+ 1, giving rise to two new sub-
sequences. These smaller sequences are represented by co-occurrence matrices.
The matrices are square with 4x4 dimensions, with number of rows and columns

o corresponding to each of the nitrogenous bases of DNA (Adenine, Cytosine,
Thymine, and Guanine). The co-occurrence matrix considers the occurrence of
each of the bases, as well as the relationship between bases and their immedi-
ate neighbors. Then, the co-occurrence matrices are stacked together, forming
a volume. Considering that the sequences can be subdivided into smaller and

s smaller subsets, with the formation of new co-occurrence matrices, the proposed
method has a pseudo-convolutional aspect from the algorithmic point of view.
After obtaining the set of matrices, they are then concatenated, forming at-
tribute vectors. These extracted attributes correspond to a high-level vectorial
representation of the initial DNA sequence, independent from the size of the

w0 sequence. This feature vector can be classified by machine learning techniques.

Through the proposed method, it is possible to identify virus sequences from
a relatively large database. Several advantages can be pointed out with this
approach: First, it is not necessary to pre-align the sequence under investigation
in relation to the reference sequences; Second, the sequence under study is

s compared with a wide set of sequences of given classes, and not just with a
reference sequence, strengthening the reliability of the test. We also emphasize

that the method can be applied to sequences of any size.
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The present work seeks to describe and test the new method of feature
extraction to represent sequences of nitrogenous bases. Our main objective is
o to optimize the RT-PCR, the benchmark for Covid-19 diagnosis. To reach this
goal, we used genomic sequences of different viruses obtained in the repository
VIPR (Virus Pathogen Resource) Picketf et all (2012). We used 24 virus families
with more than 500 sequences each, including the SARS-Cov2 family. Each
sequence was submitted to the representation process described here. In the
us  following, we performed multiple experiments with different machine learning
methods. (method) presented a superior performance, considering four metrics
(accuracy, kappa index, sensibility and specificity).
This work is organized as following: in section B we present a brief of the
state-of-the-art of DNA methods; in section B we present our methodology,
120 including our proposal, the description of the database, the experiments param-
eters and the metrics used for performance measure. In section @ we provide our
experiments results and make analysis of them; finally, in section B we summa-
rized the scientific contribution of this work and discusses the potential future

work.

15 2. Related works

Several studies have sought to optimize the diagnosis of Covid-19 through
the provision of rapid tests. The most common methods are based on the use of
antibodies. [Lief all (2020) proposed a simple and rapid test for the combined
detection of IgG and IgM antibodies. Both antibodies are indicative of infection.

10 However, immunoglobulins M provide an immediate response to viral infections,
and it can be detected in a period of 3 to 6 after infection. Immunoglobulin G,
on the other hand, is important for the body’s long-term immunity or immune
memory. With this in mind, they developed a test capable of detecting IgM
and IgG simultaneously in blood samples, allowing detection in a longer time

s window. For the development of the rapid test, the authors collected samples

from eight different laboratories and hospitals in China, with a total of 397
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patient samples positive for Covid-19, and 128 negative samples. These results
were confirmed by the RT-PCR technique using a respiratory tract specimen.
Blood samples from patients were pipetted into the test kit, followed by two or
1o three drops of dilution buffer. After 15 minutes it was possible to analyze the
result using three markers. The first marker (letter C) or line on the display
appears red when the sample is negative. The presence of IgG and IgM is
indicated by red or pink lines in the regions with the letters M and G in the kit,
and both antibodies may be present in the sample. The tone of the line is also
us indicative of the level of concentration of each type of antibody. Among the
samples analyzed, the tests showed 88.66% sensitivity and 90.63% specificity.
These values can be considered high, in comparison with results obtained in
other studies (Cassanifi_ef all, 2020). The work also tested the performance
of the method in 10 patients using peripheral blood. The results remained
1o reliable. Thus, the work is promising and points out an interesting path for a
simple and quick diagnosis, which can be an alternative for extensive testing of
the population. However, the study does not point to tests with other types
of viruses similar to SARS-Cov2, such as common flu. Given the similarity
between viruses, the tests may indicate false positives, where the antibodies

155 bind to similar antigens to SARS-Cov2.
Unlike rapid tests based on the detection of antigens, other works have sought
to incorporate computational intelligence techniques in the diagnosis of Covid-
19. Many of them have invested in automatic classification based on x-ray im-
ages making use of Deep Learning techniques, especially CNNs (Apostolopoulos
mo & Mpesiana, 2020; Narin_ef all, 2020; Sethy & Behera, 2020). [Apostolopoulos
ef-all (2020) applied these techniques to distinguish Covid-19 from other lung
diseases, such as viral and bacterial pneumonias, pulmonary edema, pleural ef-
fusion, chronic obstructive disease, and pulmonary fibrosis. This study used
a wide database with 3905 x-ray images, including approximately 450 cases of
15 Covid-19. For model training, the images were scaled to 200x200 pixels. Small
variations of the images were also considered. That is, the images were slightly

rotated, in order to make the model robust to variations in position and orienta-
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tion that may occur in the image acquisition process. To extract characteristics
from the images, some models of convolutional networks (CNN) of the Mobile

o Net type were tested. Three techniques were compared: development of a new
CNN architecture; application of a pre-trained CNN (Transfer Learning); and a
hybrid method, which applies tuning strategies to specific layers of a pre-trained
CNN. The experiments were carried out in Python, using the Keras library and
TensorFlow as a backend. Among the tested configurations, the CNN devel-

s oped from scratch showed the best results, suggesting that biomarkers related
to Covid-19 can be found with the technique. The model achieved an average
rating accuracy of 87.66%, considering all six classes. With special regard to
Covid-19, the model achieved 99.18% accuracy, 97.36% sensitivity, and 99.42%
specificity.

180 Gomes ef all (2020) also proposed the use of machine learning techniques for
classification of x-ray images, distinguishing between Covid-19, viral pneumonia,
bacterial pneumonia and healthy patients. In contrast to the previous work,
the authors invested in low-cost computational methods. Thus, the authors
tested Haralick and Zernike moments for extracting attributes and used classic

15 classifiers, such as MLP, SVM, decision trees and Bayesian networks. The work
points out that the chosen extractors can play an important role in the diagnosis
by image. The reason for this is that in clinical practices it is common to find
opaque and whitish areas in contexts of pneumonia. Finally, SVM reached the
best performance. The authors reached an average accuracy of 89.78%, average

1o recall and sensitivity of 0.8979, and average precision and specificity of 0.8985
and 0.9963 respectively. An initial desktop version of the system was developed
and made available for free non-commercial use on Github.

On the other hand, other studies have invested in Covid-19 diagnostic meth-
ods through intelligent systems based on blood tests. Methods like this can be

105 useful mainly in contexts of unavailable rapid tests, functioning as a patient
screening process. For the development of the this work, Soares_et all (2020)
used a database made available by the Israeli Hospital Albert Einstein, located

in Sao Paulo, Brazil. The database has 108 clinical exams and data from 5644
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patients. The authors chose 599 patients, who had few missing data (at least 16
200 tests performed). Among them, 81 had a positive result for Covid-19 by the RT-
PCR method. In addition, they selected tests that can be performed quickly in
an emergency context. The selected blood tests were complete blood count, cre-
atinine, potassium, sodium, C-reactive protein, in addition to the patient’s age.
Considering the imbalance of the database, the work used SMOTE techniques
205 (Synthetic Minority Oversampling Technique) (Chawla ef all, 2002; Lusaef all,
2013), which is capable of generating synthetic data from the minority class.
Then they trained 10 support vector machines (SVM). The initial prediction
model corresponds to the average probability of the 10 models developed. The
testing and training processes were performed 100 times, using different subsets,
a0 with a 90% percentage split for training and 10% for testing. All models and
statistics were obtained using R. The authors achieved an average specificity of
85.98%, an average sensitivity of 70.25%, a negative predictive value (NPV) of
94.92%, and a positive predictive value (PPV) of 44.96%. For the last metric,
the authors believe that severe cases, however negative for Covid-19, generated
25 more confusion in the classification. Another study Barbosa et all (2020), using
the same initial database, applied attribute extraction methods (Particle Swarm
Optimization) to search for the best tests among the 108 initial ones. Then, the
authors manually selected exams in order to reduce costs. The result was 24
selected exams, with performance similar to the initial base. The results of the
20 evaluation metrics were: 95.16% of average accuracy, sensitivity of 0.969, speci-
ficity of 0.936 and 0.903 of kappa index. The authors made a desktop version

of the system available for free non-commercial use.
While rapid diagnostic methods are important and optimize this process,
the gold standard and recommendation of WHO is still the RT-PCR method
»s  with DNA sequencing (WHO, 20204, similar to the method developed for the
diagnosis of SARS-Cov (Chan_ef all, 2004; Emery et all, 2004; Corman ef all,
2012). Thereby, multiple studies and protocols for identifying SARS-Cov2 by
molecular diagnosis have already been published (Corman_ef all, 2020h,a; Poon

ef_all, p020; Chu_efall, 2020; Nao efall 2020). Chu_ef all (2020) developed
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20 RT-PCR assays to detect SARS-Cov2 in human clinical samples. The authors
relied on the first publication of the virus sequence on Genbank, in addition to
sequences of other types of coronavirus to perform the alignment. Thus, they
designed two monoplex assays, which target the ORF1b and N gene regions.
Then, these primer and probe sequences were confirmed with other released

25 SARS-Cov2 sequences. RT-PCR reactions were performed by a thermal cycler,
using typical reaction mixture, forward and reverse primers, probe, and RNA
sample. RNA and DNA purification kits were also used for extraction. The time
for each RT-PCR run was about 1h and 15 min. In order to determine assays
specificity, they used negative control samples with RNA extracted from other

20 viruses (MERS, camel coronavirus, influenza A and B, adenovirus, enterovirus,
rhinovirus, etc.) and from healthy patients. In contrast, all viruses belonging to
the Sarbecovirus subgenus (SARS-like coronaviruses, and other coronaviruses)
were considered positive in these assays. This decision was made due to the
small amount of data available from SARS-Cov2 at the time of the development

as  of the work. The study tested the method on two patients with suspected
SARS-Cov?2 infection. The samples were taken from different locations (sputum
vs. throat swab) and at different infection periods (day 5 vs. day 3). Both
patients received a positive result. Finally, the study results demonstrated the
clinical value of respiratory samples for molecular diagnosis of Covid-19. The

0 authors also observed a high sensitivity of the N gene for detecting the disease,
being recommended as a screening assay, and the Orfbl as a confirmatory one.
The biggest difficulty, however, is that RT-PCR is time-consuming and labour
intensive, and consequently, its result can take days to be available (Ai“efall
oo2). This makes clinical conduct difficult and favors the contamination of

s more people by SARS-Cov2. In this sense, the objective of this work is to

propose an optimization of the gold standard method.

10
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3. Materials and methods

8.1. Proposed method
Our work considers genome sequences of several virus types, where each
%0 sequence is organized into a single matrix. Initially, the genome sequence is
divided into n subsequences, which will then be overlapped with its neighbors.
In the overlapping process, a parameter received by the method determines the
size of the superimposed pieces. Every subsequence 7 is combined with a piece
of the subsequence immediately to its left ¢ — 1, and also with a piece of the
%5 one to its right, i + 1. An exception is made for the first and last sequence of
the matrix, given that they have only one subsequence from which to take a
piece. This procedure results in two new sequences for each of the subsequences
generated from the original genome.
After that, these smaller sequences are represented by co-occurrence matri-
a0 ces. The matrices are square with 424 dimensions. Each element of the matrix
represents the number of occurrences of a given pair of nucleotide bases, as
well as the relationship between bases and their immediate neighbors. These
elements are AA, AC, AT, AG, CA, CC, CT, CG, TA, TC, TT, TG, GA, GC,
GT, and GG. The matrix is then normalized, where its maximum value is used
a5 to divide each of its elements.
Finally, all the 4 x 4 matrices are stacked together, forming a volume 4x4xm,
wherein m is the number of subsequences resultant from the overlapping process.
In general terms:
m=(n-—1)x2 (1)
After obtaining this set of matrices, they are then concatenated, forming
attribute vectors. These extracted attributes correspond to a high-level vectorial
representation of the initial DNA sequence, independent from its size.

This process is illustrated in the following diagram in Figure .

w0 3.2. Classifiers
In order to verify the proposed method’s efficiency in extracting character-

istics from genome, different classifiers will process the data. The following

11
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Step#1

The complete genome
sequence is split into n folders
(n=4 in this example).

‘ N

Ny Ng [ Mg | Ngg | Ny Niz | Mgz | Nig | Ngs

N,.‘

Each subsequence is overlapped

with a piece of the subsequences Na Ns Ne N7 & Ne
to its left and right.
This example illusirates a 50%
overlap of the second
subsequence with its neghbouring
subsequences.
3 Ny | Na | Mg | Ng | Ng | Np ‘ Ny | Ng | Ng | Ny | Ng | Ng
/Step #3 @ \
A C T G A G
The resulting subsequences are A | of AR of AG i of AT |8 of AG A lsoranlue ac|
then converted into 4x4 matrices
that represent the number of C |voicalgofcolorcT s or g C |vofcal#aice|soicT i of C|
occurrences of any given pair of
nucleotide bases T e T e
G oGl Gl

N — . Y - .
/SlepPM 7‘

AN

All 4x4 matrixs are stacked into a
4xdxm matrix, wherein m is the
amount of subseguences
resulting from the overlapping
process

Axdim

. /

Figure 1: Steps of the proposed method: a new technique for representing genome sequences

based on the analysis of the relationship between nitrogenous bases. It works as follows: the
complete genome sequence is subdivided into n folders. Each subsequence is combined with a
piece of its neighbors, generating two new sequences. These smaller sequences are represented
by co-occurrence matrices, considering the occurrence of each of the nitrogenous bases, and the
relationship between bases and their immediate neighbors. In the next step, theses matrices
are stacked together as a volume. Finally, this set in concatenated, forming attribute vectors,

which are a high-level vectorial representation of the original sequence.

classifiers were selected because they are widely used in machine learning.

3.2.1. Random Forest

285 This classifier uses decision trees as its building blocks, Iin Kam Hd ([995).
Decision trees, as illustrated in Figure B, iteratively separate data by testing a
property at a time, the resulting leafs representing the most specific category,
and the root representing the raw data. The Random Forest is constructed of
many such trees, that all have its own class prediction to any given input. The

200 class with the most votes is the Random Forest’s output.
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Figure 2: This decision tree example illustrates the classification of samples by two different

features, colour and then shape.

As the characteristics that divide the genomes evaluated aren’t known, this
method is advantageous because it verifies many possibly relevant properties.

Thus, it can test and locate differences in the genetic code in question.

8.2.2. Naive Bayes Classifier
205 This machine learning model uses probability, specifically the Bayes theo-
rem, Maron ([961). The Bayes Theorem defines the probability of an event

A happening, given that another event B has already taken place. The Bayes

Theorem can be expressed as:

P(B|A)P(A
P = S 2
It is called naive because it assumes independence in the features that lead
w0 to the events. Furthermore, it assumes all predictors have an equal weight.
This approach is beneficial because it explores the possibility that the genomes

have dividing properties that are not correlated. Should that be the case, this
classifier might yield good results.

3.2.3. Instance Based Learner

305 This algorithm, also known as IBK, ATfman ([992), doesn’t construct a
model, but instead predicts by using a distance k between samples in the train-
ing set and a test sample. The training set instances selected generate the

prediction, as demonstrated in Figure B. It could prove to be successful, be-
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cause it classifies by finding similar instances. Thus, it might be able to identify

a0 genome sequences that belong to the same virus.

~ Y
)
Y
Q)
A 4 —
‘\ ,/“
a \/
| \
() ‘\?/‘
-
Figure 3:

3.2.4. Multilayer Perceptron
This classifier, shown in Figure B, is a neural network capable of solving non
linear data problems, Minsky & Paperf (T969). Each neuron unit has weights
that multiply the input, which is in turn processed by an activation function to
ais  generate the output. The weights are adjusted until the network can satisfy a
certain accuracy in output. In this manner, it could identify the features that

are particular to each class.

Figure 4: A multilayer perceptron with three layers of neurons.
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8.2.5. Support Vector Machine
This algorithm, Cortes & VapniK (1995), hopes to find an optimal hyperplane
20 that can separate the data into classes, as exemplified in Figure B. The plane will
have n dimensions, according to the number of features. The support vectors
are the samples closest to the dividing hyperplane, that aid in its construction.
Thus, it could be used to classify the genomes by dividing them with such a
hyperplane.

Figure 5: A binary classification problem, wherein the hyperplane created by the support

vector machine has 2 dimensions.

s 3.8. Database

Twenty-five different viruses were used to evaluate the efficiency of the fea-
ture extraction method, including the SARS-Cov2 Cleemput et all (2020). Data
was obtained from the NIAID Virus Pathogen Database and Analysis Resource
(ViPR) Picketf ef all (20012), which features multiple whole-genome sequences

s (WGS) from several viruses. Table 0 displays the number of examples per virus
for each of the selected viruses.

The viruses have different sample sizes, ranging from 42, as is the case for
Phasmaviridae, to 216,223, for Hepatitis C. The bar graphs below depict the

distribution of sample sizes in both a linear and a logarithmic scale.
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Virus Instances
Phasmaviridae 42
SARS-CoV-2 171
Hepeviridae 643
Poxviridae 697
Ebola virus 768
Nairoviridae 7977
Filoviridae 869
Zika virus 919
Lassa virus 1110
Peneumoviridae 1831
Arenaviridae 1840
Togaviridae 1983
Caliciviridae 2010
Paramyxoviridae 2609
Rhabdoviridae 2621
Hantaviridae 2785
Phenuiviridae 3089
Peribunyaviridae 3245
Coronaviridae 3256
Enterovirus 3784
Dengue 5885
Picornaviridae 5894
Flaviridae 14658
Reoviridae 62454

Hepatitis C virus 216223

Table 1: Number of instances in each class of virus.

335 The second dataset used in this paper is from the Genome Reference Con-
sortium Consorfium (2013). Its purpose was to represent the human genome,
and it has 103,959 samples.

3.4. Experiment setups

Various experiments were constructed to evaluate feature extraction method’s
s quality. They aim to simulate different use cases wherein SARS-CoV2 could
need to be identified. There is a multiclass experiment, a binary classification,

classification of viruses with similar symptoms and a real test scenario.
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8.4.1. Multiclass Classification
This experiment’s purpose is to differentiate SARS-CoV2 and the other
us  viruses listed in table O from each other. In it, all 25 classes of the table M
were used to build the database, that was split in training set and test set. In
classes with more than 500 instances, the training set consisted of 500 them,
and the rest were used in testing. The classes with less than a 500 samples had
70% of their samples allocated for training and 30% for testing. Additionally,
w0 the feature extraction hyperparameter n was set to 4, and overlap was tested

at 30%, 50%, and 70%.

8.4.2. Binary Classification
This test was utilized to analyze the proposed method’s efficiency in differ-
entiating SARS-CoV2 from Coronaviridae. Viruses from the same family could
s potentially be challenging to classify when compared because they have a more
similar genome. To account for that scenario, the two classes with their genomes
are contrasted only to each other. Train and test splitting was performed ex-
actly as in the multiclass evaluation. The feature extraction hyperparameter
n was set to 4, and overlap was set to 30%, a percentage that was previously

w0 shown to represent the virus genome sequences satisfactorily.

8.4.3. Viruses with similar symptoms
A third test was outlined to classify viruses with similar symptoms to SARS-
CoV2. This should prove useful in determining if a patient has symptoms that
indicate they might have SARS-CoV2, but other possibilities cannot be ruled
s out. Four classes were established: SARS-CoV2; Coronaviridae; Paramyxoviri-
dae; Peneumoviridae, Hantaviridae, Enterovirus, and Nairoviridae. The train
and test splits and the hyperparameter n were maintained as in previous tests.

Overlap was set to 30%, 50%, and 70%.

3.4.4. Real test scenario
370 This test included three classes: the human genome, from the Genome Ref-

erence Consortium Consorfinml (2013), SARS-CoV2 and the other viruses from
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table . It tests the real use case of the proposed method, wherein SARS-CoV2
must be identified amongst both human genome and other viruses. The train
and test splitting was performed as previously established, and the value of n

;s remained the same. Furthermore, the overlap was also tested at 30%, 50%, and

70%.

3.5. Metrics
o Confusion Matrix

The confusion matrix provides a more straightforward structure for the
380 portrayal of the model’s output, wherein the rows represent its predictions,
and the columns represent the expected results. The confusion matrix
layout used to display the results is illustrated in the following table, and
its correct interpretation is as stated previously. Furthermore, n expresses
the total number of instances, and each row, when summed, amounts to
385 the total number of instances per class. The number of correctly classified
instances can be obtained by adding all the elements in the main diagonal.
On the other hand, the number of misclassified instances is obtained from

the opposite diagonal.

e Accuracy

390 The accuracy describes the rate of correct classification of instances and
is the most commonly used metric in machine learning. Considering a
confusion matrix T = [t; j|nxn for a classification task with n classes, in
which 4 denotes the index of the i-th true class and j points to the index
of the class associated to the classification decision, the j-th class, the

305 accuracy is defined as following:

D b
Z?:l Z;‘L:l ti.j

Accuracy = p, =

o Kappa Coefficient
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The Kappa Coefficient (k) assesses the relation between the classified in-

stances. It is defined as:

Pv = Pz
_ v Pz 4
e @)
where
)= i (2 i) (0 i) )
- (Z:’LI Z;nzl ti,j)2
400 o Precision

Precision indicates the proportion of positive and correct classification,

and is thus calculated:

TP
Precision = m, (6)

where TP is the number of true positives and FP is the amount of false

positives.
405 e Recall

Recall measures the proportion of actual positives correctly classified by

the model. It is computed by:

TP
Il = ———
Reca TP LN (7)

where FN is the number of false negatives.
e Sensitivity
The sensitivity, or True Positive Rate, is given by:

TP
TPR = —F+—.
R TP+ FN (®)

410 L Speciﬁcity
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The specificity, or True Negative Rate (TNR), if defined as following;:

TN

TNR= ———
R=Tnvrp

(9)
where TN is the number of true negatives.

e Area Under the ROC Curve

The Receiver Operating Characteristic (ROC) curve is a graph that plots
the True Positive Rate (TPR) and False Positive Rate (FPR) of classifi-

a1 cation for different thresholds. The FPR is defined by:
FP
FPR= ————. 1
R FP+TN (10)

Thus, the Area Under the ROC Curve (AUC) measures performance for
all possible thresholds of classification in a given model, and therefore it

portrays the quality of results independently of it.

4. Results

w0 4.1. Multiclass Classification

In order to evaluate the efficiency of the proposed features extraction method,
this first round of experiments was conducted in a more challenging scenario with
twenty-five different viruses, including the SARS-CoV2. Five types of classifiers
were tested: IBk, Multilayer Perceptron (MLP), Naive Bayes classifier (NBC),

s Random Forest, and Support Vector Machines (SVM). All experiments were
performed with Weka software. The parameters used in each machine learning
method is shown in Table B.

Figure B shows the accuracy for all classifiers in the datasets with 30%, 50%,

and 70% of overlap, respectively. Considering this multiclass classification, all
w0 three datasets (with 30%, 50%, and 70% overlap) presented Random Forest
classifier with the highest accuracies (approximately 94% in all the datasets).

Figure @ shows box plots for the Kappa statistic. Since Kappa statistic

is less sensitive to the high imbalanced test dataset, it is a better evaluation
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Classifier Hyperparameters
Random Forest (RF) Number of estimators: 100
Naive Bayes Classifier (NBC) -
IBK Number of neighbors to use: 1

Distance metric: Euclidean distance
Multilayer Perceptron (MLP) Learning rate: 0.3
Momentum: 0.2
Single hidden layer with 48 neurons (number attributes divided by two)
Sigmoid activation function
Support Vector Machine (SVM) C: 0.1
Linear Kernel

Table 2: Classifiers parameters: SVMs with linear kernel; MLPs with 48 neurons in the hidden

layer; random forests with 100 trees; and standard IBK and Bayesian networks.

Accuracy - Multiclass Classification
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Figure 6: Accuracy for multiclass scenario.

metric then accuracy. Nevertheless, the Random Forest classifier achieves the
highest Kappa statistics compared with the other classifiers (above 0.88 in all
experiments).

Besides, accuracy and Kappa statistic, Figure B shows the weighted average
sensitivity, specificity, and ROC area for all datasets and classifiers. For the
weighted average sensitivity and ROC area, Random Forest results are higher
or equal to other classifiers. For the weighted average specificity, visual analysis
of Figure B-b suggests that the IBK classifier achieves higher scores on this

metric. However, all classifiers, except Naive Bayes Classifier, achieved results
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Kappa - Multiclass Classification
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Figure 7: Kappa statistic for multiclass scenario.

above 0.99 on weighted average specificity, so the Random Forest is presented
as a robust classifier for this task.

a5 Aiming to evaluate the overlap percentage in the feature extraction method,
Figure 8 shows box plots for accuracy, Kappa statistic, weighted average preci-
sion, recall and ROC area for the Random Forest classifier in the datasets with
30%, 50%, and 70% overlap percentages. The variance of accuracy and kappa
in the dataset with 30% overlap is higher than in the 50% and 70% overlap

w0 dataset. However, 30% overlap seems to be slightly better (or at least at the
same level) as the others overlap percentages.

Because of class unbalancing in the test dataset, we need to evaluate sen-
sitivity, specificity, and ROC area for each class individually. Considering the
Random Forest classifier in the dataset with 30% overlap, Table B shows the

5 results of sensitivity, specificity, and ROC area individually for each virus in
the database. Specificity and ROC Area results are above 0.9 for every virus.
The sensitivity varies from 0.99391 for Pneumoviridae to 0.23397 for Filoriviri-
dae. However, for most of the classes, sensitivity has values greater than 0.8
(including SARS-Cov?2 class with a sensitivity of 0.82).

460 In order to perform a visual analysis of these results, Figure M shows the
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094 = %I =

e¥  geT o7

; : !

086 28

o
Q
8

T+

Weighted average Sensitivity
g g

IBK MLP NBC RF SVM IBK MLP NBC RF SVM IBK MLP NBC RF SVM
Dataset 30% Overlap Dataset 50% Overlap Dataset 70% Overlap

(a)

Weighted average Specificity - Multiclass Classification

+
09975 1k 3
+

. =T Ly T !
09950+\T‘ % T = ﬁT
g i T T
£ 00025 i b i
S + + +
& 4
@ 09900
Q
j=}
S 0se7s yl\
9]
s L
g 09850
=
=
D 09825
=
09800 -

0.9775

IBK MLP NBC RF SVM IBK MLP NBC RF SVM IBK MLP NBC RF SVM
Dataset 30% Overlap Dataset 50% Overlap Dataset 70% Overlap

(b)

Weighted average ROC Area - Multiclass Classification
& = ; = &
099
=i = =

098

097

o0 =
‘il T i

IBK MLP NBC RF SVM [BK MLP NBC RF SVM IBK MLP NBC RF SVM
Dataset 30% Overlap Dataset 50% Overlap Dataset 70% Overlap

Weighted average ROC Area

. p}p

(c)

Figure 8: Weighted average sensitivity (a), specificity (b), and ROC area for Multiclass test

scenario.
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Figure 9: Random Forest accuracy (a), kappa (b), weighed average sensitivity (c), specificity

(d) and ROC area (e) in 30%, 50% and 70% overlap percentages.
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Class Sensitivity-Recall Specificity ROC Area
Average Std.Dev. Average Std.Dev. Average Std. Dev.
Class 0 - Picornaviridae 0.46387 0.01407 0.99674 0.00028 0.99223 0.00163
Class 1 - Arenaviridae 0.44609 0.01301 0.99906 0.00008 0.99773 0.00121
Class 2 - Caliciviridae 0.98755 0.00392 0.99886 0.00045 0.99893 0.00089
Class 3 - Pneumoviridae 0.99391 0.00285 0.99999 0.00001 0.99993 0.00025
Class 4 - Phenuiviridae 0.94210 0.00704 0.99966 0.00005 0.99840 0.00076
Class 5 - Togaviridae 0.99159 0.00327 0.99958 0.00016 0.99950 0.00067
Class 6 - Poxviridae 0.99314 0.00662 0.99994 0.00003 0.99947 0.00191
Class 7 - Filoviridae 0.23397 0.03284 0.99950 0.00005 0.99877 0.00096
Class 8 - Flaviridae 0.55250 0.00768 0.98242 0.00144 0.95860 0.00308
Class 9 - Hantaviridae 0.98284 0.00565 0.99960 0.00004 0.99907 0.00100
Class 10 - Lassa virus 0.59120 0.03118 0.99778 0.00006 0.99707 0.00112
Class 11 - Dengue 0.87925 0.01729 0.98384 0.00029 0.98910 0.00070
Class 12 - Hepeviridae 0.98924 0.00711 0.99972 0.00014 0.99933 0.00083
Class 13 - Ebola virus 0.39652 0.05417 0.99913 0.00004 0.99833 0.00094
Class 14 - Enterovirus 0.70652 0.02068 0.99144 0.00021 0.99313 0.00034
Class 15 - Zika virus 0.96675 0.01076 0.99728 0.00002 0.99800 0.00000
Class 16 - Nairoviridae 0.98687 0.00686 0.99974 0.00008 0.99843 0.00238
Class 17 - Coronaviridae 0.96194 0.00181 0.99988 0.00005 0.99833 0.00119
Class 18 - Paramyxoviridae 0.98781 0.00274 0.99982 0.00006 0.99970 0.00078
Class 19 - Rhabdoviridae 0.97468 0.00541 0.99976 0.00009 0.99967 0.00047
Class 20 - Hepatitis C virus 0.97425 0.00244 0.99288 0.00074 0.99823 0.00062
Class 21 - Peribunyaviridae 0.95344 0.00603 0.99870 0.00046 0.99523 0.00138
Class 22 - Reoviridae 0.98059 0.00261 0.99923 0.00014 0.99963 0.00048
Class 23 - Phasma Viridae 0.29167 0.10704 0.99999 0.00000 0.99000 0.01464
Class 24 - SARS-Cov2 0.82222 0.05613 0.99974 0.00001 0.99883 0.00250

Table 3: Random Forest sensitivity, specificity, and ROC area for every single class (results

from dataset with 30% overlap).

average confusion matrix for the Random Forest classifier in the dataset with
30% overlap. The confusion matrix is expressed in terms of percentage for the
particular class, and the classes indexes numbers are the same as shown in Table
B. We can see that for some classes, there is a confusion with another virus. For
w5 example, most of the Picornaviridae virus (index 0) is classified as Enterovirus
(index 14). This confusion is not symmetrical: Picornaviridae is misclassified as
Enterovirus, but Enterovirus is not misclassified as Picornaviridae. The only ex-
ception for this observation of confusion with another virus type is the Phasma
Viridae (index 23), which is confused with two other viruses: Hantaviridae (in-
w0 dex 9), and Peribunyaviridae (index 21). However, since there are few examples

of Phasma Viridae in the dataset (only 42 examples), those results may be
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caused by the low representative of this class in the dataset.

Multiclass Classification- Random Forest (Dataset with 30% overlﬁ)
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Figure 10: Random Forest average Confusion Matrix (results from dataset with 30% overlap).

Regarding the SARS-Cov2 virus (index 24), the only relevant confusion is

with Coronaviridae (index 17). It is a predictable outcome since SARS-Cov2

s belongs to the Coronaviridae virus family. 3.1% of Coronaviridae examples
are classified as SARS-Cov2 (the only confusion noticed in column 24 of the
confusion matrix). A more significant confusion is noticed between SARS-Cov2
and Coronaviridae since 11% of SARS-Cov2 are misclassified as Coronaviridae.
Since the ROC area for SARS-Cov2 is 0.99883 (Table B), we performed a

w0 threshold adjustment for SARS-Cov2 class in order to reach 100% sensitivity.

The new average confusion matrix is shown in Figure . Higher false positives
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for SARS-Cov2 remains from Coronaviridae (5,1% - index 17). In the sequence
of false positive rates, we have: Hepatitis C virus (3,47% - index 20), Reoviridae

(3,19% - index 22), and Phasma Viridae (2,68% index 23).

Multiclass Random Forest - Threshold aﬂustment for SARS-Cov2 .
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Figure 11: Random Forest average Confusion Matrix with threshold adjustment for 100%
sensitivity on SARS-Cov2 (index 24).

ws  4.2. Binary Classification
Given that, in the multiclass scenario, the highest false positives for SARS-
Cov2 are from Coronaviridae, we evaluated the same classifiers used in the
multiclass scenario for a binary classification between Coronavirus and SARS-

Cov2. For this experiment, only the dataset with 30% overlap was used, since
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a0 this overlap percentage has shown to represent the virus genome sequences sat-
isfactorily.

Figure @ shows the accuracy, kappa statistic, weighted average sensitivity,
specificity, and ROC area for each classifier. It is important to state that there is
still a relevant imbalance between the number of Coronaviridae and SARS-Cov2

w5 examples in the dataset (3256 and 171, respectively). So, the Kappa statistic
is still more appropriate than accuracy to assess the classifier’s overall perfor-
mance. Regarding Kappa statistics, weighted average specificity, and ROC area,
MLP results are higher or equal to other classifiers. For the weighted average
sensitivity, SVM achieves higher results than MLP. Nevertheless, given that av-
so0 erage sensitivity for MLP is higher than 0.96 and MLP overcomes SVM in all
other metrics, MLP seems to be a more robust classifier for this particular task.

Table @ shows the sensitivity, specificity and ROC Area for each class. It is
possible to notice that each one of those metrics has values above 0.96. Figure 3
shows the average Confusion Matrix for MLP classifier. There was no relevant

sos difference with the multiclass scenario regarding the confusion between Coron-
aviridae and SARS-Cov2 since there is still a 3.85% of Coronaviridae examples
misclassified as SARS-Cov2. However, about the confusion between SARS-Cov2
and Coronaviridae, the binary MLP classifier achieved 2.61% of confusion while

11% in the multiclass scenario.

Sensitivity-Recall Specificity ROC Area
Average  Std. Dev.  Average Std. Dev.  Average  Std. Dev.
Class 17 - Coronaviridae 0.96151 0.00246 0.97386 0.03052 0.97353 0.01863
Class 24 - SARS-Cov2 0.97386 0.03052 0.96151 0.00246 0.97353 0.01863

Class

Table 4: Results of Sensitivity, specificity, and ROC area for MLP binary classifier (Coron-
avuris vs. SARS-Cov2 using the 30% overlap dataset).

s 4.3, Viruses with similar symptoms

In this experiment, viruses were selected due to similar symptoms. The

dataset was arranged into four classes: SARS-Cov2, Coronaviridae, Paramyx-
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Figure 12: Binary classification (Coronavuris vs. SARS-Cov2 using the 30% overlap dataset)
accuracy (a), kappa (b), weighed average sensitivity (c), specificity (d), and ROC area (e).
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Binary Classification- MLP (Dataset with 30% overlap)
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60

40

SARS-Cov2 2.61

Figure 13: MLP average Confusion Matrix for binary classification task (Coronavuris vs.

SARS-Cov2 using the 30% overlap dataset).

oviridae, and Miscellaneous. The Miscellaneous Class is a compound of Peneu-
moviridae, Hantaviridae, Enterovirus, and Nairoviridae. Then, the same classi-
sis  flers used previously were evaluated in this classification task.

Figures [ and [E shows the accuracy and kappa for all classifiers and
datasets in this classification task. Except for the Naive Bayesian classifier,
classifiers have similar performance metrics, with approximately 97% accuracy
and kappa equal to 0.96. Figure IB shows the weighted average specificity

s0 and sensitivity and ROC are. The weighted average sensitivity and specificity
look very similar to all classifiers (except Naive Bayes Classifier). However, the
weighted average ROC area for MLP and Random Forest classifiers is slightly
higher than the other classifiers, although IBK and SVM classifiers also achieve
a weighted average ROC area above 0.98 in all datasets.

525 In order to better evaluate the MLLP and Random Classifier, Figure [0 shows
the confusion matrices for those classifiers in all datasets. The Random Forest
presents a confusion between the SARS-Cov2 and the Coronaviridae of approx-
imately 10%. It is very similar to the achieved results in the multiclass scenario.
However, the MLP classifier achieves significantly low-level confusions between

s SARS-Cov2 and Coronaviridae (1.57% in the datasets with 30% and 50% over-
lap). The main confusion found in the MLP classifier is between Conronarividae
and SARS-Cov2 (3.81% for the dataset with 30% overlap). By MLP confusion
matrix analysis is not possible to find significant differences between the 30%,

50%, or 70% overlap percentages. Since the 30% overlap requires less compu-
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Figure 14: Accuracy for similar symptoms scenario.
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Figure 15: Kappa Statistic for similar symptoms scenario.
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Figure 16: Weighted average sensitivity (a), specificity (b), and ROC area for Similar symp-

toms viruses test scenario.
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s tational effort to extract the features, we can select the MLP classifier with a
30% overlap dataset as a better approach to this particular task. The Table
B shows the sensitivity, specificity and ROC area for each class. The average
ROC Area and specificity are above 0.99 for all classes. The average sensitivity
is also above 0.99 for the Paramyxoviridae and Miscellaneous classes. The low-
s ers sensitivity is for Coronaviridae (0.959), while a slightly higher sensitivity is

achieved for SARS-Cov2 (0.97).

MLP Dataset with 30% overlap MLP Dataset with 50% overlap MLP Dataset with 70% overlap

LRSIl 157 | 046 | 092 SARS-Cov2 968 SARS-Cov2 96.93 [N

! N
- B |
.

0.26

@  Coronaviidae @  Coronaviridae

4 paramyxoviridae
»
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Miscellaneous

oSS
Bl Q@@\c «
(a) (b) (c)
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X
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Figure 17: Average Confusion matrices for MLP and Random Forest in the Similar symptoms

viruses test scenario.

4.4. Real test scenario

In this scenario, the SARS-Cov2 test is designed as a three-class classification

problem: SARS-Cov2 (the test target), GRCh38 (the healthy human reference),

s and Coronaviridae (a virus control sample). The same classifies used in the other
experiments were applied to this new task.

Figure I8 shows the accuracy and Figure ¥ shows the kappa statistic results.

Except for the Naive Bayes Classifier, all other classifiers have accuracy above
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Class Sensitivity-Recall Specificity ROC Area
Average  Std. Dev. Average Std.Dev. Average Std. Dev.
SARS-Cov2 0.97059 0.03387 0.99187 0.00046 0.99583 0.00481
Coronaviridae 0.95891 0.00249 0.99882 0.00069 0.99687 0.00076
Paramyxoviridae 0.99611 0.00430 0.99726 0.00104 0.99863 0.00244
Miscellaneous* 0.99548 0.00151 0.99827 0.00153 0.99943 0.00072

*Miscellaneous class includes four virus types: Pneumoviridae, Hantaviridae, Enterovirus, and Nairoviridae

Table 5: Results of Sensitivity, specificity, and ROC area for MLP classifier in the similar

symptoms viruses test scenario (results from dataset with 30% overlap).

99% kappa above 0.9. By these metrics, It is not possible to distinguish the
sso  best classifier. The same behavior is observed in the weighted average metrics
shown in Figure PO. Weighted average sensitivity, specificity, and ROC area are

higher than 0.99 for all classifiers except the Naive Bayes Classifier.

Accuracy - SARS-Cov2 Vs. Coronaviridae Vs. GRCh38
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Figure 18: Accuracy for SARS-Cov2 test scenario.

Aiming to better evaluate the results of the classifiers in the SARS-Cov2

test task, all the confusion matrices for IBK, MLP, Random Forest, and SVM

s classifiers are shown in Figure 0. IBK and Random Forest classifiers presents
a confusion between SARS-Cov2 and Coronaviridae that varies from 10.26%

(Figure EI+-h) to 14.77% (Figure Ed-c). This outcome is even worse for SVM
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Figure 19: Kappa Statistic for SARS-Cov2 test scenario.

classifier since most of the SARS-Cov2 examples are misclassified as Coronaviri-
dae. By confusion matrix analysis, The MLP classifier has lower confusion rates
sco  between SARS-Cov2 and Coronaviridae. The results from MLP classifier in the
dataset with 50% overlap (Figure 2I-¢) shows 99.92% average true positive rate
for GRCh38 class, and 98.82% for the SARS-Cov2. For the Coronaviridae class,
this classifier achieves 96.2%, while only 3.73% of Coronaviridae examples are
misclassified as SARS-Cov2. Table B shows the sensitivity, specificity and ROC

ss  Area for each of the classes for this MLP classifier.

Class Sensitivity-Recall Specificity ROC Area
Average Std.Dev. Average Std.Dev. Average Std. Dev.
SARS-Cov2 0.98824 0.01198 0.99860 0.00020 0.99947 0.00056
Coronaviridae 0.96196 0.00190 0.99967 0.00017 0.99810 0.00094
GRCh38 0.99923 0.00028 0.99928 0.00094 0.99997 0.00018

Table 6: Results of Sensitivity, specificity, and ROC area for MLP classifier in the SARS-Cov2

test scenario (results from dataset with 50% overlap).
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Figure 20: Weighted average sensitivity (a), specificity (b), and ROC area for SARS-Cov2

test scenario.
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Figure 21: Average Confusion matrices for IBK, MLP, Random Forest and SMV in the SARS-

Cov2 test scenario.
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5. Discussion

Regarding the feature extraction methods, it seems to capture the structure
of the viruses’ genome sequence. Random Forest classifier achieved the best
overall performance for multiclass scenarios, while MLP classifier presented the

s best results for scenarios with fewer classes.

Evaluating the parameters for the feature extraction proposed method, split-
ting the viruses’ genome sequence into four folders (n = 4) seems to be enough
to produce representative features. Regarding the overlap percentage, the pro-
posed feature extraction method is not very sensitive to this parameter, even

s though 30% to 50% seems to be enough to produce good features representa-
tions.

The first multiclass scenario (with 25 viruses classes) is an extreme case
scenario. Nevertheless, the Random Forest classifier achieved sensitivity and
specificity above 0.9 for many classes. For those classes with lower sensitiv-

ss0  ity, the confusion matrix shows that most confusions are particular between
two viruses. For example, Filoriviridae is the class with a lower sensitivity rate
(0.23). However, checking the confusion matrix, on average, 76.27% of Filoriviri-
dae are misclassified as Ebola Virus. There is no other significant confusion for
Filoriviridae, so it is possible to design a classifier cascade to solve this specific
sss confusion between two viruses.

One particular virus class is the Pharma Viridae since it has only 42 samples
in the dataset (30 used for training and 12 for testing). Even with this small
amount of samples in the multiclass scenario, the significant misclassifications
for Pharma Viridae are Henteraviridae (22.78%), and Peribunyavirida (35.26%).

so  With a larger sample size for the Pharma Viridae, classifiers could find a better
boundary decision reducing this level of false-negative rate. However, for this
particular class, three-classes cascade classifiers could be evaluated to deal with
these types of errors.

Regardless of the feature extraction parameters or even the used classifier,

ses  there is still a 3-4% of Coronaviridae samples misclassified as SARS-Cov2. How-
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ever, this is an expected outcome, since SARS-Cov2 belongs to the Coronaviri-
dae family. Visualizing the extracted features, we found some samples of SARS-
Cov2 and Coronaviridae that can not be distinguished, as showed in Figure 22.

So, it is tough for any classifier to separate those two classes optimally.

Feature visualization of Coronaviridae Feature visualization of correctlly
misclassified as SARS-Cov2 classified SARS-Cov2 -1.0
04
415

01234567 8910112131415 01234567 89101112131

Figure 22: Feature visualization for selected SARS-Cov2 and Coronaviridae sample.

s 6. Conclusion

In this work we presented a novel method to represent DNA sequences by
using pseudo-convolutions and co-occurrence matrices. With this method, we
were able to represent hundreds of thousands of DNA sequences from 24 virus
families. Then we separated SARS-Cov-2 sequences from the Coronaviridae

s family and demonstrated that our model is able to differentiate all virus families
present on our database. SARS-Cov-2 was discriminated from virus families
other than Coronaviridade and even from other coronaviruses with very high
sensitivity and specificity.

We aimed to show the capabilities of optimizing the molecular diagnosis of

s Covid-19 by combining RT-PCR, the actual ground-truth Covid-19 diagnostic
method, and our pseudo-convolutional method to identify SARS-Cov-2 DNA
sequences faster.

From the obtained results, we can assume that the proposed pseudo-convo-

lutional approach is able to characterize SARS-Cov-2 DNA sequences. This new
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e1s  representation of DNA sequences can be successfully used as a feature extraction
stage to full connected networks, in order to use the deep learning philosophy,
or other classical classification architectures. The evaluation of the proposed
approach in real test scenarios, necessarily reduced to a limited set of virus
families and healthy human sample DNA, showed high sensitivity (higher than
20 0.988) and specificity (higher than 0.998) rate as well. Hence, other researchers
can use our solution and our methods to improve their results to diagnose Covid-

19 faster with accuracies even higher than the state-of-the-art methods.
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