CellPhe user guide

The CellPhe toolkit comprises three main stages: cell boundary coordinate extraction, feature extraction and se-
lection, and data analysis. These stages are implemented in Matlab, C/C++ and R respectively (Figure 1), with
stages allocated to separate software to take advantage of each software’s strength. The speed of image processing
using image libraries, made C/C++ ideal for the extraction of features from time-lapse images. The use of R for
downstream analysis was motivated by the large repository of data analysis packages, including classification and
clustering algorithms. This manual aims to guide users through the complete CellPhe workflow with a reproducible
working example.
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Figure 1: Stages of the CellPhe workflow, grouped according to the software used for implementation.

1 Pre-requisites

As well as the listed software (Matlab, C and R), users must have a C and C++ compiler, and required TIFF image
libraries installed to execute the provided codes in full. Installation will differ depending on the user’s operating
system. Full instructions for code implementation are provided in GitHub. In addition to the source code, we
have provided example output files at each stage of the CellPhe workflow so that the user can follow the working
example included in the manual without needing to install compilers or TTFF libraries. A complete list of the files/-
folders that can be found at https://github.com/llwiggins/CellPhe.git together with their descriptions, is given below.



Files for boundary coordinate extraction (Section 2):

ReadImageJROI.m: MATLAB script for reading ROI files

ROIs2Coordinates.m: MATLAB script for extracting boundary coordinates from ROT files

Files for extraction of features and time series variables (Section 3):

05062019_B3_3_Phase-FullFeatureTable.csv: feature table obtained from Phasefocus’ Cell Analysis Tool-
box®) software, note that similar feature tables could be obtained using alternative cell segmentation and
tracking software

05062019_B3_3_boundaries.csv: output file of extracted boundary coordinates, as described in Section 2

05062019_B3_3_imagedata: a folder containing all grayscale 8-bit TIFF images to process, one TIFF image
per time-lapse frame

05062019_B3_3_imagelist.txt: a file containing an ordered list of images with the path to their location
image_info: folder containing necessary C/C++ files for image processing

extract.c: C code for feature calculation and time series extraction

constants.h: file of customisable constants to tailor analysis to different experimental conditions
loadimage.cc and loadimage.h: C++ and header files required for loading images

Makefile: the main Makefile required for compilation of the code, as demonstrated in Section 3

Files for feature selection (Section 4):

VarSelect.c: C code for calculation of separation scores, as demonstrated in Section 4

TreatmentClassify_trainingA.txt and TreatmentClassify_trainingB.txt: full training set feature tables
(obtained as in Section 3), separated according to true class label - A for untreated cells, B for treated cells

Files for data analysis (Sections 5, 6 and 7):

SegmentationErrors_training.txt and CorrectSegmentation_training.txt: full feature tables of ground
truth segmentation errors and correctly segmented cells, used for training decision trees in Section 5.

Segmentation_testset.txt: full feature table of test set cells, used for prediction of segmentation errors in
Section 5.

TreatmentClassification_training.txt: full feature table of training set cells (ground truth segmentation
errors removed) used for ensemble classification in Section 6

separationscores.txt: output file of separation scores obtained using the VarSelect.c code in Section 4,
used for feature selection in Section 6



2 Extraction of cell boundary coordinates

Ordered cell boundary pixels, used for calculation of shape and texture features, can be extracted from the file of
segmented cell ROIs (05062019_B3_3_Phase.zip) using the following MATLAB code:

>> cvsROIs = ReadImageJROI('05062019_B3_3_Phase.zip');
>> boundaries = RO0Is2Coordinates (cvsROIs);
>> dlmwrite ('05062019_B3_3boundaries.csv', boundaries)

4 05062019_B3_3_boundaries.csv

b
) Largest cell boundary length
X y
/ — N

1 1 92 55 105
1 10 75 183 236
1 11 71 183 318
1 12 51 188 255
1 13 120 176 144

Cell ID Frame Boundary
number length (px)

Figure 2: Output following execution of MATLAB code. a) 05062019-B3_3_boundaries.csv, the produced output file.
b) The format of 05062019_B3_3_boundaries.csv. The value in the top-left corner is the largest cell boundary length in pixels
(largest cell perimeter) within the data set. The remainder of the first row is just filled with zeros and can be ignored. For
remaining rows, the first column lists cell IDs, the second frame numbers and the third each cell’s boundary length in pixels.
Remaining columns list x and y coordinates alternately until all boundary coordinates have been listed.

3 Extraction of features and time series variables

3.1 Adjusting constants

Constants such as image width/height, number of frames in a time-lapse, and the minimum track length for cells to
be considered, can be customised within the constants file (constants.h). Ensure that all necessary changes to the
constants file have been made prior to compilation.

3.2 Code execution

The feature extraction code expects 8-bit grayscale TIFF images as input. Other formats can be converted using
image processing programs such as ImagelJ (https://imagej.nih.gov/ij/). An ordered list of the images to be used
should be placed in the directory with the code and include path information. This image file list, the boundary
file obtained using Matlab and the feature table file are read in and should all have the same start to the name,
e.g. 05062019_B3_3 as in our example. This allows the program to be run using only this and a class identifier
as command line arguments. Filenames are completed by the code which adds _imagelist.txt, _boundaries.csv
and _Phase-FullFeatureTable.csv as required.

A flowchart giving an overview of the feature extraction code in shown in Figure 3.
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Figure 3: Flowchart giving an overview of the feature extraction code.

Instructions for installing, compiling and running the C code are given in README.md, available on GitHub
(https://github.com/llwiggins/CellPhe.git) in the ”Extraction of features and time series variables” folder.

CelllDs will be printed consecutively to indicate where the code is up to, with the final listed CelllD being the total

number of cells tracked.



05062019_B3_3outputdata.txt

b) Group cellname frames trajarea vol_asc vol_des
B 05062019_B3_32 481 0.31033  5.890407 -5.844845
B 05062019_B3_33 144 55.656051 19.485202 -21.533468
B 05062019_B3_35 481 3.371012 11.00664 -9.117712
B 05062019_B3_36 230 1.351267 7.30574 -7.338793
B 05062019_B3_37 155  7.139714 37.592969 -22.822149
B 05062019_B3_3214 162  3.205177 17.286295 -14.561709
B 05062019_B3_38 138  0.908973 17.674467 -16.803368
B 05062019_B3_39 94  7.236885 42.913556 -36.983957

Figure 4: Output following code execution. a) 05062019_B3_3outputdata.txt, the produced output file. b) The format
of 05062019-B3_3outputdata.txt. The first column is a list of true class labels, in this case all cells are from group "B”,
the treated set. The second column lists concatenations of data file and cell ID, e.g. 05062019_-B3_32 references cell 2 from
the 05062019_B3_3 data set. The third column lists the number of frames each cell has been tracked for, and the remaining
columns list the complete set of variable scores for each cell.

4 Feature selection

The output file from Section 3 contains the full list of 702 variables for each cell tracked for 50 frames or more.
Although many of these variables will provide good discrimination between untreated and treated cells, a greater
proportion of them will be redundant and therefore need to be filtered out prior to classification. Our VarSelect.c
code can be executed from the command line to calculate a separation score for each variable. The higher the
separation score, the more discriminatory the variable is. The following needs to be entered on the command line to
begin execution of the C code:

$ gcc -c VarSelect.c

$ gcc -o output VarSelect.o
$ ./output TreatmentClassify_trainingA.txt TreatmentClassify_trainingB.txt

Where TreatmentClassify_trainingA.txt and TreatmentClassify_trainingB.txt are full training set feature
tables for untreated and treated cells respectively.

The following text will then appear, prompting the user to enter the total number of variables, the number of cells
in TreatmentClassify_trainingA.txt and the number of cells in TreatmentClassify_trainingB.txt:

Please enter nvars,nsamplesl ,nsamples2:

In our example, the total number of variables is 702, and the number of cells in training set A and B are 646 and 600
respectively. Note that these numbers need to be entered exactly as shown below, separated by commas and with
no spaces in between:

702,646,600

If all has been entered correctly and the input files have been found and successfully opened for reading, the following
text will appear and an output file called separationscores.txt will be written and saved in the current working
directory:

opened TreatmentClassify_trainingA.txt
opened TreatmentClassify_trainingB.txt

A threshold on the separation score can then be used to select the most discriminatory features.



separationscores.txt

b) 0 trajarea 0.077094
1 vol_asc 0.000621
2 vol_des 0.000067
3 vol_max 0.000197

4 vol_|1_asc 0.001005
5 vol_|1_des 0.000106
6 vol_l1_max 0.000163
7 vol_l2_asc 0.000348
8 vol_|2_des 0.000002
9 vol_I2_max  0.000001
10 vol_I3_asc 0.000029

11 vol_I3_des 0.00028
12 vol_I3_max 0.000188
13 rad_asc 0.338259
14 rad_des 0.285402
15 rad_max 0.086008

16 rad_I1_asc 0.172595
17 rad_|l1_des 0.149049
18 rad_l1_max 0.079362
19 rad_|2_asc 0.137877
20 rad_|2_des 0.070628

Y Y
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Figure 5: Output following execution of VarSelect.c. a) separationscores.txt, the produced output file of separation
scores. b) The format of separationscores.txt. The first column is a list of variable indices, the second a list of variable names,
and the third a list of calculated separation scores.

5 Segmentation error removal

Ground truth instances of correct segmentation and segmentation errors are required for classification training.
An example feature table of correctly segmented cells and segmentation errors can be found in the files
CorrectSegmentation_training.txt and SegmentationErrors_training.txt respectively.

## tmport files containing ground truth examples of correct segmentation and segmentation errors
Segerrortraining <- read.delim("~/Desktop/DataForCellPhe/SegmentationErrors_training.txt")
Correctsegtraining <- read.delim("~/Desktop/DataForCellPhe/CorrectSegmentation_training.txt")

## collate correct segmentation and segmentation error data into one data frame
data = rbind(Segerrortraining, Correctsegtraining)
segdata<-Segerrortraining[,-c(1,2,3)]
nonsegdata<-Correctsegtraining[,-c(1,2,3)]

alldata = rbind(segdata, nonsegdata)

## first column lists ground truth data labels
classl = rep("segerror", dim(segdata) [1])
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Figure 6: Summary of R code objectives for Section 5

class2 = rep("correct", dim(nonsegdata) [1])
class = c(classl, class?2)
all = data.frame(class, alldata)

Once data tables have been imported into R, the SMOTE() function from the smotefamily package can be used to
handle class imbalance by synthetically over-sampling segmentation errors.

install.packages('smotefamily')
library(smotefamily)

smoteseg<-SMOTE(all[,-1], all$class, K = 3, dup_size = 1)

Here K refers to the number of neighbours that should be considered during the sampling process, and dup_size
is the number representing the desired times of synthetic minority instances over the original number of majority
instances. A feature table of synthetically generated segmentation errors can be found in smoteseg$syn_data, these
observations can now be added to the training set for use during classifier training.

smotesegsyn_data<-smoteseg$syn_datal,c(703, 1:702)]
all<-rbind(all, smoteseg$syn_data)
segdata<-rbind(segdata, smotesegsyn_datal,-1])
newclass<-c(class, smotesegsyn_datal,1])

classl = rep("segerror", dim(segdata) [1])

Two custom functions were produced for training and testing of multiple decision trees to detect segmentation errors.
Individual decision trees were trained using the tree() function from the tree package.



The first function, multitree, is used for training the decision trees.

## anstall tree package
install.packages('tree')
library(tree)

## define multitree function
multitree = function (smalldata, bigdata, smallclass, bigclass, num)

{

nl = length(smallclass)

n2 = length(bigclass)

treelist = list()

for (i in 1:num)

{
inds = sample.int(n2, nl)
data = rbind(bigdatalinds,],smalldata)
class = c(bigclass[1:n1], smallclass)
data = data.frame(class, data)
mytree = tree(as.factor(class)”., data=data)
treelist[[i]] <- mytree

}

return(treelist)

The second function, multipred, is used for making predictions from the decision trees.

## define multipred function
multipred = function (data, trees, num)
{
pred = matrix(" ", nrow = num, ncol = nrow(data))
for (i in 1:num)
{
x = predict(trees[[i]], data, type = "class")
pred[i,] <- x
}

return(pred)

These two functions can be called as follows to train 50 decision trees and acquire a list of predicted labels for each
test set cell:

## train 50 decision trees using training set
trees = multitree(segdata, nonsegdata, classl, class2, 50)

## tmport test set and classify

Segmentationtestset <- read.delim("~/Desktop/DataForCellPhe/Segmentation_testset.txt")
alltest<-Segmentationtestset

predtest = multipred(alltest[,-c(1,2,3)], trees, 50)

Here we trained 50 decision trees but this number can be redefined by the user. To avoid the removal of correctly

segmented cells misclassified as segmentation errors, we used a voting system for final predictions where cells were

(3.5 x 50)

classified as a segmentation error if they received > 35, calculated by , votes for this, otherwise they were

classified as correct segmentation.



## obtain list of cell names for cells that were predicted as segmentation error
testnumseg = vector(mode = "integer", length = ncol(predtest))
for (i in 1l:ncol(predtest))

{
}

testvote = rep("nonseg", length = ncol(predtest))

testnumseg[i] = length(which(predtest[,i] == 2))

## decision tree votes combined to produce final predicted label for each cell
## (>= 35/50 votes for segmentation error)
for (i in 1l:ncol(predtest))

{
}

ind = which(testvote == "seg")
segtest = Segmentationtestset$cellname [ind]

if (testnumseg[i] > 3.5 * nrow(predtest)/5) testvotel[i] = "seg"

## save predicted segmentation error cell names as a .tzt file
write.table(segtest, "Predictedsegerrors.txt", row.names = F)

To add further stringency, the training of 50 decision trees can be repeated several times and a cell given a final
classification of segmentation error if it receives above a set percentage of votes for this class. The following code
demonstrates this by training ten sets of 50 decision trees, and providing a cell a final class label of segmentation
error if it was classified as such in at least 5 of the sets.

## create empty list to store decision tree wvotes for each cell
votes<-list ()

## train ten sets of 50 decision trees
## votes[[i]] contains predictions from the ith set of decision trees
for(i in c(1:10))
{
trees = multitree(segdata, nonsegdata, classl, class2, 50)
predtest = multipred(alltest[,-c(1,2,3)], trees, 50)
testnumseg = vector(mode = "integer", length = ncol(predtest))
for (j in 1l:ncol(predtest))

{

testnumseg[j] = length(which(predtest[,j]l == 2))

}

testvote = rep("nonseg", length = ncol(predtest))
for (j in 1l:ncol(predtest))

{

if (testnumseg[j] > 3.5% nrow(predtest)/5) testvote[j] = "seg"

}

ind = which(testvote == "seg")

segtest = Segmentationtestset$cellname [ind]
print (i)

votes[[i]]<-segtest



## identifies cells that receive >= 5 wotes for segmentation error
## and stores these in segtest

1list<-NULL

for(i in c(1:10))

{
}

segtest<-vector ()

j=1

freqdata<-as.data.frame (table(list))
for(i in c(1l:dim(freqdata) [1]))

{

list<-c(list, as.character(votes[[i]]))

if (freqdata$Freql[i] >= 5)
{
segtest[j] = as.character(freqdata$list[i])
j=3+1
}
}

## save predicted segmentation error cell names as a .txt file
write.table(segtest, "Predictedsegerrors.txt", row.names = F)

## remove predicted segmentation errors from test set ahead of treatment classification
FullTestSet<-subset (Segmentationtestset, Segmentationtestset$cellname %inj, segtest == FALSE)

6 Ensemble classification

Now that predicted segmentation errors have been excluded from the test set, this can be used together with the
training set to train and test an ensemble of classifiers for untreated vs. treated cell classification. We have already
performed feature selection in Section 4 so we can import the obtained file separationscores.txt and use this to
include only the features that achieved separation above a fixed threshold.

## tmport training set (identified segmentation errors removed)
FullTrainingSet<-read.delim("~/Desktop/DataForCellPhe/TreatmentClassification_training.txt")

## scale data prior to classification

dataforscaling<-rbind (FullTrainingSet[,-c(1,2,3)], FullTestSet[,-c(1,2,3)])
dataforscaling<-scale(dataforscaling)
FullTrainingSet[,-c(1,2,3)]<-dataforscaling[c(1:nrow(FullTrainingSet)),]
FullTestSet[,-c(1,2,3)]<-dataforscaling[-c(1:nrow(FullTrainingSet)),]

## wmport file of separation scores
separationscores <- read.table("~/Desktop/DataForCellPhe/separationscores.txt", quote="\"",

comment .char="")

## subset separation scores file to only include wvariables with separation >= 0.2
chosenvars0.2<-subset (separationscores, separationscores$V3 >= 0.2)

## subset training and test sets to only include variables with separation >= 0.2
SelectedTrainingSet<-FullTrainingSet[,c((chosenvars0.2$V1)+4)]
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Figure 7: Summary of R code objectives for Section 6

SelectedTestSet<-FullTestSet[,c((chosenvars0.2$Vi)+4)]

We use ensemble classification where LDA, RF and SVM classifiers are trained individually and their predictions
combined to provide a final classification label for each cell based on majority vote. R packages MASS, randomForest
and e1071 can be used to train LDA, RF and SVM classifiers respectively.

## install packages used for classification
install.packages("MASS")
library (MASS)

install.packages("randomForest")
library(randomForest)

install.packages("el1071")
library(e1071)

## classifier training

ldamodel<-lda(SelectedTrainingSet, FullTrainingSet$Group)

rfmodel <- randomForest(FullTrainingSet$Group™., data = SelectedTrainingSet,

ntree=200, mtry=5, importance=TRUE, norm.votes = TRUE)

svmmodel<-svm(SelectedTrainingSet, FullTrainingSet$Group, kernel = 'radial', probability = TRUE)

## classifier testing

ldapred = predict(ldamodel, SelectedTestSet)
rfpred = predict(rfmodel, SelectedTestSet)
svmpred = predict(svmmodel, SelectedTestSet)

Once individual classifiers have made their test set predictions, these can be used as votes where a cell receives a
certain final classification label if it was predicted as such by the majority of classifiers in the ensemble. In this case,
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as we are using 3 classifiers in ensemble, a cell will receive the final classification label that 2 or more classifiers voted
for.

## ensemble classification, final predicted label based on majority wote
classificationvotes<-cbind(as.character (ldapred$class),
as.character(rfpred), as.character(svmpred))
classificationvotes<-as.data.frame(classificationvotes)

for(i in c(1:dim(FullTestSet) [1]))

{
if ((classificationvotes[i,1]=="A" && classificationvotes[i,2]=="A")
| | (classificationvotes[i,1]=="A"
&& classificationvotes[i,3]=="A")

| | (classificationvotes[i,2]=="A" && classificationvotes[i,3]=="A"))
{
classificationvotes[i,4] = "A"
}
else
{
classificationvotes[i,4] = "B"
}
}
colnames(classificationvotes)<-c("LDA", "RF", "SVM", "Ensemble")

## confusion matriz of ensemble classification results
table(true = FullTestSet$Group, predicted = classificationvotes$Ensemble)

7 Cluster analysis

Calculate distance matrix Hierarchical clustering Explore obtained clusters

Figure 8: Summary of R code objectives for Section 7

## install factoextra for hierarchical clustering and plotting dendogram
install.packages("factoextra")
library(factoextra)
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## subset of just training set treated cells
TreatedCells<-subset (FullTrainingSet, FullTrainingSet$Group == "B")

## distance matriz and hierarchical clustering
d<-dist(scale(TreatedCells[,-c(1,2,3)]), method = "euclidean")
hierclust<-hcut(d, hc_func = "agnes", hc_method = "ward.D", hc_metric = "euclidean", k = 6)

## plot the acquired dendogram
fviz_dend(hierclust, show_labels = FALSE)+theme_classic(base_size = 20)

a)

Cluster Dendrogram

200

Height

100

b)

> hierclust$size
[1] 157 109 82 175 39 38

Figure 9: Outputs obtained from running the R code provided in Section 7. a) Plot of acquired dendogram. b) Code to
output the number of cells in each cluster.
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