Supplemental Materials

The value of short term versus permanent carbon sequestration 

In this supplemental material, Section I describes the derivation of the equations used to calculate the climate value of short term storage of carbon in the biosphere.  

Section II provides further discussion of the choice of a discount rate for considering the economic value of carbon emissions to the atmosphere and for the short-term holding of carbon out of the atmosphere.  

Given the complex of interactions in the global carbon cycle, including the decay of a pulse of carbon to the atmosphere (Equation 1 and Figure 1in the main text), Section III provides a spreadsheet describing the amount of carbon in the atmosphere as a function of time following an impulse injection of C into the atmosphere.  

Section IV provides 2 final Figures showing the effect of the carbon cycle and of discounting on the delay of emissions in Figure 1 and the flows of the value of carbon for a scenario where C is subtracted from the atmosphere, held out for x years, and then released back to the atmosphere. 


I.) The climate value of short-term storage of C in the biosphere.

In the following calculations, we derive several important equations.  First we develop the idea of the value of a carbon release to the atmosphere based on the residency dynamics of that carbon and our time preference of carbon.  There are many reasons for a time preference to release carbon into the atmosphere, and those are discussed in Section II.  Here we only assume that there is such a time preference and that it takes the form of a single exponential discounting factor.  In reality there are likely many different preferences and changes to the value itself.  We assume that all of those factors and changes in value can be blended or compressed into a single net exponential discount factor.


Ia.) A pulse injection of C into the atmosphere in The Bern Simple Carbon Model

The decay in the extra atmospheric burden of CO2 following a pulse emission of CO2 is represented in the Bern Model by an impulse response function, as shown in Equation 1 below (Joos et al, 2013).

      Equation 1


We define the climate equivalence between the permanent and short term sequestration of carbon based on the integrated impact on the physical climate system, as represented here by Equation 1.  We could also define a value equivalence between permanent and short term sequestration based on the integrated economic impact.  If the social cost of carbon is SCC(t), then the annual rent on a ton in the atmosphere is X(t) = SCC(t)*(1-e-λ), where the discount rate is λ, and the value of one ton of carbon released to the atmosphere can be computed with Equation 2.   Current release of CO2 to the atmosphere causes damage, the cost of which is borne by society, and this damage is quantified in economic terms with the social cost of carbon.  A recent report from a U.S. Interagency Working Group (2021) estimated the current value of the social cost of carbon at $51 and used a discount rate of 3% to evaluate the present value damage of emissions per ton of carbon emitted to the atmosphere.  In sum, in this recent report the climatic impact of emissions is treated without discounting but the value of emissions is discounted at 3% per year.  The result is an expression for the value of released carbon to the atmosphere.

     				Equation 2


This expression is a bit challenging to use in practical applications, but from a theoretical standpoint, it is the ideal place to begin.  In the next section, we use this expression to derive both accurate and practical equations to compute the value of a delay in the release of carbon to the atmosphere.
Ib.) Deriving the equations

The following presents the derivation of the equations for the value of a delayed release in both continuous and discrete form.

We begin with a calculation of the present value of an emitted ton of carbon to the atmosphere according to its residence time in the atmosphere and the discounted impact of the carbon.  From the Bern Carbon Cycle Model, a single pulse response can be derived for a small quantity of carbon in the atmosphere.  The following equation describes the percent that remains in the atmosphere as a function of time.

 			(A1)

With a rental value of carbon X(t) and a net discount rate , the following equation determines the total value of the carbon in the atmosphere.  The value X(t) is a market driven value of carbon, or simply the contribution to the impact on the atmosphere.  The time preference is assumed to be determined by the exponential function with a net discount rate.

 								(A2)

The value of a delayed release of the carbon by a time  can be modeled by a switch function (the classic Heaviside function which is zero until time  and one thereafter) and a shift of the CO2 levels to begin decreasing at that time.

							(A3)

The difference between a release at the current time and the release at the delayed time is the value of the delay.

		(A4)

Resolving the Heaviside function shifts the integral to the non-zero portion.

			(A5)

A change of variables in the second integral moves the integral evaluation back to zero so that the integrals can be combined.

			(A6)

In order to combine the integrals, we assume that X is constant and that any increase in value is exponential in nature and can be incorporated into the net discount rate of the time preferences. For instance, if the real discount rate is r, and the rate of growth carbon prices is g, then λ=r-g. This is the reason for calling it the "net" discount rate.

							(A7)

With the constant factor pulled outside of the integral, the remaining integral is exactly the value of the original release.  This means that the value of the delay is the multiplicative factor in front of the integral.  The following equation is the value of the delayed release.

							(A8)

For delays that may happen in the future, we can use the same ideas to realize the value of a delay between any two time periods.

		(A9)

We can imagine a scenario where an initial delay is succeeded by additional delays, creating a summation of the value of these delays added together.
					(A10)

If they are successive, the values below the difference between the first and last time.  Note that if the initial time is zero and we extend the last time out to infinity, we get the value of the entire release.  This means that the calculated values of repeated delays in release exactly add up to the value of the entire release.  That is, the value becomes the value of a permanent delay or a permanent removal.

				(A11)

Ic.) The Discrete Model

Since most calculations are likely to be done in discrete time (on a yearly basis on a spreadsheet) rather than with integrals, it is useful to provide a parallel development for the discrete model.  We can begin with the same model but with a summation rather than an integral.  Since the summation and the integral give slightly different results, we produce an exact numerical correlation by adjusting the value of X(t) so that the two values match.

						(A12)

Similar to the previous calculations, we use the Heaviside function to model the delay.

				(A13)

The resulting calculation of the value begins at the shifted time.

								(A14)

And a change of variables allows the delayed release and the immediate release to be subtracted.

							(A15)

With a similar assumption on the constant value of X(t) and the net discounting of the time preference, the time delay portion of the exponential is moved outside of the summation.

								(A16)
This final equation is then subtracted from the original value to give the value of the delayed release.

							(A17)

This equation is the equation used in the paper to determine the value of a delay in release.  It should be noted that if a true time horizon of 100 years is implemented, it is important that the 100 years be determined from the release date, not from the present date.

Also from this final equation is the notion that the value of the delay can be expressed as a fraction of the value of the undelayed emission.  That is, there is a ratio between the two releases of carbon and we can calculate the number of tons that must be released to be equivalent to the entire sum.

			(A18)

Thus if we solve for N, we determine the number of single tons delayed for a time period  needed to equal the full initial release.  Dividing out the sum and solving for N, we get a final equation that finds the balance between a short term delay and an infinite sequestration.

											(A19)

This equation, which appears in the paper as equation 2, shows that while the total value of a release depends on the dynamics of the carbon in the atmosphere, the equivalence of a delay of a release with the same dynamics can be compared with only the discounting value and the interval of delay.  

The reduced relationship depends heavily on the assumption that the dynamics of the release of carbon in the present time is identical to the dynamics of the release of carbon a time period  later.  For short periods of time such as a year, and possibly as many as 5 years, this seems to be both a sound and practical assumption.  In addition to the relatively slow changes in the atmospheric dynamics, reviewing and updating the dynamics at a time scale smaller than a single year is impractical for policy implementation, and current data collection methods cannot support it.


II.)  Why does temporary carbon storage have value?

There are many arguments explaining why temporary storage can have value.  Here we examine a few of those.  As stated in the paper, the theory we present does not rely on any specific reason for a time preference, only that there is such a preference.

It postpones climate change.  Climate change is a huge danger to the world and any delay in an emission buys time for more investigation, consensus building, and some of the likely damage.

It buys time for technological progress or environmental adaptation.  There are hundreds of researchers studying ways to combat climate change and efficient ways to sequester carbon out of the atmosphere for permanent storage.  Delays in carbon release can help to buy time for some of these new technologies to be developed and brought to market.  In addition to our own adaptation, the biosphere will also need to adapt to the changing climate.  Any reduction in the rate of change can make a marked difference in shifting temperature and rainfall patterns.

It buys time for capital turnover and investment.  As we invest money at the individual level to pay for a costly item such as a house, delaying carbon emissions can provide time to accumulate capital in order to implement larger scale mitigation or adaptation initiatives.

It allows time for learning to occur.  As we learned with the Covid-19 pandemic, slowing down the impact of a negative influence on our lives allows us time to better understand what we are up against, to learn its patterns, and develop new ideas.

Some temporary sequestration may turn out to be permanent.  If a program that incentivizes carbon storage is a good program, parties who find it appealing sign up now will also likely find it appealing to renew their agreement.  Any delay in carbon emissions puts us on a different decision tree for the future that allows additional delays.  If only some of these delays are renewed, then we are ahead of where we would be without any of them.

Even if specific carbon sequestration is temporary, the sequestration in aggregate is likely to be increased.  If we consider a forest put into a permanent conservation program, we might consider it an effort at making a permanent effect.  However, we all know that a forest is made up of individual trees that are each transient and of finite lifespan.  Notwithstanding large scale reversions, a large collection of trees managed efficiently as a whole can make a substantive long term effect on overall carbon stocks.  In similar fashion, a large collection of short term projects that delay carbon emissions, that are managed efficiently as a whole, can make a substantive long term effect on overall carbon stocks.  That is, a program that continually supports short term projects can present itself as a long term (possibly permanent) structure for carbon sequestration.

All of these reasons incorporate some element of time.  Financial markets recognize the discounted value of future assets with respect to their current value.  Can we then acknowledge the current urgency to begin limiting CO2 emissions and evaluate the benefit of potentially temporary carbon sequestration - or of simply delaying some CO2 emissions?


III.)  The fraction of C in the atmosphere as a function of time (see attached spreadsheet)

The spreadsheet includes values describing the carbon remaining in the atmosphere through time for 4 scenarios: 1.) simple injection of 1 ton of carbon into the atmosphere, 2.) the value of this injection if evaluated with a 3.3% per year discount rate, 3.) the amount of carbon in the atmosphere following a 1 year delay in emissions, and 4.) the value of scenario 3 with at 3.3% per year discount rate.


IV.)  Two figures on the impact of the carbon cycle and of discounting on the value of short term carbon offsets


The plots below outline specific scenarios that help to clarify short term storage.  

The first plot compares the release of a single ton with the removal of several tons for a short period of time where the discounted areas of the curves are identical.  The blue line shows a single release of carbon to the atmosphere, decreasing over time due to atmospheric dynamics and discounted by time.  The black line shows an initial removal, followed five years later by the re-release of that carbon.  The net negative area of the black curve, including the large negative portion and the smaller positive portion, is exactly the same as the positive area under the blue curve. 
[image: ]
The second plot shows the fundamental idea of the effect of discounting.  The two black curves show the effect of a delayed release to the atmosphere.  The curves are exactly the same except for the shift.  The blue curves however, show those same curves when they are discounted by a time preference of 3.3%.  You can see that the second curve drops significantly from the very beginning.
                                                       [image: ]
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