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Data Sources
Entity Extraction from EHRs with Assertion and Patient Attribution
Extracting valuable information from EHRs with intelligent systems starts with Named entity recognition (NER), a key building
block of common NLP tasks such as question answering, topic modelling, information retrieval, etc1. In the medical domain,
NER plays the most crucial role by giving out the first meaningful chunks of a clinical note, and then feeding them as an input
to the subsequent downstream tasks such as clinical assertion status2, clinical entity resolvers 3 and de-identification of the
sensitive data4. However, segmentation of clinical and drug entities is considered to be a difficult task in biomedical NER
systems because of complex orthographic structures of named entities 5.

As the risk factor extraction from clinical notes would play a pivotal role in representing the patient context, doing this
automatically, accurately, and at scale is highly desired. In order to ensure this, we decided to deploy Spark NLP for Healthcare
library6 that has state-of-the-art NER models pretrained on curated datasets as well as well known benchmark datasets2, 7, 8.
NER implementation in Spark NLP is based on the BiLSTM-CNN-Char framework, a modified version of the architecture
proposed by Chiu et.al.9. It is a neural network architecture that automatically detects word and character-level features using a
hybrid bidirectional LSTM and CNN architecture, eliminating the need for most feature engineering steps.

In addition to extracting clinical entities from the text, we also constrained the assertion status for the extracted to be
“present". This ensures that a patient is not associated with diabetes by processing a sentence such as “patient does not have
diabetes." Similarly, we also enforce dependency checks to ensure a condition is associated with the patient and not someone
else. This would avoid associating the patient with diabetes from a sentence such as “father has diabetes." The deep neural
network architecture for assertion status detection in Spark NLP is based on a Bi-LSTM framework, and is a modified version
of the architecture proposed by Fancellu et.al.10. Spark NLP has its own NER model to extract the patient risk factors such
as coronary artery disase (CAD), diabetes, hyperlipidemia, hypertension, history of taking long-term medications, obesity,
smoking. Named as ner risk factors, it is trained on the dataset shared during 2014 i2b2/UTHealth shared task Track 2 11. The
assertion model that is fed by the out of NER model is also an out of the box solution that is pretrained on a combination of a
dataset shared at 2010 i2b2/VA challenge2.

Selection of Severe Respiratory Disease Cohort
The severe respiratory disease cohort patients are defined by having an inpatient visit with ARDS or pneumonia or influenza
diagnosis and cross-referenced with procedural codes for ventilatory support. The ICD-9 used for specification of each of the
diagnosis and ventilatory support are provided in Table 1.

Methods: Implementation details
Logistic regression: All observations of a patient are aggregated across the input observation time for input to the logistic re-
gression (LR) model. The lab measurements across the observation period are averaged for feeding into the model. Specifically,
we created a binary feature for each code in the dataset, created one binary/categorical/continuous feature as appropriate for
each of the demographic variables, created one binary feature for each risk factor, and one continuous feature for each of the
laboratory measurements. We trained LR using Adam optimizer with a learning rate of 5×10−4 and a batch size of 256. The
training is stopped when the validation F1 score does not improve for 40 epochs.

BEHRT: The BEHRT model is pre-trained on SRD by predicting masked codes in the input (representing all of the patient data
observed over the course of time). The model is then fine-tuned on COVID-19 dataset by adding a pooling and sigmoid layer as
suggested in the model architecture 12. For BEHRT, the embedding dimension is set to 64, the number of Transformer layers to
4, and number of attention heads in each layer to 4. For training, we use Adam optimizer with a learning rate of 5×10−4 and a
batch size of 64. The training is stopped when the validation F1 score does not improve for 10 epochs.
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ICD9 Description of diagnostic codes
518.82 Other pulmonary insufficiency, not elsewhere

classified
518.x5 Pulmonary insufficiency following trauma and

surgery
96.70 Continuous invasive mechanical ventilation of

unspecified duration
96.71 Continuous invasive mechanical ventilation for

less than 96 consecutive hours
96.72 Continuous invasive mechanical ventilation for

96 consecutive hours or more
480.x Pneumococcal pneumonia [Streptococcus

pneumoniae pneumonia
481.x Other bacterial pneumonia
482.x Other bacterial pneumonia
483.x Pneumonia due to other specified organism
484.x Pneumonia in infectious diseases classified

elsewhere
485.x Bronchopneumonia, organism unspecified
486.x Pneumonia, organism unspecified
487.x Influenza
488.x Influenza due to certain identified influenza

viruses

Supplementary Table 1. Description of Diagnosis Codes for identifying patients with Ventilatory Support Codes (96.*),
ARDS (518.*), Influenza and Pneumonia (PHX) (48*.*)

GRU: Each input vector is passed through a dense layer with 32 units before passing it to a GRU cell with 64 hidden units. The
last hidden state is then transformed by a dense layer with softmax to output the two class probabilities. For training, we use
Adam optimizer with a learning rate of 5×10−4 and a batch size of 64. The training is stopped when the validation F1 score
does not improve for 10 epochs.

All the baselines have been implemented in Tensorflow. For each baseline, we experimented with different subsets of
modalities and showed the result for the best case. For patient stay prediction with lookahead 3, LR and GRU showed best
performance using only procedure codes, and BEHRT showed best performance using measurement codes. For patient stay
prediction with lookahead 7, LR showed best performance using only procedure codes, GRU showed best performance using
only diagnosis, medication, and procedure codes, and BEHRT showed best performance using all codes. For ventilation task
with lookahead 3, LR showed best performance using only diagnosis codes, GRU showed best performance using only diagnosis
and procedure codes, and BEHRT showed best performance using only measurement codes. For patient stay prediction with
lookahead 7, LR showed best performance using only all codes and lab values, GRU showed best performance using only
diagnosis, medication, and procedure codes, and BEHRT showed best performance using only measurement codes.

TRANSMED: We experimented with ADAM and stochastic gradient descent (SGD) optimizers and varying learning rates [0.1,
0.01, 0.001, 0.0001]. SGD with learning rate of 0.1 was associated with best results. The ReduceLROnPlateau scheduler was
used for dynamic learning rate reduction via validation experiments. We also experimented with number of BERT layers and
number of attention heads [2-12] each, as suggested in the original implementation 13. Two layers and two heads performed
best for all configurations, except for long term ventilation prediction task where best performance was achieved using 12
attention heads.

Implementation of Multi-Comborbidity Ranking
To compute the ranking based on prevalence, we iterated over each patient to generate all possible 3-tuples (such as [“CAD",
“diabetes", “smoking"]) from the associated risk factors. Next, we ranked the generated sets based on their counts in the
ventilated patient population.
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Supplementary Table 2. Model performance (AUROC) across age and sex subcohorts for patient stay prediction

Patient Stay - next 3 days Patient Stay - next 7 days

sex
FEMALE 0.813 (0.781 - 0.840) 0.778 (0.724 - 0.825)

MALE 0.832 (0.803 - 0.859) 0.783 (0.743 - 0.822)
age (yrs)

< 30 0.843 (0.763 - 0.923) 0.719 (0.477 - 0.931)
30 - 65 0.866 (0.842 - 0.888) 0.826 (0.790 - 0.861)
≥ 65 0.759 (0.719 - 0.794) 0.719 (0.658 - 0.768)

Supplementary Table 3. Model performance (AUROC) across age and sex subcohorts for predicting ventilation

Ventilation - next 3 days Ventilation - next 7 days

sex
FEMALE 0.792 (0.722 - 0.873) 0.598 (0.266 - 0.848)

MALE 0.857 (0.778 - 0.942) 0.775 (0.706 - 0.874)
age (yrs)

< 30 - -
30 - 65 0.789 (0.680 - 0.889) 0.601 (0.356 - 0.860)
≥ 65 0.866 (0.779 - 0.961) 0.781 (0.714 - 0.873)

To compute a multi-comorbidity ranking based on model predictions, we first created patient subgroups where each
subgroup corresponds to a multi-comorbidity as specified above. Note that the subgroups can be overlapping since a patient
associated with (“CAD", “diabetes", “smoking") can also be part of another subgroup corresponding to (“CAD", “diabetes",
“obesity"), if the patient had four of these risk factors. Next, we used the predicted ventilation risk score for each patient in a
subgroup and averaged to generate a subgroup level score. Finally, we ranked the multi-comorbidities based on the averaged
predicted ventilation risk score.

Additional Results
Performance across demographics based sub-cohorts: We further characterize the model accuracy across different sex
and age groups( Table 2, 3) across the 4 different prediction task settings. We observed minimal difference in accuracy of
patient stay across male and female patients. However, we observe higher model accuracy for ventilation of male over female
population. This is largely due to the fewer number of female patients with a ventilation outcome (7.9% in male and 4.3%
female) in the available COVID-19 cohort. Across the age groups, the accuracy is again largely observed varying as a function
of number of positive training instances available for each cohort. The patient stay was more accurately predicted for age group
30 to 65, while ventilation was more accurately predicted for patients equal to or more than 65 years old.
TRANSMED temporal performance: In addition, to the existing tasks for long term and short term prediction for patient
stay and ventilation, we perform a thorough evaluation of TRANSMED’s temporal prediction performance. We study the
prediction accuracy of our system as function of number of days of observation (input time steps Th) and number of look-ahead
days into the future at the end of observation period Tf . Table ( 4a) and (4b) shows the performance of model for patient stay
and ventilation tasks. As expected, the prediction accuracy of the model decreases as we try to predict farther into the future.
Interestingly, first 2 days of input time steps were the most effective setting for predicting across all outcomes due to insufficient
number of data samples (average length of stay for both cohorts was less than 5 days, Table 1 in the primary manuscript).
AUROC results: The detailed plots for area under receiver operating characteristics for each of the 4 tasks across all methods
are shown in Figure 1. As discussed earlier, TRANSMED outperforms on both ventilation tasks while GRU and TRANSMED
coincide closely for patient stay prediction. A threshold of 0.5 was used for the classification performance evaluation.
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Supplementary Table 4. Model performance (AUROC) as a function of history length Th and look-ahead time Tf . The
experiments were performed using a fixed set of hyper-parameters for the model, with 2 BERT encoder layers, 2 attention
heads and a learning rate of 0.01 with SGD optimizer.

(a) Predicting patient stay

Input window size
Lookahead window

2 days 3 days 7 days

2 days 0.857 (0.834 - 0.878) 0.808 (0.784 - 0.830) 0.783 (0.747 - 0.816)
4 days 0.847 (0.817 - 0.874) 0.790 (0.757 - 0.823) 0.748 (0.697 - 0.800)

8 days 0.805 (0.760 - 0.849) 0.759 (0.707 - 0.813) 0.715 (0.651 - 0.780)

(b) Prediction of ventilation

Input window size
Lookahead window

2 days 3 days 7 days

2 days 0.863 (0.807 - 0.919) 0.855 (0.797 - 0.913) 0.809 (0.751 - 0.884)
4 days 0.835 (0.742 - 0.926) 0.795 (0.710 - 0.888) 0.748 (0.672 - 0.843)

8 days 0.704 (0.591 - 0.799) 0.765 (0.689 - 0.898) 0.553 (0.468 - 0.638)

(a) (b) (c) (d)

Supplementary Figure 1. AUROC curves comparing all benchmarks and TRANSMED ablation study performance across
the four prediction tasks with varying lookahead distances. (a) patient stay (3 days), (b) patient stay (7 days), (c) ventilation (3
days), (d) ventilation (7 days).

Related Work
The disruptive impact of deep learning in natural language processing inspired extension of prominent NLP methods into
EHR prediction tasks. Treating codes such as diagnostic codes, drugs and procedures as sets of words led to adoption of
convolutional neural networks14, sequence modeling approaches such as skip-gram models and variants of recurrent neural
networks15–21 and transformers12, 22–25 for various EHR prediction tasks.

Our neural architecture is distinct from the other recent BERT or Transformer-based architectures such as BEHRT12 and
MedBERT 25 models in multiple dimensions. Similar to BEHRT, MedBERT proposed training at patient visit sequence level,
and uses only the diagnosis codes from a patient cohort. Hence, we only empirically compare with BEHRT which uses a
much wider scale of structured EHR data and is more suitable for the in-stay patient study. The encoder layer in our model
integrates temporal information in multiple representations, that includes discrete entity-based representation of diagnostic
codes, drug codes, procedure codes along with continuous valued time-series measurement of laboratory tests. To the best of
our knowledge, the proposed model demonstrates the widest integration of EHR-based data sources across multiple modalities
for COVID-19 severity prediction.

Learning representations of medical codes has been an area for active research by itself. We learn contextual representations
of each medical code such that the embedding for a diagnosis code such as “diabetes" can differ from patient to patient, or even
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Supplementary Table 5. Model performance (AUROC) with various combinations of input sources: diagnostic codes (Dx),
drug codes (Rx), procedure codes (Proc), laboratory measurements (Meas), and clinical notes (Notes).

Model Inputs Short-term patient stay Long-term patient stay Short-term ventilation Long-term ventilation
AUROC F1 AUROC F1 AUROC F1 AUROC F1

Dx 0.52 0.51 0.53 0.34 0.49 0.49 0.52 0.50
Rx 0.49 0.49 0.49 0.34 0.53 0.50 0.43 0.49

Meas 0.51 0.43 0.52 0.34 0.43 0.50 0.57 0.50
Proc 0.82 0.71 0.77 0.68 0.82 0.53 0.74 0.47

Dx + Rx 0.49 0.52 0.52 0.34 0.52 0.50 0.50 0.05
Notes + Proc 0.83 0.71 0.78 0.71 0.82 0.51 0.73 0.47

Dx + Proc + Rx 0.51 0.49 0.50 0.34 0.51 0.50 0.52 0.49
Demo + Notes + Proc 0.83 0.71 0.78 0.70 0.81 0.53 0.77 0.52

Dx + Meas + Proc + Rx 0.51 0.38 0.50 0.35 0.54 0.50 0.49 0.41
Demo + Dx + Meas + Proc + Rx 0.58 0.52 0.60 0.59 0.54 0.43 0.48 0.40

Demo + Meas_val + Notes + Proc 0.82 0.71 0.78 0.71 0.80 0.51 0.76 0.50
Demo + Dx + Meas + Notes + Proc + Rx 0.69 0.62 0.70 0.65 0.60 0.40 0.59 0.39

for the same patient, it’s vector embedding can change depending on other codes it co-occurs with. Medical codes such as
diagnosis codes and drug codes are naturally organized in hierarchical ontologies26. While we do not exploit such structure in
our work, we foresee room for further performance improvement by leveraging on prior literature on learning hierarchical
representations of the codes22, 27–29 as well as the relationships between diagnosis codes and drug codes18.

Two particular threads are relevant to our work in this broad landscape: 1) approaches for integrating diverse data sources
and modalities, and 2) leveraging on prior data sources. Fewer efforts have focused on integrating multiple data modalities
in EHR databases. Inclusion of static attributes of patients such as race, sex, ethnicity, and other patient health risk factors
have been shown to improve model performance when incorporated into LSTM and CNN models30. Integration of clinical
notes into a multi-modal model has been done via extraction of UMLS concept identifiers (CUIs)31 and emotional states32.
RAIM20 uses lab measurements and interventions to guide attention weights over time-series of high-density waveforms and
vital signs.21 propose an LSTM-based time-aware multi-modal encoder that processes time-series, diagnoses, demographics,
and medications for identifying sepsis subphenotypes. However, we did not consider any time-series model due to the sparse
and highly irregular nature of thetime-series based laboratory measurements.Last but not the least, pre-training with larger
datasets that may be similar, transfer learning has been shown to improve model performance on small or limited healthcare
datasets33, 34.
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