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Here we provide more details on the theory of the Floquet symmetry-protected topological phase (Sec. I),
on our numerical simulations (Sec. II), and on our experimental setup (Sec. III). We also provide additional

experimental data (Sec. IV).

I. THEORETICAL UNDERSTANDING

A. Introduction to Floquet time crystals

In order to obtain a better intuitive understanding of the Flo-
quet symmetry-protected topological (FSPT) phase, we first
introduce the basic concepts behind Floquet time crystals and
present a prototypical model as a concrete example.

Spontaneous symmetry breaking is an important concept in
modern physics. It occurs when the steady state of a physical
system does not respect the symmetries of the Hamiltonian
governing this system. An important example that manifests
spontaneous symmetry breaking is an ordinary crystal, which
breaks the continuous spatial translation symmetry. More pre-
cisely, in a crystal, the state of the system, unlike its Hamil-
tonian, is not invariant under continuous translation opera-
tors. Analogously, systems that spontaneously break time-
translation symmetry are named time crystals [S1, S2]. Al-
though there is a no-go theorem for continuous time crys-
tals at equilibrium [S3, S4], Floquet time crystals mani-
fest themselves in many physical systems. There are two
equivalent definitions of Floquet time crystals in Ref. [S5],
which characterize this concept from the perspective of the
expectation value of an operator and from the perspective
of the eigenstates of the Floquet evolution unitary, respec-
tively. The first definition states that time-translation symme-
try breaking occurs if, for every short-range correlated state
[t(t)) at arbitrary time ¢, there exists an operator O sat-
isfying (Y(t+T)|O|(t+T)) # (@) O[(t)), where
[t +T)) = Up(T)|9(t)), with Up(T') the Floquet evo-
lution unitary corresponding to one period 7'. This defini-
tion implies how to observe time crystals experimentally and

is used in our paper. The second definition states that time-
translation symmetry breaking occurs if all eigenstates of the
Floquet evolution unitary are long-range correlated. This con-
cept is used in our theoretical analysis.

To be more concrete, we introduce the following pro-
totypical time-dependent Hamiltonian previously studied in
Refs. [S5, S6] as an example of a Floquet time crystal:

H, :ﬁ/QZk&,f, 0<t<Ty,

— Jaly ey 4 ZAZ
Hy =3 Jk67.07 41 + hjo%,

Hp(t) =
T <t<T,
(SD

where Jj; and hj are uniformly chosen from the following
intervals: J € [J/2,3J/2] and hi € [0,h%]. We set T =
2T7 = 2. The Floquet evolution operator for one period can
then be written as Up = exp(—iHs) exp(—im/2 ), 6}).

We consider eigenstates of Hy, which are product states
in the computational z basis: |©) = [{sx}) with s = £1.
Such states are easy to prepare experimentally. Since Up
has the effect, up to a global phase, of flipping all spins, the
state |O) is related to another state |—0) = |{—sx}), which
is also an eigenstate of H. Defining E*(©) and E~(0O)
via Y, Ji6707,,[0) = E+(0)[6) and X, hio7 [0) =
E~(©)|0), we have

Ur|©) = exp[-i(ET(©) = E7(©))]|-6),  (S2)

Ur|-0) = exp[—i(ET(©) + E7(©))][6).  (S3)

Therefore, in the subspace formed by |£0), U has the matrix



form
0 e~ i(ET(©)-E(9)
Ur = . - . (84
e~ HET(O)+E™(9)) 0
Diagonalizing this matrix gives eigenvalues

+exp(—iE1(0)) and eigenstates |©) +exp [1E~ (0)]|—0O).
The eigenstates of U are thus paired cat states with long-
range correlations. Thus, this model satisfies the second
definition of a Floquet time crystal in Ref. [S5], so discrete
time-translation symmetry breaking occurs in this system.
(Note that, in order for these correlations to be stable to
perturbations, disorder in the couplings J and hj that is
sufficiently strong to render Ur many-body localized is re-
quired.) Futhermore, as the Floquet operator has eigenvalues
+exp(—iET(0)), if we diagonalize the effective Hamilto-
nian of the Floquet operator, we will get two eigenvalues with
quasi-energy difference 7. This model therefore corresponds
to the 7-spin-glass phase introduced in Ref. [S7].

B. Our model: the FSPT phase

Unlike Floquet time crystals introduced above, the Floquet
SPT phase breaks discrete time-translation symmetry only
at the boundaries. To be specific, our model of the Flo-
quet SPT phase exhibits subharmonic response at frequency
27 /2T only at the edges but not in the bulk of the system.
Here T is the period of the Floquet driving. We will now
present additional theoretical analysis of our model.

1. Localized and SPT quantum states

Our FSPT phase has two distinct governing Hamiltonians
during different time intervals as shown in the main text. In
the first time interval, this governing Hamiltonian H; is the
sum of one-body Pauli operators on different sites. In the sec-
ond time interval, the governing Hamiltonian H5 includes in-
teraction among neighboring sites, which introduces the sub-
tle many-body properties in this system.

Let us begin by studying the static Hamiltonian Ho [S8],

Hy = > [Jk65 168671 + Vioiot,, + i), (S5)
k

where the parameters are chosen as in the main text. This
Hamiltonian has a Z; x Z; symmetry, corresponding to
6. — —0;Y independently on even- or odd-numbered
sites, i.e. [Ha, ][], 65,] = 0 and [Hy, ][], 65,,,] = 0. All
three-body terms Sy = 67_,0}07,, in Hy commute with
each other, i.e. [Sk, S;] = 0, and are called stabilizers.

In the extreme case V; = h, = 0, the eigenstates of
this Hamiltonian are the mutual eigenstates of all stabiliz-
ers and are called cluster states. They are SPT states with
Zoy X Zy symmetry. The SPT phase manifests itself in the

open-boundary case: there is one effective free spin at each
end of the chain. The topological nature of the eigenstates is
encapsulated by the string-order parameter:

Ou(l,5) = (6767, ( H DGY_16%),  (S6)
k=142

which takes random values Oy (1, ) = +1 for different eigen-
states and different disorder realizations. Thus, we can define
a non-local analogue of the Edwards-Anderson glass-order
parameter to characterize the FSPT phase: Oy, = [O%(1, j)].
where [] denotes an average over sites, states, and random
realizations. The entanglement spectra of the eigenstates are
degenerate. This degeneracy can serve as another manifes-
tation of the topological nature of the phase. Furthermore,
in this limit, all energy levels are exactly four-fold degener-
ate. The corresponding degenerate eigenstates can be divided
into four groups: {|Ax) = [T.. D} {|Bx) = .. D}
{ICx) = 1. 1} {IDk) = |4 ... 1)}. Here we are work-
ing in the &, basis, and the two arrows represent the effective
boundary spins and the ... denotes the bulk spins. These states
are related by H&gdd |Ak> = ‘Bk>’ H&even |Ak> = |Ck>’
[1631 |Ak) = [Dy), where [[68e, = [1), 05 [1004a =
[1i 63k41> and [T o5 =TI, 0%

When Vi, hi # 0, the one- and two-body terms make
the eigenstates of this Hamiltonian depart from cluster states.
However, if we keep the Hamiltonian deep in the topologi-
cal phase (the phase we are interested in), i.e. Ji > Vi, hy,
we can also interpret this model from a many-body localized
(MBL) perspective. Unlike the V}, = h, = 0 Hamiltonian
with strictly localized stabilizers as the integrals of motion,
in the MBL phase, the system posses a set of mutually com-
muting quasi-local integrals of motion. Similarly, for open
boundary conditions, there exists a quasi-local effective free
spin at each edge, which contains bulk components decaying
exponentially with the distance from the edge. In this case,
the string-order parameter and the degeneracy of the entan-
glement spectra can still manifest the topological nature of the
eigenstates. Moreover, while the energy spectrum is no longer
exactly four-fold degenerate in a finite system, it is still nearly
four-fold degenerate, and the corresponding eigenstates can
still be divided into the four groups introduced above.

2. The emergence of the FSPT phase

Having reviewed the properties of the static Hamiltonian
H,, let us now consider the Floquet case, wherein we peri-
odically drive the above SPT Hamiltonian as discussed in the
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FIG. S1. The evolution of the FSPT phase for system size L = 100,
computed using the time-evolving block decimation methods. Re-
sults shown here are averaged over 1000 random realizations, with
parameters J = AJ = 1, h = Ah =V = AV = § = 0.05.
a. Time evolution of disorder-averaged local observables. For the
edge spins, it is clear that (o) and (070p) (Which are right on top
of each other, so that & = 1 is not visible) display persistent os-
cillations with 27" periodicity, manifesting the breaking of discrete
time-translation symmetry. In stark contrast, bulk spin (o) (plot-
ted for k = 2, 50, and 99) decays rapidly to zero and no symmetry
breaking is observed. This is the defining feature of the FSPT phase:
time-translation symmetry only breaks at the boundary, not in the
bulk. b. Fourier spectra of (o). We find that 01 (w) and o190(w)
(which are on top of each other, so that kK = 1 is not visible) have a
peak at w/wo = 1/2, where wy = 27 /T is the driving frequency.
This peak is robust and rigidly locked to wo /2, a manifestation of the
robustness of the FSPT phase. For bulk spins, there is no such peak,
consistent with no symmetry breaking in the bulk. ¢. Logarithmic
entanglement entropy (abbreviated as “Ent. Entropy”) growth. In
the FSPT phase, the system is many-body localized. We thus expect
logarithmic entanglement growth, which is shown in this figure. The
entanglement has an initial quick rise until time ¢ ~ 1/J. This ini-
tial rise corresponds to the expansion of wave packets to a size on the
order of the localization length.

main text:
Hy, 0<t<T,
Hp =00 P=stsi (S7)

HQ, T <t<T
T AT

Hy = (5 -0) Yo%, (s8)

k
Hy= = [Jk6i 165671 + Vibio7, + hieo)S9)

k

where T' = 277 = 2.

Let us begin with the perfect case, where § = 0 and Vj, =
hi = 0. The energy spectrum of Hy is then perfectly four-fold
degenerate. The eigenstates can be divided into four groups,

e {|Ak) = [t o DL AIBR) = [b oo DY AICK) = It D),

{|Dg) = [} ... })} with E4, = Ep, = E¢, = Ep,. There
exists a local effective free spin at each boundary. Since the
effect of Uy = e~ #™/2 2k %% s to perfectly flip the spins at all
sites, we obtain the following properties of the Floquet opera-
tor Up = exp (—iHsz) exp (—im/2 ), 6}):

UF |Ak> = eXp(—iHQ) |Dk> = exp(—iEDk) |Dk> s (SlO)

UF |Bk> = exp(—ng) ‘Ck> = exp(—iEck) ‘Ck> s (Sll)

UF |Ck> = exp(—ng) |Bk> = exp(—iEBk) |Bk> s (512)

UF |Dk> = exp(—ng) |Ak> = exp(—z'EAk) IAk> . (513)

From this, we see that U mixes the states | Ax) and | Dy) and
mixes the states | By) and |Cj). Within the subspace of |Ay)
and |Dy), Up has matrix form

0 exp(—iFEp,) S14)
exp(—iEa4,) 0

Within the subspace of |By) and |C}), Ur has matrix form

0 exp(—iEc,) S15)
exp(—iEpg,) 0

Therefore, in the subspace formed by |Ay), |Bx), |Ck), and
|Di), Up has eigenvalues +exp[—i(Ea, + Ep,)/2] and
+exp[—i(Ep, +Ec,)/2]. Thus, the Floquet effective Hamil-
tonian has eigen-energies (E4, + Ep,)/2, (Ep, + Ec,)/2,
(Ea, + Ep,)/2 + 7, (Ep, + Ec,)/2+ 7 mod 27m. As
the energy spectrum of Hj is four-fold degenerate (E4, =
Ep, = Ec, = Ep,). the Floquet eigen-energies satisfy
(EAk + EDk)/2 = (EBk + Eck)/27 (EAk + EDk)/2 +m=
(E, + Ec,)/2 + m. Therefore, the original four-fold de-
generacy breaks into two-fold degeneracy in the presence of
the drive. This two-fold degeneracy is a remnant of the orig-
inal topological order. As for the Floquet eigenstates, they
are cat-like linear combinations of topological eigenstates:
|Ar) £ |Dy) and |By) £ |C)). The mutual information be-
tween the two boundary spins is 2 log 2, indicating that there
are long-range correlations between the boundaries.

When we turn on the two-body terms and the one-body
terms in Ho, but still keep the system deep in the topo-
logical phase (J; > hg, Vi), Hs has four nearly de-
generate eigenstates related by the symmetry operations.
The effective free spin at each boundary becomes quasi-
local. Under Floquet driving, the near-four-fold degeneracy
breaks into near-two-fold degeneracy: (E4, + Ep,) /2 =
(EBk + Eck) /25 (EAk + EDk) /2+7T ~ (EBk + ECk) /2+
m. Similarly, the eigenstates of the Floquet unitary are still
cat-like states, and thus time-translation symmetry breaking
can occur in this case. The stability of the FSPT phase will be
discussed in more detail in Sec. I B 4.



3. Dynamical properties of the FSPT phase

Next, we will consider the evolution of this system and ex-
plicitly demonstrate the behavior of the FSPT phase.

Let us start from a product state |) = || ... T). Here
... denotes a product state of bulk spins. Because the sate of
the boundary spins corresponds to the group {|By)}, we can
expand the initial state as |¢)g) = >, by | Br). Under the time
evolution Uy for one driving period, we have

Ur o) = exp(—iHy) exp(=im/2 3" 67) S by | B)
j k

= exp(—iHy) Y by |Ci)
k

= Zbk eXp(_iECk) |Ck> ’
k

(S16)

where |Bg) = [ ... 1), |Ck) = [T ... 1). So, if we measure
the edge spins in the initial state, we have (o] 6% [10g) =
=1, (o] 6% o) = 1. After one Floquet period, the
state becomes |¢1) = >, bpexp(—iE¢,)|Ck). Because
|Ck) has definite boundary spin expectation values, we

will get (¢1]6% 1) = 1, (Y1|6% Y1) = —1. Simi-
larly, after two Floquet periods, the state becomes [i3) =
2. bk exp(—iEc, — iEp,)|By), and (9| 67 [2) = —1,

(2| 6% |1p2) = 1. Thus, we see the the edge spins exhibit
breaking of the time-translation symmetry.

As for bulk spins, assume that one bulk spin c}j has
the following expectation value in the initial product state:
(0] 6% [1ho) = 1. Writing [1)o) in the | B) basis, we have

(ol 67 [tho) = > baby (B |67 |Br) = 1. (S17)
kK

Since the spins of |C};) are opposite to the spins of | By) at all
sites, we immediately have that

> bibi (Ch| 67 |Cr) = —1. (S18)
kK

However, the expectation value of 67 in state [¢)1) can be ex-
pressed as

(1] 65 1) = bibys exp(—iEq, +iEc , ) (Cy| 67 |Ch) -

kK

(S19)
Comparing the last two equations, we see that, because of the
extra phase factor exp (—Z'Ec,c + iECk,) before each compo-
nent, the c};f‘ will not have definite value after the Floquet time
evolution and will decay to zero quickly after random aver-
aging. Thus, bulk spins do not exhibit breaking of the time-
translation symmetry.

The above derivations tell that, for our model, the edge
spins exhibit discrete time-translation symmetry breaking,
while bulk spins relax very fast. Thus, the time-translation
symmetry breaking only occurs at the boundaries as showing

Thermal phase

FIG. S2. The decay of boundary-spin magnetization and the phase
diagram of the system. a. The decay of the first-spin magnetization,
averaged over random disorder realizations. Here, the number of dis-
order realizations ranges from 3 X 10* (L = 6) to 10® (L = 14).
The omitted parameters are chosen as in Fig. S1. We see an initial
quick decay of (o7), followed by a plateau that extends up to a time
diverging exponentially with system size. The inset shows the expo-
nential scaling of 7 with system size, where 7" is the time when the
edge spin decays to 1/2. b. The phase diagram of the system as a
function of the parameter § in the definition of H; and the average
strength V' of the two-body interactions. Here, we adapt the string
order parameter Os, (averaged over 100 random realizations) as the
indicator. It shows that when the imperfections are not very large, the
string order parameter is approximately equal to one, indicating the
topological phase. The other parameters are chosenas J = AJ =1,
h = Ah =0.01.

in Fig. Sla. We stress the importance of topology here. It
protects the edge spins, ensuring the robustness of the edge
spins against local perturbations that respect the underlying
symmetry.

Deep in the FSPT phase, the system represented by the
static many-body-localized Hamiltonian H» has a complete
set of quasi-local integrals of motion [S9]. Therefore, spins
far away from each other can build significant entanglement
only after exponentially long evolution time [S10]. Thus, un-
der the Floquet time evolution, the entanglement entropy of
our system exhibits logarithmic growth, as shown in Fig. Slc,
and will eventually saturate to a value proportional to the sys-
tem size.

Furthermore, when system size is finite, even deep in the
topological phase, the Floquet time evolution will eventually
lead to the decay of the spin signal at the boundaries. Indeed,
the quasi-local effective free spins at the boundaries have tails
that decay exponentially into the bulk. When system size is
finite, these tails have an exponentially small overlap, which
leads to the relaxation of the two effective free spins, with the
lifetime diverging exponentially with system size. We demon-
strate this phenomenon numerically in Fig. S2a.

4. The stability of the FSPT phase

The above considerations rely on the fact that, during each
period, we perfectly flip spins at all sites. To show that the
FSPT phase is indeed stable, we should make sure its defin-



ing properties hold even for an imperfect drive. We follow
arguments similar to those introduced in Ref. [S5].

We showed above that, in the perfect-drive case (6 = 0), the
eigenstates of the Floquet evolution operator are cat-like states
[AP) = |Ag) £ |Dy) and [8°) = |By) £ |Cy). We say
that an effective short-range correlated topological state sat-
isfies (| 616 [0y — (W| 61 [¢) (W| 5 [) — 0. Obviously,
|Ar), |Bk), |Ck) , | Dy) are short-range correlated topological
states, but the Floquet eigenstates |47 ) and [£¢) are all
long-range correlated, with different quasienergies. Then, any
experimentally prepared short-range correlated state (such as
a product state) can only be formed by taking a superposition
of those long-range-correlated Floquet eigenstates with differ-
ent quasienergies. Thus, after one period of Floquet evolution,
local observables at the edge will not be invariant, signaling a
breaking of discrete time-translation symmetry.

Now we add local Zy X Zs-symmetric perturbations into
the system, such as an imperfect drive (6 # 0), two-body in-
teractions (Vj, # 0), and single-body terms (hj, # 0). As long
as the system is in an MBL phase, a local perturbation will
significantly affect only nearby sites. Thus, we expect that
the long-range correlations in the eigenstates of the Floquet
unitary will not disappear. In fact, there exists a quasi-local
Zo X Zo-symmetric unitary operator U, which constructs the
perturbed Floquet eigenstates from the unperturbed Floquet
eigenstates. Since U is quasi-local and symmetric, it can-
not destroy the long-range boundary correlations of the unper-
turbed Floquet eigenstates. (Note, however, that perturbations
that break the protecting symmetry but maintain MBL can de-
stroy the FSPT phase, as discussed in Ref. [S11].) There-
fore, time-translation-symmetry breaking can also occur in the
locally perturbed system. To explicitly show that the FSPT
phase is indeed a phase, we use the string order parameter O,
as the indicator to plot in Fig. S2b the phase diagram with re-
spect to the drive imperfection § and the average strength V'
of two-body interactions.

5. Mapping to free fermions when Vi, = 0

In this section, we review the mapping of the time-periodic
Hamiltonian H (¢) defined in Eq. (1) in the main text [equiv-
alently Eq. (S7)] to free fermions when the two-body interac-
tions V}, are set to zero. This is achieved by a Jordan-Wigner
transformation whereby a spin operator on site k is repre-
sented in terms of two Majorana operators, &y and Be. The
Majorana operators are defined via the nonlocal mapping

ar = | [[ 67 ] o, B =i éu,6%. (S20)
j<k
Under this transformation, we have
6% = —idpf (S21a)

and

651656741 = —iBr—16ns1- (S21b)

The mapping thus results in redefined Hamiltonians

Hy = —i(5 ~8) Y auby (S22a)
k

and

Hy =i (D Berdnn +hednBy). (522b)
k

Note that H5 can be rewritten as
HQ — Hé)dd + Hsven

=1 Z (Jk+1 Brépio + Ry, @kBk)
k odd (823)

+i Z (Jk+1 Brérya + hu dkBk) ,

k even

which corresponds to two decoupled Kitaev chains [S12], one
on the odd and one on the even sublattice. The Zy X Zo sym-
metry of H (t) then manifests itself as the separate conserva-
tion of the two fermion parity operators

II GéwBe),

k odd (even)

Podd (even) — (S24)

with eigenvalues +1.

When 77 = 1 and § = hy = 0, the time-dependent Hamil-
tonian H (t) maps onto two copies of the fixed-point model
for the nontrivial class D FSPT phase studied in Ref. [S13].
To see this, note that, when 6 = 0 and 77 = 1, we have (up to
an unimportant overall phase factor)

exXp (_iTlHl) = PevenPodd- (825)

Thus, we obtain the Floquet operator (setting 7" = 27 = 2)

- rreven

— _ s xyodd
Ur = Poven € s L

Poaace (S26)

If we additionally set hy, = 0, this Floquet operator is just a
product of two decoupled copies of the class D model con-
sidered in Ref. [S13]. The model studied in this work is thus
expected to remain in this universality class for any small per-
turbations that respect the Zs X Zo symmetry of Eq. (S26),
including finite J, hy, and V.

II. DETAILS OF THE TEBD METHOD

We numerically simulate the time evolution process of
the FSPT phase using the time-evolving block decimation
(TEBD) method. This method was proposed for the time evo-
lution of matrix product states (MPS) [S14, S15] and is a vari-
ant of the density matrix renormalization group (DMRG) al-
gorithm [S16, S17]. At the heart of the TEBD method lies the
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FIG. S3. Pictorial illustration of the implementation of the time-
evolution unitary, where a connected wire between different blocks
means contraction of indices. a. Implementation of Uy (At). The
gray blocks represent the current state in MPS form, and the green
blocks represent the time evolution unitary consisting of one-body
operators (¢ = —(7/2 — §)). b. Implementation of Us(At). The
gray blocks represent the current state in MPS form; the orange
blocks represent the time-evolution unitary consisting of three-body
operators arranged in three groups; the blue blocks represent the
time-evolution unitary consisting of two-body operators arranged in
two groups; and the green blocks represent the time evolution uni-
tary consisting of one-body operators (o« = hy). These unitaries are
applied to the the current state layer by layer.

Trotter-Suzuki decomposition of the time-evolution operator
U(At) of a short-range interacting system over a small time
interval At. Usually, we can represent the operator U (At) in
the matrix-product-operator (MPO) form with small Trotter
error, and then repeatedly apply it on the MPS representing
the current state [1(¢)) of the system to implement the time
evolution.

Our FSPT phase has two distinct Hamiltonian operators in
different time intervals as shown above. For the first time in-

terval, the corresponding Hamiltonian is the sum of one-body
operators on different sites. So the evolution operator is a di-
rect product of one-body evolution operators

emitHI — omit(m/2-0)5T @ g o=it(n/2-0)0% &

(S27)
which can be represented as an MPO directly. To obtain the
corresponding expectation values of local observables at dif-
ferent times, we also decompose the time evolution operator
of an entire time interval T} into several small time intervals

At. We show the implementation of U; (At) in Fig. S3a.

Ur(t) =

For the second time interval, the Hamiltonian H5 con-
sists of multiple short-range interaction terms: Hs =
— 2wl kOf_ 10767 + ViGi 6y + hidi]. Thus, we can
approximate the time-evolution operator using Trotter-Suzuki
decomposition Us(t) ~ [Us(At)]/4 [e‘mt’b]t/m
with At <« t. To efficiently construct the MPO repre-
sentation of Us(At), we group together terms in Hy that
commute with each other. The three-body operators are all
stabilizer operators and commute with each other. For the
two-body terms, they also commute with each other. For
one-body terms, all of them are act on different sites and
thus commute with each other. For simplicity, we denote
A = = kb7 16165, B = — S, Viokog,,, C =
— > hi6} and obtain

UQ(At) :e—iAt(A—i-B—i-C)

. . . 2
:e—zAtC’e—zAt(B-i-A)e—zAt [C,B+A]

+ O(A)

_miAMO AL —ALA L (AR2), (528)

Thus, the time-evolution operator for Hs over time interval ¢
is approximated by

U(t) ~ [U(At)) /2

_ (e—iAtce—iAtBe—mtA)t/At L O(AD).  (S29)

Furthermore, to make the numerical simulation more efficient,
the implementation of three-body terms and the two-body
terms can be accomplished layer by layer, wherein each layer
only contains operators with nonoverlapping support, so that
they can be applied to the MPS in parallel. We emphasize
that, since the Trotter error is of order A¢, the time interval
At should be small enough to avoid large TEBD error. The
implementation of Uy (At) is showed in Fig. S3b.



III. EXPERIMENTAL DETAILS

A. Quantum circuit ansatz

Algorithm 1: Neuroevolution Method

Output: Quantum circuit ansatz approximating target
unitary.
Input: Elementary gate set S, evolution unitary
Us(At) and threshold 5.
G = Direct_Graph(S);
C = Random_Generation_of_Quantum_Circuit(G);
L = Optimization(C, Uz (At));
while min{L} > 3 do
C = Quantum_Circuit_Extension(C, G);
L = Optimization(C, Us (At));
end
return argming{L};

Algorithm 2: Optimization for a quantum circuit

Output: Optimal parameters of the given quantum
circuit.
Input: A quantum circuit C, evolution unitary Us (At)
and learning rate +.
Randomly initialize 6;
Ukireuit (8) = Unitary(C, 0);
L=1—-Tr [UQ(Af)TUCirCUi[(O)] /d,
while L > 0.001 do
0=0— ’}/VQL;
Ukircuit (0) = Unitary(C, 0);
L=1-—-Tr [Ug(At)TUcircuit(H)] /d,
end
return 0;

To observe the FSPT phase on a digital superconducting
quantum computer, we need to decompose the time-evolution
unitary into a quantum circuit consisting of a series of exper-
imentally implementable quantum gates. Due to the direct-
product structure of the evolution unitary Uy (t) = e~
in the first time interval, this unitary can be represented as
a quantum circuit using a layer of rotation gates along the z
axis. Thus, it can be constructed and implemented relatively
easily. As for the second time interval, the interaction among
different sites takes the time-evolution unitary far away from
a direct product form, making things a little different.

With the progress of research on variational quantum cir-
cuits, we are able to adapt this method to construct the quan-
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FIG. S4. Quantum circuit ansatzes used in our experiments. a. The
circuit ansatz for the time-evolution unitary over the first time inter-
val. b. The circuit ansatz for the time-evolution unitary over the sec-
ond time interval, where the system is deep in the topological phase.
c. The circuit ansatz for the time-evolution unitary over the second
time interval, where the system contains no two-body operators and
no one-body operators: Uz = exp (1>, Jx0i_ 16507 41)-

tum circuit of the second-time-interval unitary. Variational
quantum circuits are a powerful tool that has been inten-
sively investigated in recent years. Algorithms based on
variational quantum circuits hold great potential in the noisy
intermediate-scale quantum era. There are many algorithms
based on variational parameterized quantum circuits, such as
the variational quantum eigen-solver [S18], the quantum neu-
ral network [S19], etc.. The major distinction between stan-
dard quantum circuits and variational quantum circuits is that
the gates composing a variational quantum circuit are not
fixed. They can be modified by tuning their parameters using
different parameter-updating algorithms. As these parameters
are updated, the unitary implemented by the variational circuit
is also updated. We terminate the updating procedure when a
satisfactory result is obtained.

Our target is to find a variational quantum circuit, with
some fine-tuned parameters, that approximates to high pre-
cision the evolution unitary Us(t) = e~ "2 in the second
time interval. We accomplish this target in two steps: find
an implementable variational quantum circuit ansatz that can
be used to represent the target unitary and keep updating the
parameters contained in this circuit ansatz to find a good ap-
proximation of the desired unitary.

We use the neuroevolution method [S20] to find a suit-
able variational circuit architecture. The elementary gates
used in our experiments are variable-angle single-qubit rota-
tion gates, X (), Y (6), Z(0) (8 is the variational parame-
ter), and a variable-angle control-rotation gate along the z axis
CR.(0) (0 is the variational parameter). Each of these gates
contains a variational parameter, the rotation angle. These
gates can form various quantum circuit layers. i.e. quan-
tum circuits with depth equal to one. Using the method of



Ref. [S20], we construct out of these layers a directed graph,
so that a quantum circuit can be represented as a path in this
graph. To find the desired circuit, we follow the following
procedure: 1) Randomly generate several variational quan-
tum circuits of fixed depth based on the directed graph; 2)
Update parameters contained in those quantum circuits us-
ing a gradient-based algorithm to minimize the loss function
L(0) = 1 — Tr [Uz(At) Usireuit(0)] /d, where Uz (At) is the
evolution unitary over the second time interval, Ugcuit(0) is
the unitary represented by the current quantum circuit with
variational parameters 6, and d is the dimension of the corre-
sponding Hilbert space; 3) Chose quantum circuits with small
values of the loss function and extend them based on the di-
rected graph to generate new circuits; 4) Iterate processes 2)
and 3) until the loss function is below a desired threshold. The
circuit ansatz giving the smallest value of the loss function is
regarded as the optimal ansatz representing the evolution uni-
tary and is adapted in our experiments. We show the pseudo-
code of this algorithm in Algorithm 1.

The quantum circuit ansatzes used in our experiments are
shown in Fig. S4. We notice that the quantum circuit for the
evolution unitary over the second time interval has a sand-
wich form U (At) &~ WD(0)WT, where D() is a layer of
single-qubit rotation gates with 6 being the evolution-time-
dependent parameters. We note that the circuit structure in
Fig. S4 b has an appealing merit: imagining that we first use
this circuit to simulate the evolution the system under Hy for
a small time interval At, then for the subsequent time interval
At the CR, () gates in the corresponding circuit will cancel
with the CR, (—m) gates in the preceding circuit. As a result,
for 2At time evolution the circuit maintains the same struc-
ture and we only need to double the angles for the single-qubit
Y (0) rotations to simulate the evolution. Thus, for one driving
period the depth of the corresponding quantum circuit can be
maintained to be six. We mention that this merit carries over
to the circuit structure in Fig. S4 ¢ as well.

With this circuit ansatz in hand, we can then use it to
construct the circuits for our experiments. For a particu-
lar disorder realization of Hs deep in the topological phase
(Jr > Vi, hi), we begin with this ansatz containing ran-
domly generated variational parameters 6. The the gradient
of the loss function L(0) with respect to those variational pa-
rameters is computed and is used to update the current param-
eters 0"t = (") — 4V (. L, where ~ is a given learning
rate (we usually chose 0.001 < + < 0.01). In our calcu-
lation, we iterate this optimization procedure until the opera-
tor fidelity [S21] satisfies Tr [Uz(At)Ucireuic (0)] /d > 0.999
(L(@) < 0.001). We then take the quantum circuit with the
final parameters as the approximation of the evolution unitary
Uz (At) in our experiments. We show the pseudo-code of this
algorithm in Algorithm 2.

We emphasize that this optimization procedure is suitable
for small systems. On the other hand, because of the expo-
nential growth of the dimension of the Hilbert space, the op-
timization for large systems is impractical. It is helpful that
the quantum circuit ansatz found using the neuroevolution

method can exactly represent the evolution unitary Us(t) =
e~ "2 when H, has no two-body operators and no one-body
operators (as shown in Fig. S4¢). This indicates that we can
analytically construct the corresponding quantum circuits for
arbitrarily many qubits when Vj, = hj, = 0, regardless of what
values Jj, and ¢ have. In fact, in this case, we can find an exact
simple one-to-one mapping between Jj, and the variational ro-
tation angles in Fig. S4c. In our simulations and experiments,
for systems of L < 8, the two-body terms and one-body
terms are considered and the parameters in the correspond-
ing quantum circuits are obtained using the above-described
gradient-based optimization method. For 14-qubit systems,
we only consider the stabilizer terms in Hy and exactly con-
struct the corresponding quantum circuits.

B. Device overview and measurement setup

To illustrate the idea of the FSPT phase, we select a chain
of up to L = 14 qubits in a superconducting quantum pro-
cessor, which is a flip-chip device hosting an array of 6 x 6
qubits distributed in a square lattice. To realize high-fidelity
controlled-Z (CZ) gates, we adopt the tunable-coupler archi-
tecture [S22] to mediated nearest-neighbor qubit-qubit inter-
actions, i.e., individual couplers are inserted between neigh-
boring qubits with the qubit-coupler coupling strengths de-
signed to be around 130 MHz for qubits at 6.5 GHz. All qubits
(couplers) are of transmon type, with anharmonicities around
250 (350) MHz and maximum resonance frequencies around
7 (10.5) GHz. Each qubit has its own control line, which takes
microwave (XY) inputs for rotating the qubit state around the
x- or y-axis and flux-bias (Z) pulses for tuning the qubit fre-
quency and rotating the qubit state around the z-axis; each
coupler is frequency tunable via its own flux bias (Z) line,
which guarantees that the effective coupling strength between
two neighboring qubits at 6.5 GHz can be dynamically turned
on, up to —25 MHz, or off, < 0.25 MHz. Each qubit capac-
itively couples to its own readout resonator, designed in the
frequency range from 4.1 to 4.4 GHz, for qubit state measure-
ment. 9 readout resonators share one readout transmission line
(TL) running across the processor chip, and 4 readout TLs can
cover all 36 qubits in the processor.

The processor was fabricated using the flip-chip recipe: all
qubits and couplers are located on the sapphire substrate (top
chip); most of the control/readout lines and readout resonators
are located on the silicon substrate (bottom chip). These
two chips have lithographically defined base wirings, junction
loops, and airbridges made of aluminum, and are galvanically
connected via indium bumps with titanium under-bump met-
allization, as described elsewhere [S23]. The indium bumps
were formed by the lift-off method with 9 pm-thick indium
deposited on both chips, after which these two chips were
aligned and bonded together at room temperature to complete
the flip-chip device. The indium bumps in our processor are
not only for ground connectivity, but also for passing through
control signals from the bottom chip to the top chip where the
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and filtered for noise shielding and delicate control.

qubits are located.

The processor was loaded into a multilayer printed circuit
board (PCB) enclosure, which was then mounted inside a di-
lution refrigerator (DR) with the base temperature down to 15
mK. Figure S5 shows the schematics of the control/readout
electronics and wiring setup. In this setup, the XY microwave
signals and fast Z pulses synthesized by digital-to-analog con-
verters (DACs) are first joined together at room temperature,
then attenuated and filtered at multiple cold stages of DR,
and later combined with the slow Z (DC) pulses via home-
made bias-tees at the mixing chamber stage of DR before be-
ing transmitted into the qubit control lines. The multiplexed
readout signals are also heavily attenuated and filtered be-
fore going into the readout TLs of the processor to retrieve
the qubit state information. To boost the signal-to-noise ratio

(SNR), output signals from TLs are sequentially amplified by
a Josephson parametric amplifier (JPA), a high electron mobil-
ity transistor (HEMT) amplifier, and room temperature (RT)
amplifiers before being demodulated by analog-to-digital con-
verters (ADCs) with 10-bit vertical resolution and 1.0 GS/s
sampling rate. An arbitrary microwave signal can be gener-
ated by mixing the DAC outputs with continuous microwave
using IQ mixer. DACs used to synthesize XY microwave sig-
nals and fast Z pulses in this experiment have 14-bit verti-
cal resolution and 300 MHz output bandwidth. Slow Z (DC)
pulses are generated by commercial 16-bit DACs with maxi-
mum outputs of £2.5 V.



C. Single- and Two-qubit gates

Single-qubit gates used in this experiment include X(),
Y(0), and Z(6), which rotate the qubit state by an arbitrary
angle 6 around z-, y-, and z-axis, respectively. We real-
ize X(6) and Y(#) by controlling the amplitude and phase of
XY microwave pulses, and implement Z(6) via the virtual Z
gate [S24]. Single-qubit gate errors are characterized by si-
multaneous randomized benchmarking, yielding an average
gate fidelity above 0.99 (see Tab. S1).

The basic structure to implement the CZ gate consists of
two flux tunable qubits and one flux tunable coupler, which
are, respectively, denoted as (1, @2, and C' here for clarity of
description. The effective coupling strength is composed of
a direct coupling strength between two qubits and a part me-
diated by the coupler, which can be continuously adjusted by
controlling the flux or frequency of the coupler. The Hamilto-
nian of this three body system is written as

n;
H/h= Z wiajai + éajalaiai
i=1,2,c

+ Zgij (ai — aj) (aj — a;) s
i<j

where a;( and a; are raising and lowering operators, and g;; is
the coupling strength between each pair in {Q1, @2, C'}. The
effective coupling strength between qubits is

(S30)

We We

g = + + .
9 = g1c92¢ <wf — w? w% — wf) g12

(S31)

In Fig. S6a, we plot the dynamic range of g (bottom panel)
processed using the two-qubit swap dynamics after initial-
izing 1-Q2 in |10), which shows that the effective cou-
pling strength is tunable in the range from —25 MHz to
< 0.25 MHz. Experimentally, we can apply single-qubit gates
while tuning the frequency of the coupler to around 10.5 GHz
to turn off g.

To realize the CZ gate, we apply a flux bias (fast Z) pulse
to steer the coupler’s frequency along the following trajec-
tory: 10.5—7.3—10.5 GHz. Meanwhile, we turn on the fast
Z pulses to bring a pair of qubits from their idle frequencies to
?(B),w?ﬁ)) (see Tab. S1), chosen such
that [11) and |02) in the two-qubit subspace have nearly the
same energy. After a finite period for this diabatic interaction,
a unitary two-qubit gate equivalent to a CZ gate up to trivial
single-qubit phase factors can be obtained as

the pair of values (w

1 0 0 0
0e 0 0

} (S32)
0 0 e 0

0 0 0 e
A sine-decorated square pulse with the amplitude A = 2y X

tgate

[1 —7r+rsin (ﬂL)} is used for the coupler in order to
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minimize state leakage. Experimentally, we fix » = 0.3
and only fine-tune the parameter zy. All pulses are digitally
smoothed by convolving them via a Gaussian window with
o = 2 ns before applying our pulse calibration routines [S28].
The CZ gate pulse duration is 30 ns, and there are additional
5 ns padding times before and after the 30-ns gate in compen-
sation for the finite small tails of the smoothed pulse.

Individual CZ gates are calibrated following the procedure
below:

1. Optimize coupler Z bias amplitude for minimum state
leakage: We initialize QQ1-Q2 in |11) and fix their fre-
quency detuning at w; — we ~ —27 X 250 MHz, fol-
lowing which we apply the sine-decorated square pulse
with a total length of 40 ns to the coupler. We search for
the optimized pulse amplitude zy which maximizes the
|1)-state population for ()1, i.e., minimum state leak-
age. In Fig. S6b, we plot the whole landscape of state
leakage as functions of the Z bias amplitudes of both
the coupler and ()1, where the black solid line indicates
how we sweep the coupler Z pulse amplitude.

2. Optimize phase factors: We fix the coupler Z pulse and
sweep (Q1’s Z pulse amplitude using different initial
states to calculate the three phase factors in Eq. (S32),
aiming at the condition ¢35 — ¢ — ¢p; = m. The black
dashed line in Fig. S6b shows the routine of how we
sweep the qubit Z pulse amplitude. We apply virtual Z
gates to remove the trivial single-qubit phases.

3. Fine-tune gate parameters according to randomized
benchmarking: We choose the randomized benchmark-
ing sequence fidelity as a goal function to optimize rel-
evant gate parameters, including the Z pulse amplitudes
of both qubits and the coupler, and the single-qubit
phases. We use the Nelder-Mead method to speed up
the parameter optimization process.

IV. DYNAMICS OF ENTANGLEMENT

Unlike thermal phases without disorder or Anderson local-
ized phases without interaction, where entanglement grows
ballistically [S29-S31] or saturates to an area law at long
times, respectively, the entanglement entropy of an MBL sys-
tem grows logarithmically and saturates to a volume law in
the long-time limit [S10]. In our experiment, we also extract
the entanglement dynamics, through a full quantum state to-
mography of the reduced density matrix describing one half
of the system. In Fig. S7a, we plot the reduced density ma-
trix phqr for a single random instance of the Hamiltonian at
the end of one driving period. Using the tomographically ex-
tracted ppqir at different times, we extract the desired informa-
tion about entanglement growth for the FSPT phase. Our re-
sults are plotted in Fig. S7b. From this figure, it is clear that, in
the thermal phase, entanglement grows quickly and saturates
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TABLE S1. Device parameters calibrated during the experiment. wg is the maximum frequency of ); at zero flux bias. wj is the idle frequency
where we initialize @); in |0) and subsequently apply single-qubit gates. n; is (Q;’s anharmonicity, which is approximately a constant within

the frequency range relevant to this experiment. (w‘? ® w;‘ _ﬁ)) is a list of two frequencies for two neighboring qubits in group A (group B),

chosen such that |11) and |02) in the two-qubit subspace have nearly the same energy for a CZ gate; the CZ gates for qubit pairs in the same
group A (B) are implemented simultaneously when executing the multilayer quantum circuit to simulate the FSPT phase. wj' is the readout
frequency of (); where we apply readout pulses to excite ();’s readout resonator for quantum state measurement. wy; is the resonant frequency
of ;s readout resonator. 71 ; and T3 ; are the energy relaxation time and Ramsey dephasing time of Q;, respectively. Fp ; and Fy ; are
the readout fidelity values for Q; prepared in |0) and |1), respectively; these fidelity values are used to correct raw probabilities to eliminate
readout errors as done previously [S25]. ey lists the single-qubit gate errors obtained by simultaneous randomized benchmarking. eéém list
the CZ gate errors obtained by both individual and simultaneous randomized benchmarking for qubit pairs in group A (B). We note that the
qubit parameters may slowly drift over time [S26, S27].

Qubit Q1 Q2 Qs Q4 Qs Qs Q7 Qs Qo Qo Qu Q2 Qi3 Qus

w?/27r (GHz) 7.021 6.970 7.000 6.864 6.840 7.028 6.819 6.879 6.770 6.854 6.818 6.962 6.925 6.970

wj /27 (GHz) 6.450 6.730 6.890 6.651 6.565 6.750 6.676 6.600 6.520 6.620 6.721 6.893 6.838 6.960

n;/2m (GHz) 0.230 0.248 0.248 0.242 0.255 0.239 0.288 0.247 0.251 0.246 0.241 0.250 0.247 0.252

(wﬁ‘, wﬁ,l) /2w (GHz) 6.414,6.656  6.893,6.651  6.275,6.516  6.632,6.868  6.349,6.585 6.717,6.957  6.684,6.920
(w?, w?H) /2w (GHz) 6.667,6.898  6.651,6.412  6.894,6.657 6.766,6.528  6.485,6.722  6.910, 6.676

Wy /2w (GHz) 6.110 6.198 5.608 6.651 5.552 6309 6.722 5.997 5.812 5828 6.323 5.736 6.181 6.423

wj/2n (GHz) 4357 4.194 4.119 4200 4.097 4343 4323 4223 4262 4206 4.152 4269 4.182 4402

Ty (us) 25 22 28 3 Il 27 27 30 22 33 25 37 13 29
Ts ; (us) 10 17 45 25 38 22 12 16 08 21 31 28 58 140
Fo, 0950 0.955 0.945 0.888 00951 0951 0961 0956 0.868 0.880 0959 0935 0980 0.970
Fi; 0.876 0.862 0.834 0.888 0.886 0942 0.859 0900 0.890 0.905 0900 0.898 0919 0.937
esq (%) 049 045 126 072 038 069 066 047 084 060 033 055 055 045
e, (%) (Indiv.) 1.06 0.22 1.79 0.74 0.99 037 1.09
€2, (%) (Indiv.) 0.29 1.24 0.59 1.77 0.78 1.68
e, (%) (Simu.) 3.46 0.99 3.00 0.76 2.03 0.79 1.33
€, (%) (Simu.) 0.76 051 0.81 229 0.97 2.05
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