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S1. Details of the derivation of the eigen-equation for the 2D circuit simulator with 𝜽 = 𝝅. 

In this part, we give a detailed derivation of circuit eigen-equation, which could be mapped to 

the 1D stationary Schrödinger equation of two pseudofermions. Here, each lattice site possesses two 

circuit nodes. In this case, the voltage and current at the site (m, n) should be written as V(m,n) 



=[V(m,n),1, V(m,n),2]
T and I(m,n)=[I(m,n),1, I(m,n),2]

T. And, the voltage on the circuit node (m, n) is in the 

form of 𝑉(𝑚,𝑛),𝑗𝑒𝑖𝜔𝑡 (j=1 and 2). 

At first, we focus on the node pair located at the diagonal line (n, n). Carrying out the Kirchhoff’s 

law on the circuit node pair (n, n), we get the following equation as: 

|
𝐼(𝑛,𝑛),1

𝐼(𝑛,𝑛),2
| = 𝑖𝜔−1{−

1

𝐿
|

1 −1
−1 1

| |
𝑉(𝑛,𝑛),1

𝑉(𝑛,𝑛),2
| +𝜔2𝐶 |

𝑉(𝑛,𝑛),1 − 𝑉(𝑛−1,𝑛),1

𝑉(𝑛,𝑛),2 − 𝑉(𝑛−1,𝑛),2
| +𝜔2𝐶 |

𝑉(𝑛,𝑛),1 − 𝑉(𝑛+1,𝑛),1

𝑉(𝑛,𝑛),2 − 𝑉(𝑛+1,𝑛),2
|      

+𝜔2𝐶 |
𝑉(𝑛,𝑛),1 − 𝑉(𝑛,𝑛−1),2

𝑉(𝑛,𝑛),2 − 𝑉(𝑛,𝑛−1),1
| +𝜔2𝐶 |

𝑉(𝑛,𝑛),1 − 𝑉(𝑛,𝑛+1),2

𝑉(𝑛,𝑛),2 − 𝑉(𝑛,𝑛+1),1
|                        

+𝜔2𝐶𝑈 |
𝑉(𝑛,𝑛),1

𝑉(𝑛,𝑛),2
| +𝜔2(𝑛 + 𝑛)𝐶𝐹  |

𝑉(𝑛,𝑛),1

𝑉(𝑛,𝑛),2
| +𝜔2𝐶𝑒 |

𝑉(𝑛,𝑛),1

𝑉(𝑛,𝑛),2
|},                (S1) 

where 𝐶𝑈 , 𝐶𝑒  and (𝑛 + 𝑛)𝐶𝐹  are capacitances linking the node (n, n) to the ground. 𝐶  is the 

capacitance used for connecting circuit nodes belonging to adjacent lattice sites. 𝐿  is the inductor 

linking the circuit nodes belonging to the same lattice site. 

We assume that there is no external source, so that the current flowing out of the node is zero. In 

this case, Eq. (S1) becomes: 

1

𝜔2𝐿
|

1 −1
−1 1

| |
𝑉(𝑛,𝑛),1

𝑉(𝑛,𝑛),2
| = [4𝐶 + 𝐶𝑈 + 𝐶𝑒 + (𝑛 + 𝑛)𝐶𝐹] |

𝑉(𝑛,𝑛),1

𝑉(𝑛,𝑛),2
|                    

−𝐶 [
0 1
1 0

] (|
𝑉(𝑛,𝑛−1),2

𝑉(𝑛,𝑛−1),1
| + |

𝑉(𝑛,𝑛+1),2

𝑉(𝑛,𝑛+1),1
|) − 𝐶 |

𝑉(𝑛−1,𝑛),1

𝑉(𝑛−1,𝑛),2
| − 𝐶 |

𝑉(𝑛+1,𝑛),1

𝑉(𝑛+1,𝑛),2
|.             (S2) 

Performing the diagonalization of Eq. (S2) with a unitary transformation: 

𝐹 =
1

√2
[1 𝑒𝑖𝜋

1 −𝑒𝑖𝜋
],                                 (S3)  

Eq. (S2) becomes: 

1

𝜔2𝐿
|
0 0
0 2

| |
𝑉↑,(𝑛,𝑛)

𝑉↓,(𝑛,𝑛)
| = [4𝐶 + 𝐶𝑈 + 𝐶𝑒 + (𝑛 + 𝑛)𝐶𝐹] |

𝑉↑,(𝑛,𝑛)

𝑉↓,(𝑛,𝑛)
| − 𝐶 [

1 0
0 𝑒−𝑖𝜋] |

𝑉↑,(𝑛,𝑛−1)

𝑉↓,(𝑛,𝑛−1)
|         

 −𝐶 [
1 0
0 𝑒𝑖𝜋] |

𝑉↑,(𝑛,𝑛+1)

𝑉↓,(𝑛,𝑛+1)
| − 𝐶 |

𝑉↑,(𝑛−1,𝑛)

𝑉↓,(𝑛−1,𝑛)
| − 𝐶 |

𝑉↑,(𝑛,𝑛+1)

𝑉↓,(𝑛,𝑛+1)
|}.                (S4) 



The new basis are 𝑉↑(↓),(𝑚,𝑛) =F[V(m,n),1, V(m,n),2]T, which are two decoupled terms acting as a pair of 

pseudospins 𝑉↑,(𝑚,𝑛) = (𝑉(𝑚,𝑛),1 + 𝑉(𝑚,𝑛),2)/√2 and 𝑉↓,(𝑚,𝑛) = (𝑉(𝑚,𝑛),1 − 𝑉(𝑚,𝑛),2)/√2. Thus, Eq. (S4) 

can be divided into two independent equations as: 

0 = [4𝐶 + 𝐶𝑈 + 𝐶𝑒 + (𝑛 + 𝑛)𝐶𝐹]𝑉↑,(𝑛,𝑛) − 𝐶(𝑉↑,(𝑛,𝑛−1) + 𝑉↑,(𝑛,𝑛+1) + 𝑉↑,(𝑛−1,𝑛) + 𝑉↑,(𝑛,𝑛+1)),   (S5) 

1

𝜔2𝐿/2
𝑉↓,(𝑛,𝑛) = [4𝐶 + 𝐶𝑈 + 𝐶𝑒 + 2𝑛𝐶𝐹]𝑉↓,(𝑛,𝑛) − 𝐶(𝑒−𝑖𝜋𝑉↓,(𝑛,𝑛−1) + 𝑒𝑖𝜋𝑉↓,(𝑛,𝑛+1) + 𝑉↓,(𝑛−1,𝑛) + 𝑉↓,(𝑛,𝑛+1)).(S6) 

Based on similar derivations, we can write the eigen-equation at any circuit node (m, n). As for the case 

of n=m-1, we have, 

1

𝜔2𝐿/2
𝑉↓,(𝑛,𝑛−1) = [4𝐶 + 𝐶𝑈 + 𝐶𝑒 + 2𝑛𝐶𝐹]𝑉↓,(𝑛,𝑛−1) − 𝐶(𝑉↓,(𝑛,𝑛−2) + 𝑒𝑖𝜋𝑉↓,(𝑛,𝑛) + 𝑉↓,(𝑛−1,𝑛−1) + 𝑉↓,(𝑛+1,𝑛−1)).(S7) 

As for the case of n=m+1, we have, 

1

𝜔2𝐿/2
𝑉↓,(𝑛,𝑛+1) = [4𝐶 + 𝐶𝑈 + 𝐶𝑒 + 2𝑛𝐶𝐹]𝑉↓,(𝑛,𝑛+1) − 𝐶(𝑒−𝑖𝜋𝑉↓,(𝑛,𝑛) + 𝑉↓,(𝑛,𝑛+2) + 𝑉↓,(𝑛−1,𝑛+1) + 𝑉↓,(𝑛+1,𝑛+1)). (S8) 

As for the case of |𝑛 − 𝑚| > 1, we have, 

1

𝜔2𝐿/2
𝑉↓,(𝑚,𝑛) = [4𝐶 + 𝐶𝑈 + 𝐶𝑒 + 2𝑛𝐶𝐹]𝑉↓,(𝑚,𝑛) − 𝐶(𝑉↓,(𝑚,𝑛−1) + 𝑉↓,(𝑚,𝑛+1) + 𝑉↓,(𝑚+1,𝑛) + 𝑉↓,(𝑚−1,𝑛)).   (S9) 

Combing Eqs. (S6)-(S9), the eigen-equation of the designed circuit simulator is described by: 

(𝑓0
2/𝑓2−4 − 𝐶𝑒/𝐶)𝑉↓,𝑚𝑛 = −𝑒−𝑖𝜋(𝛿𝑚,𝑛+𝛿𝑚,𝑛+1)𝑉↓,𝑚(𝑛+1) − 𝑒𝑖𝜋(𝛿𝑚,𝑛+𝛿𝑚+1,𝑛)𝑉↓,𝑚(𝑛−1)            

−𝑉↓,(𝑚+1)𝑛 − 𝑉↓,(𝑚−1)𝑛 + (𝐶𝑈/𝐶)𝑉↓,𝑚𝑛 + (𝑚 + 𝑛)(𝐶𝐹/𝐶)𝑉↓,𝑚𝑛.               (S10) 

We provide the following identification of tight-binding parameters in terms of circuit elements as: 

𝐽 = 1, 𝑈 =
𝐶𝑈

𝐶
, 𝐹 =

𝐶𝐹

𝐶
,    𝜀 =

𝑓0
2

𝑓2 − 4 −
𝐶𝑒

𝐶
,     𝑓0 =

1

2𝜋√𝐶𝐿/2
,                 (S11) 

where J, F, U and 𝜀  correspond to the strength of the particle hopping, external forcing, on-site 

interaction and the eigen-energy of two anyons. In this case, Eq. (S10) becomes:  

𝜀𝑐𝑚𝑛 = −𝐽[𝑒𝑖𝜃(𝛿𝑚,𝑛+𝛿𝑚+1,𝑛)𝑐𝑚(𝑛−1) + 𝑒−𝑖𝜃(𝛿𝑚,𝑛+𝛿𝑚−1,𝑛)𝑐𝑚(𝑛+1)+𝑐(𝑚−1)𝑛 + 𝑐(𝑚+1)𝑛]           

+𝑈𝛿𝑚𝑛𝑐𝑚𝑛 + 𝐹(𝑚 + 𝑛)𝑐𝑚𝑛                             (S12) 

with 𝑐𝑚𝑛 corresponding to 𝑉↓,(𝑚,𝑛). It is noted that Eq. (S12) is consistent with the eigen-equation of 



𝑐𝑚𝑛 for the 1D pseudofermions (Eq. (4) in the main text). 

 

S2. The influence of the value of 𝑪𝒆  on the correspondence between eigen-spectra of 2D 

circuit simulators and 1D two-anyon models. 

It is known that the appearance of Bloch oscillations depends on the equally spaced eigen-spectrum 

of two bosons and two pseudofermions, and the periods are determined by the associated energy level 

spacings. While, due to the nonlinear relationship between the eigen-frequency of circuit simulator and 

the eigen-energy of two anyons 𝑓 = 𝑓0/(𝜀 + 4 + 𝐶𝑒/𝐶)1/2, the distribution of eigen-spectrum for the 

circuit simulator should not be equally spaced.  

 

Fig. S1. (a)-(f) plot eigen-frequencies of designed circuit simulators as a function of the statistical angle 



𝜃 with 𝐶𝑒 = 0, 𝐶𝑒 = 10𝐶, 𝐶𝑒 = 50𝐶, 𝐶𝑒 = 100𝐶, 𝐶𝑒 = 150𝐶, and 𝐶𝑒 = 200C, respectively. 

 

In this part, we show that such a deviation could become negligible with a large value of 𝐶𝑒 used 

in our designed circuit. As shown in Figs. S1(a)-S1(f), we plot eigen-frequencies of designed circuit 

simulators as a function of the statistical angle 𝜃  with 𝐶𝑒 = 0 , 𝐶𝑒 = 10𝐶 , 𝐶𝑒 = 50𝐶 , 𝐶𝑒 = 100𝐶 , 

𝐶𝑒 = 150𝐶, and 𝐶𝑒 = 200C, respectively. It is clearly shown that the eigen-spectrum with 𝐶𝑒 = 0 is 

not equally spaced for the circuit simulator with 𝜃 = 0  and 𝜃 = 𝜋 , where the frequency spacing is 

getting increased with the increase of eigen-frequencies. By increasing the value of 𝐶𝑒, the difference of 

frequency spacings belonging to the higher and lower eigen-frequencies ranges decreases. In our design, 

we set 𝐶𝑒 = 200𝐶. In this case, we can see that nearly equal-spaced eigen-spectra of circuit simulators 

with 𝜃 = 0  ( ∆𝑓𝐵 ≈ 1862.57𝐻𝑧 ) and 𝜃 = 𝜋  ( ∆𝑓𝑓 ≈ 931.28𝐻𝑧 ) appear. With such a good 

correspondence between the eigen-spectrum of designed 2D circuit and the 1D two-anyon model, the 

behavior of Bloch oscillation dominated by the quantum statistics can be effectively simulated by the 

designed circuit simulator. 

 

S3. Numerical results of Bloch oscillations based on the 1D extended anyon-Hubbard model. 

In this part, we give numerical results of BOs described by the 1D extended anyon-Hubbard model 

with N=23. The evolution equations for the probability amplitude 𝑐𝑚𝑛 can be obtained by substituting 

Eqs. (1) and (3) (in the main text) into the time-dependent Schrödinger equation 𝐻|𝜓 >= 𝑖
𝜕

𝜕𝑡
|𝜓 >. In 

this case, we get 

𝑖𝜕𝑡𝑐𝑚𝑛 = −𝐽[𝑒𝑖𝜃(𝛿𝑚,𝑛+𝛿𝑚+1,𝑛)𝑐𝑚(𝑛−1) + 𝑒−𝑖𝜃(𝛿𝑚,𝑛+𝛿𝑚−1,𝑛)𝑐𝑚(𝑛+1)+𝑐(𝑚−1)𝑛 + 𝑐(𝑚+1)𝑛]       

+𝑈𝛿𝑚𝑛𝑐𝑚𝑛 + 𝐹(𝑚 + 𝑛)𝑐𝑚𝑛 .                       (S13) 



To observe the BO of bosons and pseudofermions, the external excitation is set as: 

𝑐12,12(𝑡) = 𝑒𝑖𝜀𝑡 .                              (S14) 

Here, other parameters are set as 𝜀 = 20, J=1, U=0 and F=0.5, respectively.  

As shown in Figs. S2a and S2b, we calculate the evolution of |𝑐𝑚𝑛(𝑡)|2 with 𝜃 = 0 and 𝜃 = 𝜋, 

respectively. Moreover, Figs. S2c and S2d display the evolution of |𝑐12,12(𝑡)| with 𝜃 = 0 and 𝜃 = 𝜋, 

respectively. It is clearly shown that periodic breathing dynamics of both bosons and pseudofermions 

appear, and the oscillation period of the two bosons is almost twice of that of two pseudofermions. 

 

Fig. S2. (a) and (b) The evolution of |𝑐𝑚𝑛(𝑡)|2  with 𝜃 = 0  and 𝜃 = 𝜋  in the absence of particle 



interactions, respectively. (c) and (d) display the evolution of |𝑐12,12(𝑡)| with 𝜃 = 0 and 𝜃 = 𝜋. Here, 

parameters are set as J=1, U=0 and F=0.5, respectively. 

 

Then, we focus on the anyonic BOs with F=0.3. Figs. S3a and S3b present the calculated evolutions 

of |𝑐𝑚𝑛(𝑡)|2  with 𝜃 = 0  and 𝜃 = 𝜋 , respectively. And, Figs. S3c and S3d display the associated 

evolution of |𝑐12,12(𝑡)| with 𝜃 = 0 and 𝜃 = 𝜋. It is clearly shown the larger the external force is, the 

larger the oscillation period and amplitude become. And, it is noted that the BO frequency related to a 

pair of pseudofermions (𝜃 = 𝜋) is always half of that for two bosons (𝜃 = 0).  

 

Fig. S3. (a) and (b) The evolution of |𝑐𝑚𝑛(𝑡)|2  with 𝜃 = 0  and 𝜃 = 𝜋  in the absence of particle 



interactions, respectively. (c) and (d) display the evolution of the particle density function of |𝑐12,12(t)| 

with 𝜃 = 0 and 𝜃 = 𝜋. Here, parameters are set as J=1, U=0 and F=0.3, respectively. 

 

S4. Simulating the anyonic Bloch oscillation with different excitation frequencies, external 

forces and grounding capacitor 𝑪𝒆. 

 

Fig. S4. (a)-(d) The time-dependent evolution of pseudospin |𝑉↓,[𝑚,𝑛](𝑡)|2 at each node in the circuit 

simulator with 𝐶𝑒 = 0, 𝐶𝑒 = 0.5𝑛𝐹, 𝐶𝑒 = 2𝑛𝐹 and 𝐶𝑒 = 4𝑛𝐹. 

 

At first, we perform circuit simulations of BOs with different values of 𝐶𝑒. As shown in Figs. 4a-

4d, we calculate the time-dependent evolution of pseudospin |𝑉↓,[𝑚,𝑛](𝑡)|2 at each node in the 2D circuit 

simulator (the left chart with 𝜃 = 0 and the right chart with 𝜃 = 𝜋) with 𝐶𝑒 = 0, 𝐶𝑒 = 0.5𝑛𝐹, 𝐶𝑒 =

2𝑛𝐹  and 𝐶𝑒 = 4𝑛𝐹 , respectively, where the associated excitation frequencies are set as 9.19MHz, 



3.01MHz, 1.56MHz, and 1.117MHz. Other parameters are the same to that used in Fig. 2. We can see 

that the larger the value of 𝐶𝑒 is, the more ideal BOs appear. This is due to the fact that the nearly perfect 

eigen-spectrum with equal spacings could only be realized with an extremely large value of 𝐶𝑒, as shown 

in Fig. S1. 

Then, we will simulate anyonic Bloch oscillations with a different external force by our designed 

electric circuits, that is 𝐶𝐹 = 3𝑝𝐹. Before circuit simulations, we calculate the evolution of two-anyon 

eigen-energies as a function of 𝜃 with J=1 and F=0.3, as shown in Fig. S5a. And, the eigen-frequencies 

of designed circuit simulators with 𝐶𝑒 = 0, 𝐶𝑒 = 50𝐶, and 𝐶𝑒 = 200C are shown in Figs. S5(b)-S5(d). 

It is shown that the eigen-spectrum of the circuit simulator is consistent with that of two anyons with a 

large value of 𝐶𝑒. In particular, we have ∆𝑓𝐵 ≈ 1130𝐻𝑧 and ∆𝑓𝑓 = 565𝐻𝑧. Next, we calculate the 

time-dependent evolution of pseudospin |𝑉↓,[𝑚,𝑛](𝑡)|2 at each node in the 2D circuit simulator (𝐶𝑒 =

200 C and 𝐶𝐹 = 0.3𝐶 ) with 𝜃 = 0  and 𝜃 = 𝜋 , as shown in Fig. S6a and S6b. Here, the excitation 

frequency is set as 1.511MHz, and the voltage-pseudospin is excited by setting the input signal as 

[𝑉(12,12),1 = 𝑉0, 𝑉(12,12),2 = −𝑉0]  with 𝑉0 = 1𝑉 . It is shown that the absolute value of pseudospin 

displays the periodic breathing dynamics for both conditions. Moreover, we note that the oscillation 

periods of bosonic circuits (𝑇𝐵 ≈
1

∆𝑓𝐵
= 0.885𝑚𝑠) is nearly the half of the oscillation period for two 

pseudofermions (𝑇𝑓 ≈
1

∆𝑓𝑓
= 1.77𝑚𝑠 ). Comparing to the results with 𝐶𝐹 = 0.5𝐶 , we find that the 

smaller the external force is, the larger the oscillation period and amplitude become. 



 

Fig. S5. (a). The evolution of two-anyon eigen-energies as a function of 𝜃 with J=1 and F=0.3. (b)-(d) 

The eigen-frequencies of circuit simulators (𝐶𝐹 = 0.3𝐶) with 𝐶𝑒 = 0, 𝐶𝑒 = 50𝐶, and 𝐶𝑒 = 200C. 

 

Fig. S6. The time-dependent evolution of pseudospin |𝑉↓,[𝑚,𝑛](𝑡)|2 at each node in the circuit simulator 

(𝐶𝑒 = 200C and 𝐶𝐹 = 0.3𝐶)  with 𝜃 = 0 for (a), and 𝜃 = 𝜋 for (b). 



 

 

Fig. S7. The time-dependent evolution of pseudospin |𝑉↓,[𝑚,𝑛](𝑡)|2 at each node in the circuit simulator 

with 𝐶𝐹 = 0.3𝐶 for (a), and 𝐶𝐹 = 0.5𝐶 for (b). The associated excitation frequency is 2MHz. 

 

At last, we perform circuit simulations of BOs under high excitation frequencies. The time-

dependent evolution of pseudospin |𝑉↓,[𝑚,𝑛](𝑡)|2 at each node in the 2D circuit simulator with 𝐶𝐹 =

0.3𝐶  and 𝐶𝐹 = 0.5𝐶  are shown in Figs. S7a and S7b, where the associated excitation frequency is 

2MHz. Other parameters are set as 𝐶𝑒 = 2𝑛𝐹 , 𝐶 = 10𝑝𝐹,   and 𝐿 = 10𝑢𝐻 . Comparing to the 

corresponding results with lower excitation frequencies (Fig. 2 for 𝐶𝐹 = 0.5𝐶 and Fig. S6 for 𝐶𝐹 =

0.3𝐶), we find that the more symmetric BO could be realized with a higher excitation frequency.  

 

S5. The precise correspondence between time-dependent Schrödinger equation of two bosons 

and two pseudofermions and designed RC circuit simulators. 

It is worthy to note that the stationary eigen-equation of our designed LC circuit is consistent with 

the stationary Schrödinger equation of the 1D anyon-Hubbard model with two anyons. As for the time-

dependent evolution equation, the voltage of LC circuit follows second-order time differential, which is 



different from the first-order time differential of quantum wave functions. In this part, we will design 

another kind of electric circuit based on resistances and capacitances to precisely match the time-

dependent Schrödinger equation of two anyons with 𝜃 = 0 and 𝜃 = 𝜋. 

The designed RC circuit simulator with 𝜃 = 0  is plotted in Fig. S8a. Here, the associated 1D 

lattice length is N. We note that the designed circuit simulator contain 2N2 nodes, where the row (column) 

of N2 nodes are labeled by r=(1, 1),…,(N, N) [c=(N+1,N+1),…,(2N, 2N)]. The voltages of totally N2 

circuit node in the top-row (left-column) correspond to the (copy of) probability amplitudes of two 

anyons with 𝜃 = 0 in the 1D lattice of N sites. Specifically, the probability amplitude of two-boson 

states 𝑐𝑚𝑛  is mapped to the voltage signal on the circuit node (m, n) as Vm,n. Each node is connected to 

an external DC through a switch to apply an initial voltage signal. Two nodes (with one from the row 

and the other from the column) are connected by a suitably designed negative impedance converters with 

current inversion (INICs), named as 𝑅𝑟𝑐, to realize the hopping, on-site interactions and external forcing. 

Specially, the designed INIDs for realizing the particle hoppling rate (𝑅𝑟𝑐 =RJ) and the external force 

(𝑅𝑟𝑐 =RF/(m+n)) are enclosed by yellow and red blocks, respectively. Here, we set the on-site interaction 

as zero. As for the grounding, the green (blue) circuit node in the row (column) is grounded with a 

constant capacitor C and an INIC (normal resistor) with the effective resistance being Rr0 (Rc0). In this 

case, the effective hoppling rate between node r=(m, n) and c=(𝑚′, 𝑛′ ) is 𝐽 =
1

𝐶𝑅𝐽
 , where the node 

locations should satisfy the relation of 𝑛′ = 𝑛 ± 1 + 𝑁 and 𝑚′ = 𝑚 + 𝑁 or 𝑛′ =  𝑛 + 𝑁 and 𝑚′ =

𝑚 ± 1 + 𝑁. The external force could be mapped to the position-dependent grounding 𝑅𝐹/(𝑚 + 𝑛) with 

r=(m,n) and c=(m+N,n+N). In this case, the effective external force is 𝐹 =
1

𝐶𝑅𝐹
 . The detailed node 

connections are plotted in the right-bottom part of Fig. S8a. 

By switching off all switches at the same time (applying an initial state), the evolution of voltage 



at each circuit node can be derived using the time-dependent Kirchhoff's equation as: 

   𝐶
𝑑𝑉𝑟

𝑑𝑡
−

𝑉𝑟

𝑅𝑟0
= ∑

𝑉𝑐−𝑉𝑟

𝑅𝑟𝑐
𝑐  ,                               

𝐶
𝑑𝑉𝑐

𝑑𝑡
+

𝑉𝑐

𝑅𝑐0
= ∑

𝑉𝑟−𝑉𝑐

−𝑅𝑟𝑐
𝑟                             (S15) 

with Vr (Vc) being the voltage at the circuit node in the row (column). The summation is limited to the 

connected circuit nodes. Defining the voltages at all circuit nodes as |𝑉(𝑡) >=

[𝑉(1,1)(𝑡), … , 𝑉(𝑁,𝑁)(𝑡), 𝑉(𝑁+1,𝑁+1)(𝑡), … , 𝑉(2𝑁,2𝑁)(𝑡)], Eq. (S15) could be expressed in the matrix form 

as 𝑖𝜕𝑡|𝑉(𝑡) >= Ξ|𝑉(𝑡) > , where the off-diagonal components of circuit Hamiltonian Ξ  are Ξ𝑟𝑐 =

𝑖
1

𝐶𝑅𝑟𝑐
  and Ξ𝑐𝑟 = −𝑖

1

𝐶𝑅𝑟𝑐
 , and the diagonal components are given by Ξ𝑟𝑟 = 𝑖

1

𝐶
(

1

𝑅𝑟0
− ∑

1

𝑅𝑟𝑐
𝑐 )  and 

Ξ𝑐𝑐 = 𝑖
1

𝐶
(−

1

𝑅𝑐0
+ ∑

1

𝑅𝑟𝑐
𝑟 ) . By appropriately setting the grounding INICs as 

1

𝑅𝑟0(𝑖)
= ∑

1

𝑅𝑖𝑘
𝑘   and the 

grounding resistances as 
1

𝑅𝑐0(𝑖)
= ∑

1

𝑅𝑖𝑘
𝑘 , the circuit Hamiltonian can be expressed as: 

 Ξ = 𝑖 |
0 −Π
Π 0

|                              (S16) 

with Π being a 𝑁 × 𝑁 matrix. In this case, when the nodes connecting and grounding resistances are 

suitably applied, the form of 𝑁 × 𝑁 matrix Π can be the same to the Hamiltonian of the 1D two-boson 

model. In this case, the voltage evolution in the designed RC circuit could be the same to the probability 

amplitude of two bosons.  

Based on the similar method, the RC circuit related to two pseudofermions  𝜃 = 𝜋 could also be 

designed. Fig. S8b shows the corresponding connection pattern at different circuit nodes. Comparing to 

the circuit for two bosons, the only difference is that there are a few of effective hopping rates sustaining 

a phase 𝑒𝑖𝜋. This could be easily fulfilled by reversing the biased voltage of the associated grounding 

and connecting INICs. 



 

Fig. S8. (a) and (b) The designed RC circuit for simulating Bloch oscillations of two bosons and two 

pseudofermions. 

 

Then, we use the designed RC circuit to simulate the BOs of two bosons and two pseudofermions. 

Other parameters are set as N=35, C=1uF, 𝑅𝐽 = 1000Ω , 𝑅𝐹 = 2000Ω  and 𝑅𝑎 = 100Ω . And, the 

initial voltage distribution is set as: 𝑉𝑚𝑛(𝑡 = 0) = 𝑉0𝛿12,12. As shown in Fig. S9a and S9b, we present 

the calculated evolution of the signal |𝑉↓,[𝑚,𝑛](𝑡)|2 in the circuit simulators for two bosons and two 

pseudofermions, respectively. And, the corresponding time-dependent evolutions of |𝑉↓,[12,12]|
2  are 

presented in Figs. S9c and S9d.  



 

Fig. S9. (a) and (b) The evolution of the signal |𝑉↓,[𝑚,𝑛](𝑡)|2 in the circuit simulators for two bosons 

and two pseudofermions, respectively. (c) and (d) The time-dependent evolutions of |𝑉↓,[12,12]|
2 for 

two bosons and two pseudofermions. 

 

For comparison, we also calculate the evolution of |𝑐𝑚𝑛(𝑡)|2  of two bosons and two 

pseudofermions in the 1D anyon-Hubbard model, as shown in Figs. S10a and S10b. The associated 

parameters are set as J=1, F=0.5 and 𝐶𝑚𝑛(𝑡 = 0) = 𝛿12,12 . And, the corresponding time-dependent 

evolutions of |𝑐12,12|2 are presented in Figs. S10c and S10d. We note that a good agreement for the 

time-dependent evolution of voltages and probability amplitude is obtained. In particular, it is clearly 

shown that the oscillation period in the two-boson simulator is twice of that in the two-pseudofermion 



simulator, that is consistent with the theoretical prediction. 

 

Fig. S10. (a) and (b) The evolution of |𝑐𝑚𝑛(𝑡)|2 for two bosons and two pseudofermions in the 1D 

anyon-Hubbard model. (c) and (d) The time-dependent evolutions of |𝑐12,12|2 for two bosons and 

two pseudofermions.  


