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S1. Details of the derivation of the eigen-equation for the 2D circuit simulator with 0 = m.
In this part, we give a detailed derivation of circuit eigen-equation, which could be mapped to
the 1D stationary Schrodinger equation of two pseudofermions. Here, each lattice site possesses two

circuit nodes. In this case, the voltage and current at the site (m, n) should be written as Vi,



=[Vinm,1, Vinm2]" and Lonm=[Lonm,1, Immy2]". And, the voltage on the circuit node (m, n) is in the
form of Viyn) je™" (=1 and 2).
At first, we focus on the node pair located at the diagonal line (n, n). Carrying out the Kirchhoff’s

law on the circuit node pair (n, n), we get the following equation as:
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where Cy, C, and (n+n)Cp are capacitances linking the node (n, n) to the ground. C is the
capacitance used for connecting circuit nodes belonging to adjacent lattice sites. L is the inductor
linking the circuit nodes belonging to the same lattice site.

We assume that there is no external source, so that the current flowing out of the node is zero. In
this case, Eq. (S1) becomes:
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Performing the diagonalization of Eq. (S2) with a unitary transformation:
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Eq. (S2) becomes:
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The new basis are Vi) onn)=F[Vinn.1, Vinm,2]T, which are two decoupled terms acting as a pair of

pseudospins Vi imn) = Vimmy1 + Vimn)2) /N2 and Viomn) = Wonmyr — Vinn,2) /N2. Thus, Eq. (S4)
can be divided into two independent equations as:

0=[4C+Cy+ Co+ M+ MWCeVrn) — CVrn-1) + Vins) + Vim-1n) + Vin+n),  (S5)
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Based on similar derivations, we can write the eigen-equation at any circuit node (m, n). As for the case

of n=m-1, we have,
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As for the case of n=m+1, we have,
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As for the case of |[n —m| > 1, we have,
wz;L/le.(m.n) = [4C + Cy + Co + 2nCrlViimm) — C(Vitmn-1) + Vigmn+n) + Vionrin) + Vim-1m)-  (S9)
Combing Eqgs. (S6)-(S9), the eigen-equation of the designed circuit simulator is described by:
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We provide the following identification of tight-binding parameters in terms of circuit elements as:
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where J, F, U and ¢ correspond to the strength of the particle hopping, external forcing, on-site
interaction and the eigen-energy of two anyons. In this case, Eq. (S10) becomes:
ECmp = —J[e0Cmntomiindc, o0 4y + e OCmatom-nde, oy +Cmo1yn + Consnnl
+USmnCmn + F(M 4+ n)cpp (S12)

with ¢y, corresponding to Vi 5. It is noted that Eq. (S12) is consistent with the eigen-equation of



Cmn for the 1D pseudofermions (Eq. (4) in the main text).

S2. The influence of the value of C, on the correspondence between eigen-spectra of 2D
circuit simulators and 1D two-anyon models.

It is known that the appearance of Bloch oscillations depends on the equally spaced eigen-spectrum
of two bosons and two pseudofermions, and the periods are determined by the associated energy level
spacings. While, due to the nonlinear relationship between the eigen-frequency of circuit simulator and
the eigen-energy of two anyons f = f,/(¢ + 4 + C,/C)'/?, the distribution of eigen-spectrum for the

circuit simulator should not be equally spaced.

a C.=0 b C. = 10C
¢ ——— S6FF HE M
9t : 2 s 8 - .
P T i R i - - i '
] [} . 3 . . 0 ] . . .
— A T i
N kot it i = | :
= 8 8 ¢ s+ o I e 1 i .
= b : { i i =520 v
Y 7.5t ] ] N . [ ] H
. 1 ' b
* [} . . 5 -
7 8 & - i
| $ N : i :
* .
652 . 48— S
¢ C, = 50C d C, = 100C
* $— T T T g - \g + T T T
MO i PRTI . | i
—_— O 1 3 . . [} . E
N . 1 i 217 8 i3
E 295_0 ] 3 . N . [} . .
=6 i ¢ Tl 8 i -
N~ s 8 ¢ - E . 0 s =
. 3 io: <oisp 0 i :
wf 3 HE - ! HE
° : ! : 214 : i :
. . L] . .
- I SV i :
e f
C, = 150C Ce = 200C
—— . : . —— : : : .
1.8 A .
- b ek ) P
1795 o :
= : - 1 i ¢
179f 18 q w 1sef b -
ST - b
a d Ssssp o i 4
178k g q . 0 . :
— H Jqo 0 i ¢
756 8 : 1556 4 I
177 8 :l . 0 i ¢
0 s 0 T
7] Z]

Fig. S1. (a)-(f) plot eigen-frequencies of designed circuit simulators as a function of the statistical angle



6 with C, =0, C, =10C, C, =50C, C, =100C, C, =150C, and C, = 200C, respectively.

In this part, we show that such a deviation could become negligible with a large value of C, used
in our designed circuit. As shown in Figs. S1(a)-S1(f), we plot eigen-frequencies of designed circuit
simulators as a function of the statistical angle 6 with C, =0, C, = 10C, C, = 50C, C, = 100C,
C, = 150C, and C, = 200C, respectively. It is clearly shown that the eigen-spectrum with C, = 0 is
not equally spaced for the circuit simulator with 8 = 0 and 6 = m, where the frequency spacing is
getting increased with the increase of eigen-frequencies. By increasing the value of C,, the difference of
frequency spacings belonging to the higher and lower eigen-frequencies ranges decreases. In our design,
we set C, = 200C. In this case, we can see that nearly equal-spaced eigen-spectra of circuit simulators
with 8 =0 (Afg = 1862.57Hz) and 6 =m (Aff ~931.28Hz ) appear. With such a good
correspondence between the eigen-spectrum of designed 2D circuit and the 1D two-anyon model, the
behavior of Bloch oscillation dominated by the quantum statistics can be effectively simulated by the

designed circuit simulator.

S3. Numerical results of Bloch oscillations based on the 1D extended anyon-Hubbard model.

In this part, we give numerical results of BOs described by the 1D extended anyon-Hubbard model
with N=23. The evolution equations for the probability amplitude c,,,, can be obtained by substituting
Eqgs. (1) and (3) (in the main text) into the time-dependent Schrodinger equation H|[yp >= i% [Y >.In
this case, we get

10 Cun = =] [10CmntOmirnle o1y + e 0CmntOm-1n)e 0 )+ Con-1)n + Con+1)n]

+USmnCon + F(M + 1) - (S13)



To observe the BO of bosons and pseudofermions, the external excitation is set as:
C1212(t) = et . (S14)
Here, other parameters are set as ¢ = 20, J=1, U=0 and F=0.5, respectively.
As shown in Figs. S2a and S2b, we calculate the evolution of |, (£)]? with 8 =0 and 6 =,
respectively. Moreover, Figs. S2c and S2d display the evolution of |c¢;51,(t)| with 6 =0 and 6 =,
respectively. It is clearly shown that periodic breathing dynamics of both bosons and pseudofermions

appear, and the oscillation period of the two bosons is almost twice of that of two pseudofermions.
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Fig. S2. (a) and (b) The evolution of |cp,(t)|> with § =0 and @ = & in the absence of particle



interactions, respectively. (c) and (d) display the evolution of |c;,1,(t)] with 6 = 0 and 6 = m. Here,

parameters are set as J=1, U=0 and F=0.5, respectively.

Then, we focus on the anyonic BOs with F=0.3. Figs. S3a and S3b present the calculated evolutions
of |cpn(£)|? with 8 =0 and 8 = m, respectively. And, Figs. S3c and S3d display the associated
evolution of |cy,1,(t)| with 8 = 0 and 6 = m. It is clearly shown the larger the external force is, the
larger the oscillation period and amplitude become. And, it is noted that the BO frequency related to a
pair of pseudofermions (6 = m) is always half of that for two bosons (8 = 0).
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Fig. S3. (a) and (b) The evolution of |cp,(t)|> with 8 =0 and 6 = 7 in the absence of particle



interactions, respectively. (c) and (d) display the evolution of the particle density function of |c;, 1, (t)]

with 6 = 0 and 6 = m. Here, parameters are set as J=1, U=0 and F=0.3, respectively.

S4. Simulating the anyonic Bloch oscillation with different excitation frequencies, external

forces and grounding capacitor C,.
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Fig. S4. (a)-(d) The time-dependent evolution of pseudospin |V} ] ()]? at each node in the circuit

simulator with C, = 0, C, = 0.5nF, C, = 2nF and C, = 4nF.

At first, we perform circuit simulations of BOs with different values of C,. As shown in Figs. 4a-
4d, we calculate the time-dependent evolution of pseudospin [V [, ,j(£)|? at each node in the 2D circuit
simulator (the left chart with 6 = 0 and the right chart with 8 = ) with €, =0, C, = 0.5nF, C, =

2nF and C, = 4nF, respectively, where the associated excitation frequencies are set as 9.19MHz,



3.01MHz, 1.56MHz, and 1.117MHz. Other parameters are the same to that used in Fig. 2. We can see
that the larger the value of C, is, the more ideal BOs appear. This is due to the fact that the nearly perfect
eigen-spectrum with equal spacings could only be realized with an extremely large value of C,, as shown
in Fig. S1.

Then, we will simulate anyonic Bloch oscillations with a different external force by our designed
electric circuits, that is Cr = 3pF. Before circuit simulations, we calculate the evolution of two-anyon
eigen-energies as a function of 8 with J=1 and F=0.3, as shown in Fig. S5a. And, the eigen-frequencies
of designed circuit simulators with C, = 0, C, = 50C, and C, = 200C are shown in Figs. S5(b)-S5(d).
It is shown that the eigen-spectrum of the circuit simulator is consistent with that of two anyons with a
large value of C,. In particular, we have Afg ~ 1130Hz and Af; = 565Hz. Next, we calculate the
time-dependent evolution of pseudospin |V 5] ()]? at each node in the 2D circuit simulator (C, =
200C and Cr = 0.3C) with 8 =0 and 6 = &, as shown in Fig. S6a and S6b. Here, the excitation
frequency is set as 1.511MHz, and the voltage-pseudospin is excited by setting the input signal as
Vazi12)1 = Vo, Vazi2)2 = —Vo] with Vo = 1V. It is shown that the absolute value of pseudospin
displays the periodic breathing dynamics for both conditions. Moreover, we note that the oscillation
periods of bosonic circuits (T = ﬁ = 0.885ms) is nearly the half of the oscillation period for two
pseudofermions (T = i = 1.77ms). Comparing to the results with Cp = 0.5C, we find that the

smaller the external force is, the larger the oscillation period and amplitude become.
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Fig. S5. (a). The evolution of two-anyon eigen-energies as a function of 6 with J=1 and F=0.3. (b)-(d)

The eigen-frequencies of circuit simulators (Cr = 0.3C) with €, = 0, C, = 50C, and C, = 200C.
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Fig. S6. The time-dependent evolution of pseudospin |V} [, ,j(t)|? at each node in the circuit simulator

(C, =200Cand Cr =0.3C) with 8 =0 for(a),and 8 = for (b).
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Fig. 7. The time-dependent evolution of pseudospin |V, [, ,j(t)|* at each node in the circuit simulator

with Cp = 0.3C for (a), and Cr = 0.5C for (b). The associated excitation frequency is 2MHz.

At last, we perform circuit simulations of BOs under high excitation frequencies. The time-
dependent evolution of pseudospin |V [ n] ()]? at each node in the 2D circuit simulator with Cp =
0.3C and Cp = 0.5C are shown in Figs. S7a and S7b, where the associated excitation frequency is
2MHz. Other parameters are set as C, = 2nF, C = 10pF, and L = 10uH. Comparing to the
corresponding results with lower excitation frequencies (Fig. 2 for Cr = 0.5C and Fig. S6 for Cr =

0.3C), we find that the more symmetric BO could be realized with a higher excitation frequency.

S5. The precise correspondence between time-dependent Schrodinger equation of two bosons

and two pseudofermions and designed RC circuit simulators.

It is worthy to note that the stationary eigen-equation of our designed LC circuit is consistent with
the stationary Schrodinger equation of the 1D anyon-Hubbard model with two anyons. As for the time-

dependent evolution equation, the voltage of LC circuit follows second-order time differential, which is



different from the first-order time differential of quantum wave functions. In this part, we will design
another kind of electric circuit based on resistances and capacitances to precisely match the time-
dependent Schrodinger equation of two anyons with 8 = 0 and 8 = m.

The designed RC circuit simulator with 8 = 0 is plotted in Fig. S8a. Here, the associated 1D
lattice length is N. We note that the designed circuit simulator contain 2N? nodes, where the row (column)
of N? nodes are labeled by r=(1, 1),...,(N, N) [c=(N+1,N+1),...,(2N, 2N)]. The voltages of totally N?
circuit node in the top-row (left-column) correspond to the (copy of) probability amplitudes of two
anyons with 8 = 0 in the 1D lattice of N sites. Specifically, the probability amplitude of two-boson
states c,,,, is mapped to the voltage signal on the circuit node (m, n) as V.. Each node is connected to
an external DC through a switch to apply an initial voltage signal. Two nodes (with one from the row
and the other from the column) are connected by a suitably designed negative impedance converters with
current inversion (INICs), named as R,., to realize the hopping, on-site interactions and external forcing.
Specially, the designed INIDs for realizing the particle hoppling rate (R,.. =R;) and the external force
(R, =Rr/(m+n)) are enclosed by yellow and red blocks, respectively. Here, we set the on-site interaction
as zero. As for the grounding, the green (blue) circuit node in the row (column) is grounded with a
constant capacitor C and an INIC (normal resistor) with the effective resistance being R,y (Rc0). In this
case, the effective hoppling rate between node r=(m, n) and c=(m’,n') is | = C—;J, where the node
locations should satisfy the relationof n' =n+1+ N and m"=m+ N orn'= n+ N and m' =
m £ 1+ N. The external force could be mapped to the position-dependent grounding Rp/(m + n) with
r=(m,n) and c=(m+N,n+N). In this case, the effective external force is F = é. The detailed node
connections are plotted in the right-bottom part of Fig. S8a.

By switching off all switches at the same time (applying an initial state), the evolution of voltage



at each circuit node can be derived using the time-dependent Kirchhoff's equation as:

vy Ve o VeV
dt  Rrg € Rye
av, Vi V=V,
C—=+-—-=%—— (S15)
dt ' Reo ~Rre

with V., (V) being the voltage at the circuit node in the row (column). The summation is limited to the
connected circuit nodes. Defining the voltages at all circuit nodes as |V(t) >=
Ve, 1y @) oo Viu vy (0, Vivs1,n41) (), -, Viaw 2wy (E)], Eq. (S15) could be expressed in the matrix form

as i0;|V(t) >= E|V(t) >, where the off-diagonal components of circuit Hamiltonian E are Z,. =

. - o1 . . - 1,1 1
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with Il beinga N X N matrix. In this case, when the nodes connecting and grounding resistances are

suitably applied, the form of N X N matrix Il can be the same to the Hamiltonian of the 1D two-boson

model. In this case, the voltage evolution in the designed RC circuit could be the same to the probability
amplitude of two bosons.

Based on the similar method, the RC circuit related to two pseudofermions 6 = m could also be

designed. Fig. S8b shows the corresponding connection pattern at different circuit nodes. Comparing to

the circuit for two bosons, the only difference is that there are a few of effective hopping rates sustaining

a phase e'™. This could be easily fulfilled by reversing the biased voltage of the associated grounding

and connecting INICs.
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Fig. S8. (a) and (b) The designed RC circuit for simulating Bloch oscillations of two bosons and two

pseudofermions.

Then, we use the designed RC circuit to simulate the BOs of two bosons and two pseudofermions.
Other parameters are set as N=35, C=/uF, R, =1000Q, Rr =2000Q and R, = 100Q. And, the
initial voltage distribution is set as: Vj,,,(t = 0) = V815 1,. As shown in Fig. S9a and S9b, we present
the calculated evolution of the signal [V, [;,,(£)|* in the circuit simulators for two bosons and two
pseudofermions, respectively. And, the corresponding time-dependent evolutions of |Vl_[12_12]|2 are

presented in Figs. S9¢ and S9d.
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Fig. $9. (a) and (b) The evolution of the signal |V, ,j(t)|* in the circuit simulators for two bosons
and two pseudofermions, respectively. (c) and (d) The time-dependent evolutions of |V} 154|* for

two bosons and two pseudofermions.

For comparison, we also calculate the evolution of |cp,(t)|?> of two bosons and two
pseudofermions in the 1D anyon-Hubbard model, as shown in Figs. S10a and S10b. The associated
parameters are set as J=1, F=0.5 and C,,,(t = 0) = §;,1,. And, the corresponding time-dependent
evolutions of |cy51,|? are presented in Figs. S10c and S10d. We note that a good agreement for the
time-dependent evolution of voltages and probability amplitude is obtained. In particular, it is clearly

shown that the oscillation period in the two-boson simulator is twice of that in the two-pseudofermion



simulator, that is consistent with the theoretical prediction.
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Fig. S10. (a) and (b) The evolution of |c,,, (t)|? for two bosons and two pseudofermions in the 1D

anyon-Hubbard model. (c) and (d) The time-dependent evolutions of |y, 4,]|* for two bosons and

two pseudofermions.



