

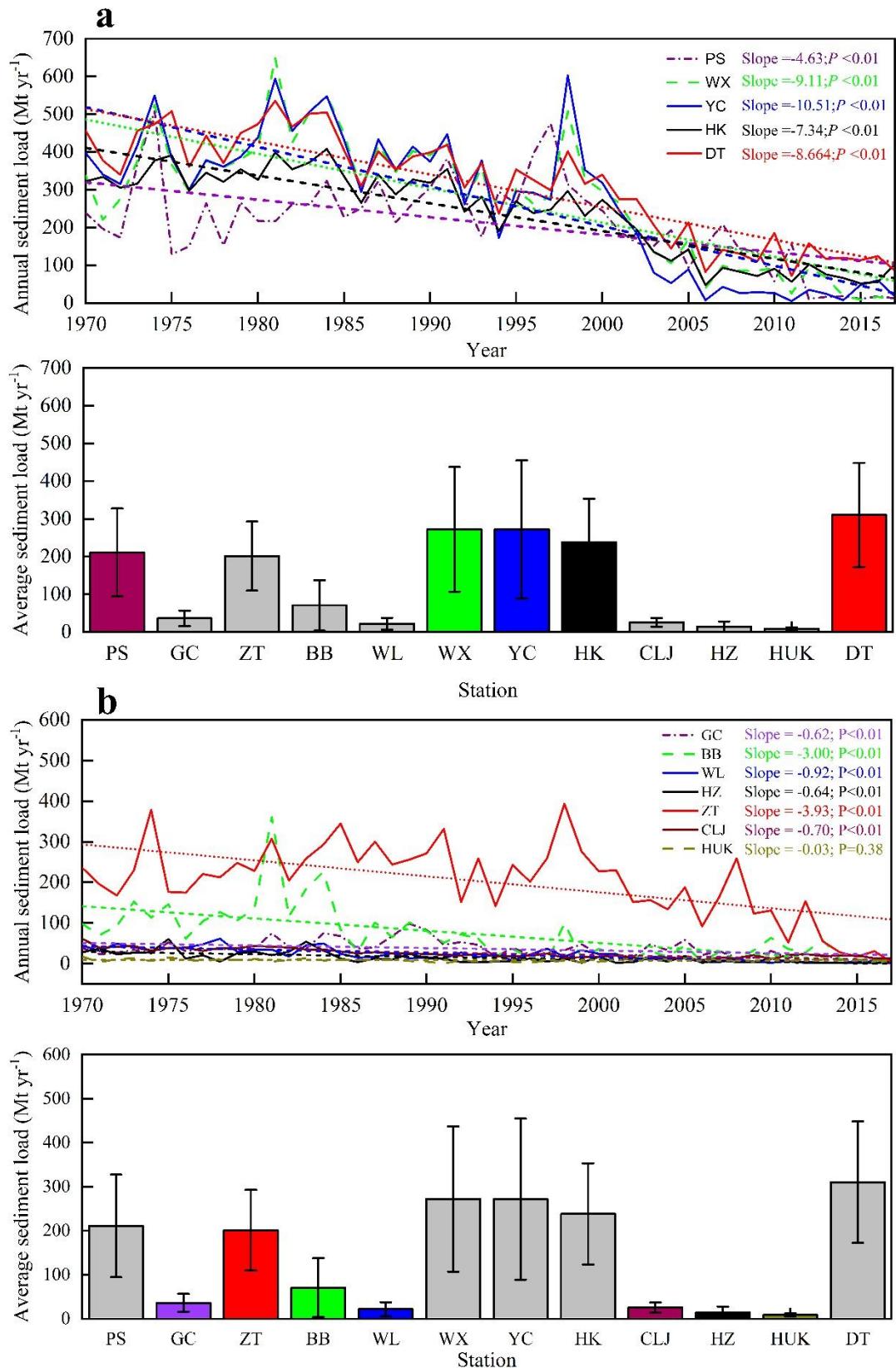
Supplementary Information for

Decline of sediment transport due to damming and eco-engineering is approaching its limits

6 **Boyan Li¹✉, Yunchen Wang², Chao Wang¹, Wei Wang¹, Aiwen Lin³, Gretchen
7 C. Daily^{4,5✉}**

¹⁰ ¹ State Key Laboratory of Information Engineering in Surveying, Mapping and
¹¹ Remote Sensing, Wuhan University, Wuhan 430079, P.R. China

12 ² Shaanxi Satellite Application Technology Center for Natural Resources, Shaanxi
13 Institute of Geological Survey, Xi'an 710054, P.R. China.


14 ³ School of Resources and Environmental Sciences, Wuhan University, Wuhan
15 430079, P.R. China.

16 ⁴ Stanford Woods Institute for the Environment, Stanford University, Stanford,
17 California 94305, USA.

¹⁸ ⁵ Natural Capital Project, Stanford University, Stanford, California 94305, USA.

19

✉ e-mail: liboyan@whu.edu.cn(B. L.); gdaily@stanford.edu(G.C.D.)

22 **Supplementary Figure 1. The hydrologic regime of the Yangtze River during 1972-2016.**

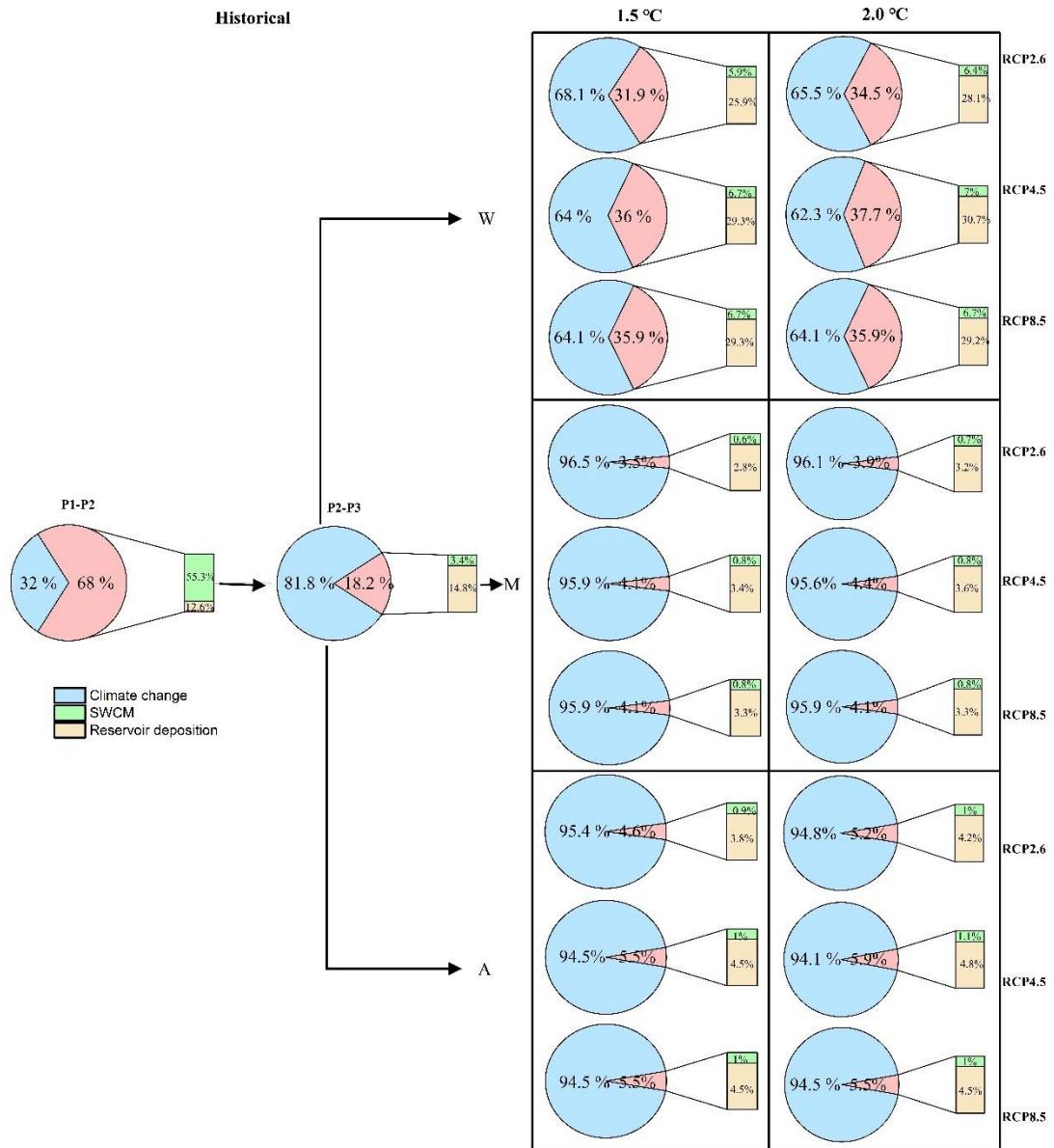
23 Dashed lines represent trend lines of the sediment load. Error bars are the standard deviation

24 across the years. The annual load shows a significant reduction during these periods. **a:** time

25 series of annual sediment load at the main gauging stations along the mainstream of the

26 Yangtze River(top). The average annual sediment load from 1972 to 2016 at gauging

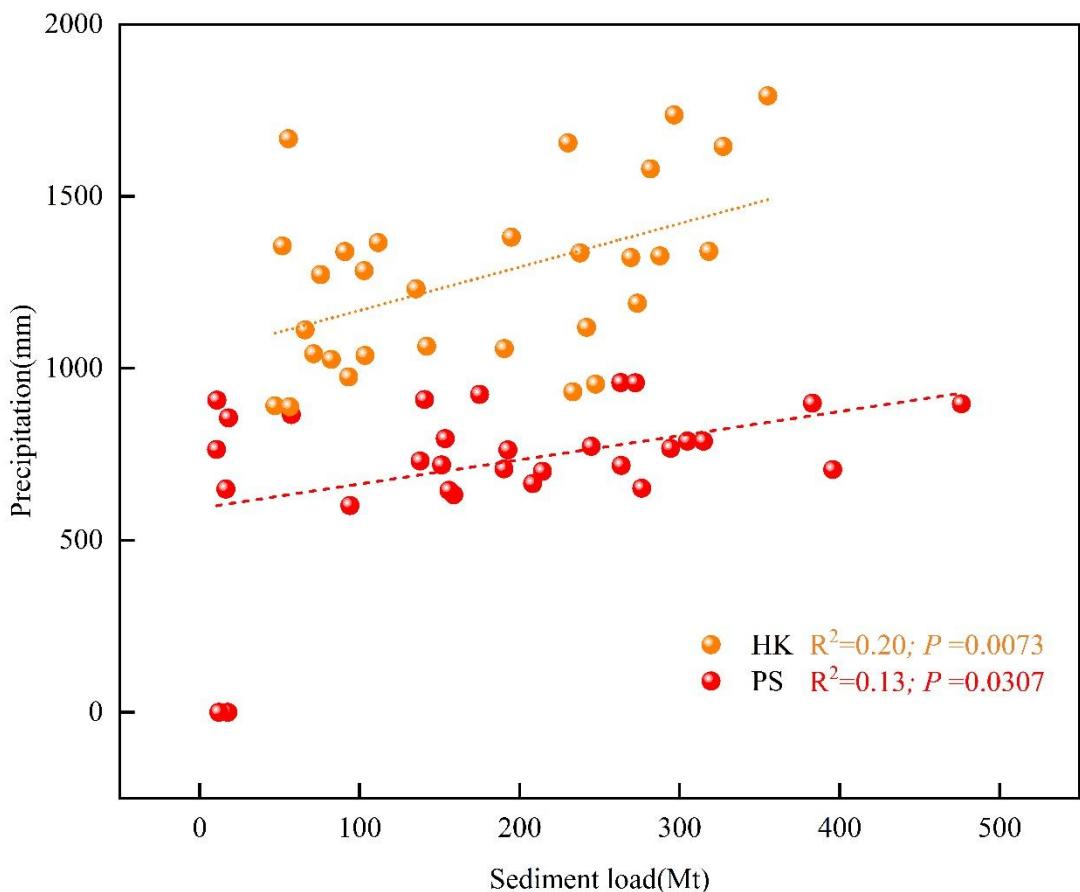
27 stations(bottom); **b:** time series of annual sediment load at the seven gauging stations along


28 the main tributaries (except ZT station) of the Yangtze River(top). The average annual

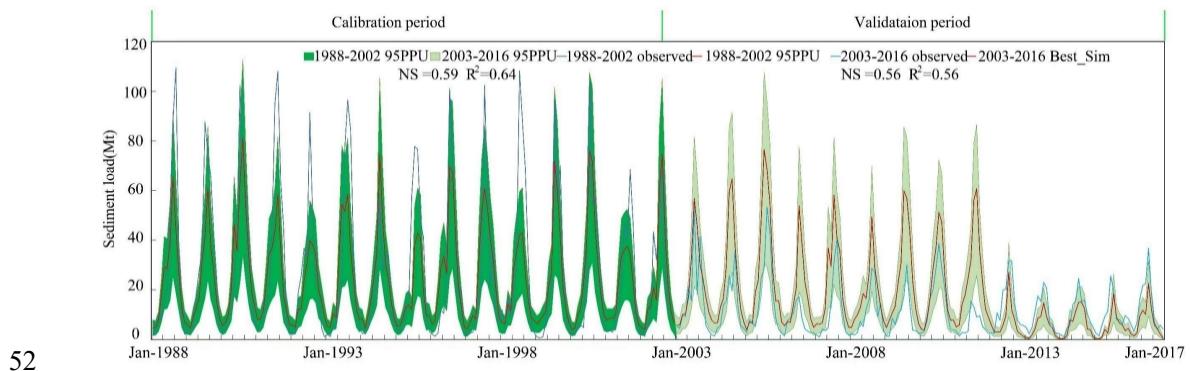
29 sediment load from 1970 to 2017 at gauging stations(bottom), error bars are the standard

30 deviation across the years. PS, Pingshan; GC, Gaochang; ZT, Zhuotuo; BB, Beibei;

31 WL,Wulong; WX, Wanxian; YC,Yichang; HK, Hankou; CLJ, Chenglingji; HZ,


32 Huangzhuang; HUK, Hukou; DT, Datong.

33


34 **Supplementary Figure 2.** Relative contributions of climate change and human activities (i.e.,
 35 reservoir deposition and SWCM) to sediment load change in historical period (the difference
 36 between PZH and DT stations) (left). We assume that the relative contribution of reservoir
 37 deposition and SWCM in human activities to sediment transport under historical and future
 38 scenarios remains unchanged. Projected the relative contributions of climate change and
 39 human activities (including reservoir deposition and SWCM) by multimodel mean in each of

40 the three scenarios (W scenario, M scenario, A scenario) for the 1.5 °C and 2.0 °C warming
 41 scenarios (corresponding to periods of 2020–2039 and 2040–2059, respectively) relative to
 42 the reference period (1972–1992) (right). The significance of the changes was tested with the
 43 two-sample t test at the 0.05 significance level. PZH, Panzhihua; DT, Datong; SWCM, Soil
 44 and water conservation measures.

45
 46 **Supplementary Figure 3. Relationship between precipitation and sediment load**
 47 [coefficient of determination (R^2); significance (P)]. According to the observational data, we
 48 selected the annual precipitation (mm) and sediment load data of PS Station and HK Station
 49 to calculate the relationship between precipitation and sediment load. These hydrological data
 50 were quality controlled at the office of the Hydrological Bureau of the Yangtze River Water

51 Resources Commission in Wuhan, China. HK, Hankou; PS, Pingshan.

53 **Supplementary Figure 4.** Comparison of simulated and observed values and model
54 evaluation results. R^2 and NS represent the coefficient of determination, Nash-Sutcliffe
55 efficiency, respectively. The calibration period is 1988–2002, and the validation period is
56 2003–2016.

57 **Supplementary Table 1.** The relative contribution of climate changes and human activities to annual runoff in the YRB during the
 58 period P1–P2, P2–P3 and P1–P3.

	P1- P2				Change	P2- P3				P1- P3					
	Climate change		Human activities			Climate change		Human activities		Climate change		Human activities			
	CC_1	CC_2	CC_1	CC_2		CC_2	CC_3	CC_2	CC_3	CC_1	CC_3	CC_1	CC_3	Change	
	HA_1	HA_1	HA_2	HA_2		HA_2	HA_2	HA_3	HA_3	HA_1	HA_1	HA_3	HA_3		
Observed sediment load (Mt)	422.1		515	22.0%		309		131.6	-57.4 %	422.1		131.6	-68.8 %		
Simulated sediment load (Mt)	416.1	433.3	396.8	478.6	15.0%	483.4	1514	409.3	176.6	-63.5 %	416.1	142.0	403.5	176.6	-57.6 %
Change in simulated sediment load (Mt)		17.2	-36.4	62.5	81.8		-332.0	-74.1	-306.8	99.3		-274.1	-12.6	-239.50	47.3
Relative contribution (%)		27.5	58.3	100.0	-14.3		108.2	24.1	100.0	32.4		114.5	5.3	100.0	19.7
Normalization of relative contribution (%)		32.04	67.96				81.76	18.24				95.60	4.40		

59 **Notes:** CC_1 and HA_1 denotes the baseline period (P1) of climate change scenario and human activity scenario, respectively. We followed the same
 60 naming rule to denote the other climate change scenario and human activity scenario.

61 **Supplementary Table 2.** The area of imperious surface equivalent (S_{ISE}) and the intensity of
 62 ecological engineering (IEE) in the study site from 1988 to 2016, and three scenarios to 2050
 63 (Unit: $\times 10^6$ ha)

Year	Cropland	Forest	Grassland	Unused land	Urban land	Water body	S_{ISE}	IEE
1988	50.44	72.89	41.48	5.13	2.34	5.89	24.6608	13.8420
1989	50.36	72.78	41.49	5.06	2.38	6.08	24.6787	13.8520
1990	50.36	72.78	41.49	5.06	2.38	6.08	24.6787	13.8520
1991	50.36	72.78	41.49	5.06	2.38	6.08	24.6787	13.8521
1992	50.36	72.78	41.49	5.06	2.38	6.08	24.6787	13.8520
1993	49.64	73.27	42.64	4.88	2.60	5.13	24.9277	13.9918
1994	49.64	73.27	42.64	4.88	2.61	5.13	24.9293	13.9927
1995	49.59	73.32	42.66	4.87	2.61	5.11	24.9321	13.9942
1996	49.59	73.32	42.66	4.87	2.61	5.11	24.9321	13.9942
1997	49.59	73.32	42.66	4.87	2.61	5.11	24.9322	13.9943
1998	49.92	72.80	41.69	5.13	2.79	5.84	25.0203	14.0438
1999	49.92	72.80	41.69	5.13	2.79	5.84	25.0202	14.0437
2000	49.92	72.80	41.69	5.13	2.79	5.84	25.0202	14.0437
2001	49.89	72.80	41.68	5.14	2.80	5.84	25.0288	14.0486
2002	49.78	72.82	41.67	5.17	2.89	5.83	25.0946	14.0855
2003	49.56	72.88	41.63	5.23	3.05	5.81	25.2161	14.1537
2004	49.47	72.89	41.63	5.25	3.11	5.81	25.2554	14.1757
2005	49.41	72.90	41.62	5.27	3.14	5.81	25.2804	14.1898
2006	49.40	72.90	41.62	5.27	3.16	5.81	25.2915	14.1960
2007	49.34	72.91	41.61	5.28	3.21	5.81	25.3327	14.2191
2008	49.12	72.93	41.58	5.29	3.41	5.82	25.4917	14.3084
2009	49.09	72.93	41.58	5.30	3.44	5.82	25.5153	14.3216
2010	49.06	72.94	41.57	5.30	3.47	5.82	25.5378	14.3342
2011	49.02	72.93	41.57	5.30	3.52	5.82	25.5739	14.3545
2012	48.97	72.92	41.57	5.31	3.58	5.82	25.6245	14.3829
2013	48.61	72.79	41.56	5.35	4.03	5.82	25.9906	14.5884
2014	48.51	72.76	41.56	5.36	4.15	5.82	26.0872	14.6426
2015	48.43	72.73	41.56	5.37	4.25	5.82	26.1695	14.6888
2016	48.30	72.82	41.55	5.39	4.39	5.71	26.2872	14.7549
W scenario	48.04	73.07	40.04	6.01	5.99	5.00	27.7131	15.5565
M scenario	49.04	74.07	37.03	6.01	6.99	5.00	28.7243	16.1242
A scenario	49.05	70.06	40.16	5.57	9.01	4.29	30.6108	17.1831

64 Note: For details, please refer to literature^{1,2}.

65

66 **Supplementary Table 3.** The scenario setting of this study.

Scenario	Factor		Group
	Weather data	Land use	
H1	CC_1	HA_1	Historical
H2	CC_2	HA_1	
H3	CC_1	HA_2	
H4	CC_2	HA_2	
H5	CC_3	HA_2	
H6	CC_2	HA_3	
H7	CC_3	HA_1	
H8	CC_1	HA_3	
H9	CC_3	HA_3	
S1	The baseline period (1972-1992)	W	HadGEM2-ES
S2	The baseline period (1972-1992)	M	
S3	The baseline period (1972-1992)	A	
S4	The baseline period (1972-1992)	LULC(1990)	
S5	RCP2.6(2017-2059)	W	
S6	RCP2.6(2017-2059)	M	
S7	RCP2.6(2017-2059)	A	
S8	RCP2.6(2017-2059)	LULC(1990)	
S9	RCP4.5(2017-2059)	W	
S10	RCP4.5(2017-2059)	M	
S11	RCP4.5(2017-2059)	A	IPSL-CM5A-LR
S12	RCP4.5(2017-2059)	LULC(1990)	
S13	RCP8.5(2017-2059)	W	
S14	RCP8.5(2017-2059)	M	
S15	RCP8.5(2017-2059)	A	
S16	RCP8.5((2017-2059)	LULC(1990)	
S17	RCP2.6(2017-2059)	W	
S18	RCP2.6(2017-2059)	M	
S19	RCP2.6(2017-2059)	A	
S20	RCP2.6(2017-2059)	LULC(1990)	
S21	RCP4.5(2017-2059)	W	IPSL-CM5A-MR
S22	RCP4.5(2017-2059)	M	
S23	RCP4.5(2017-2059)	A	
S24	RCP4.5(2017-2059)	LULC(1990)	
S25	RCP8.5(2017-2059)	W	
S26	RCP8.5(2017-2059)	M	
S27	RCP8.5(2017-2059)	A	
S28	RCP8.5((2017-2059)	LULC(1990)	
S29	RCP2.6(2017-2059)	W	
S30	RCP2.6(2017-2059)	M	
S31	RCP2.6(2017-2059)	A	
S32	RCP2.6(2017-2059)	LULC(1990)	
S33	RCP4.5(2017-2059)	W	
S34	RCP4.5(2017-2059)	M	
S35	RCP4.5(2017-2059)	A	
S36	RCP4.5(2017-2059)	LULC(1990)	
S37	RCP8.5(2017-2059)	W	
S38	RCP8.5(2017-2059)	M	
S39	RCP8.5(2017-2059)	A	
S40	RCP8.5((2017-2059)	LULC(1990)	

67 **Notes:** LULC (1990) represent the land use and cover maps in 1990.

68 **Supplementary Table 4.** SWAT parameters used to calibrate YRB hydrologic model

Parameter	Range of values	Mean value (SD)	Units	Description
r_CN2.mgt	-1~1	0.5(0.35)	na	Curve number
r_SOL_AWC().sol	-1~1	0.03(0.58)	mm/mm	Available soil water capacity
r_GWQMN.gw	-1~1	0.6(0.66)	mm H ₂ O	Threshold depth of water in the shallow aquifer required for return flow to occur
r_GW_REVAP.gw	-1~1	-0.27(0.67)	na	Groundwater “revap” coefficient
r_SLSUBBSN.hru	-1~1	0.09(0.63)	m	Average slope length
r_SURLAG.bsn	-1~1	-0.33(0.57)	na	Surface runoff lag coefficient
r_CANMX.hru	-1~1	-0.06(0.55)	mm H ₂ O	Maximum canopy storage
r_SOL_K().sol	-1~1	0.09(0.37)	na	USLE equation soil erodibility (K) factor.
r_USLE_P.mgt	-1~1	0.26(0.48)	na	USLE equation support pr
v_ALPHA_BF.gw	0~1	0.45(0.37)	days	Base flow alpha factor or recession constant
v_GW_DELAY.gw	0~500	85.69 (72.28)	days	Groundwater delay
v_CH_N2.rte	-0.01~0.3	0.15 (0.05)	na	Channel manning's roughness coefficient
v_CH_K2.rte	-0.01~500	323.12 (57.93)	mm/hr	Channel hydraulic conductivity
v_EPCO.hru	0~1	0.33(0.31)	na	Plant uptake compensation factor
v_ESCO.hru	0~1	0.71(0.25)	na	Soil evaporation compensation factor
v_SPCON.bsn	0.0001~0.01	0.002(0.001)	na	Linear parameter for calculating the maximum amount of sediment that can be reentrained during channel sediment routing.
v_SPEXP.bsn	1~1.5	1.27(0.04)	na	Exponent parameter for calculating sediment reentrained in channel sediment routing.
v_REVAPMN.gw	0~500	339.72 (142.14)	mm H ₂ O	Threshold depth of water in shallow aquifer for “revap” or percolation to deep aquifer to occur

69 Note: Range of values was applied to 10 individual subbasins that compose the YRB hydrologic model.

70 Mean (SD) values are based on SWAT best parameter values for the 10 individual subbasins. X_Code

71 indicate the type of change to be applied to the parameter, v_ means the existing parameter value is to

72 be replaced by the given value, and r_ means the existing parameter value is multiplied by (1+a given

73 value).

74 **Supplementary Table 5.** Performance metrics of simulated sediment on the YRB for

75 the calibration, validation, and overall periods, respectively.

	Time period	Climate change	Human activities	NS	R ²
H0	Calibration (1972~2003)	/	/	0.59	0.64
	Validation (2004~2016)	/	/	0.56	0.56
H1 (natural period)	Calibration (1972~1993)	CC_1	HA_1	0.73	0.73
	Validation (1994~1998)	/	/	0.59	0.64
H2	Calibration (1994~2003)	CC_2	HA_1	0.65	0.62
	Validation (2004~2008)	/	/	0.59	0.61
H3	Calibration (1972~1993)	CC_1	HA_2	0.73	0.73
	Validation (1994~1998)	/	/	0.74	0.74
H4	Calibration (1994~2003)	CC_2	HA_2	0.65	0.62
	Validation (2004~2008)	/	/	0.57	0.60
H5	Calibration (2004~2014)	CC_3	HA_2	0.66	0.66
	Validation (2015~2016)	/	/	0.62	0.58
H6	Calibration (1994~2003)	CC_2	HA_3	0.65	0.62
	Validation (2004~2008)	/	/	0.57	0.60
H7	Calibration (1972~1993)	CC_1	HA_3	0.69	0.59
	Validation (1994~1998)	/	/	0.68	0.55
H8	Calibration (2004~2014)	CC_3	HA_1	0.73	0.74
	Validation (2015~2016)	/	/	0.69	0.60
H9	Calibration (2004~2014)	CC_3	HA_3	0.70	0.59
	Validation (2015~2016)	/	/	0.68	0.58

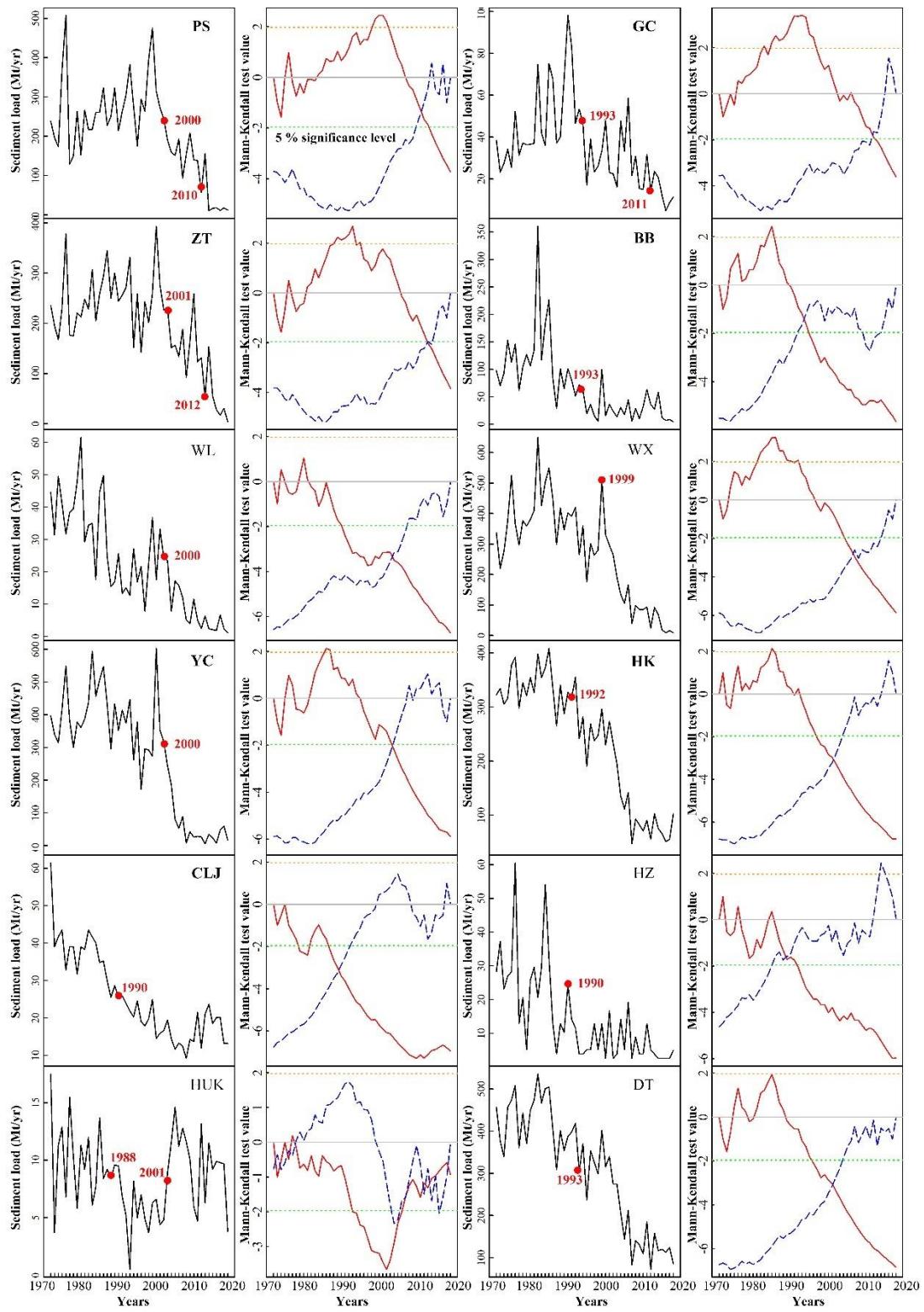
76 **Notes:** Bold number indicates an unsatisfactory fit. According to ref³, NS = 1.0 is the perfect fit,

77 NS > 0.75 is a very good fit, NS = 0.64 to 0.74 is a good fit, NS = 0.5 to 0.64 is a satisfactory fit

78 and NS < 0.5 is an unsatisfactory fit.

79

80 **S1 Breakpoints and trend analysis of annual sediment load.**


81 The breaks for additive season and trend (BFAST) algorithm (Sections S7) and the

82 Mann-Kendall method (Sections S8) was applied for breakpoints and trend analysis of

83 runoff. As seen in Supplementary Figure 1, twelve hydrological stations exhibited a

84 significant downward trend, whereas HUK station shown a non-significant decreasing

85 trend. The change points were detected for all twelve gauging stations, most of them
86 occurring in the period of 1990–1993, 1998, and 2000–2003 (Fig. 2 and
87 Supplementary Figure 5). The whole study period was split into three sub-periods
88 (1972–1992, 1993–2003, 2004–2016) to quantify the change in sediment load.

89

90 **Supplementary Figure 5. Abrupt change points in sediment load estimated by Pettitt test**
91 and Mann-Kendall test in selected sub-basins of YRB. Horizontal dashed lines represent

92 significance at 5 % significance level. The blue and red solid lines represent the progressive
93 series, UF, and the retrograde series, UB. For subbasins with abrupt changes in the sediment
94 transport, the larger red points represent abrupt change point illustrated by Pettitt test and
95 Mann-Kendall test (refer to section S4).

96 **S2 Climate model selection**

97 In this study, future characteristics of temperature and precipitation impacts are
98 analyzed over the Yangtze River Basin with nine global climate models (GCMs) in
99 CMIP5 (Coupled Model Intercomparison Project phase 5) (Supplementary Table 7):
100 HadGEM2-ES, MPI-ESM-LR, MPI-ESM-MR. Three representative concentration
101 pathways (RCPs) are considered, i.e., RCP2.6, RCP4.5 and RCP8.5. Using a
102 multimodel mean, projections for 20-y intervals were estimated when the average
103 global warming reaches the 1.5 °C thresholds under RCP2.6 and the 2.0 °C
104 thresholds under RCP4.5⁴. It is estimated that the 2.0 °C warming threshold would be
105 reached in 2020–2039 under RCP2.6 and the 2.0 °C warming threshold would be
106 reached in 2040–2059 under RCP4.5^{4,5}.

107 **Supplementary Table 6.** Statistical comparison of observed temperature and precipitation
108 with 24 GCMs over the Yangtze River Basin the period of 1960-2005⁶. Altogether 24
109 simulations from nine models are found to meet the research requirement for calculation of
110 temperature and precipitation for future period under RCP2.6, RCP4.5 and RCP8.5 scenarios.
111 AE, RE and NRMSE is the absolute error, relative error and normalized root mean square
112 error, respectively.

NO.	Climate model	Temperature	Precipitation
-----	---------------	-------------	---------------

		AE(%)	NRMSE(%)	Selected	RE(%)	NRMSE(%)	Selected
1	BCC-CSM1.1	0.38	1.22		3	1.52	
2	BNU-ESM	-0.80	1.22		48	1.64	
3	CanESM2	-0.50	1.14		29	1.53	
4	CCSM4	-2.02	1.13		31	1.60	
5	CNRM-CM5	-1.31	1.14		43	1.68	
6	CSIRO-MK3.6.0	0.10	1.23		31	1.55	
7	FGOALS-g2	-2.82	1.24		32	1.63	
8	FIO-ESM	-0.79	1.22		43	1.51	
9	GFDL-CM3	-3.43	1.15		24	1.49	
10	GFDL-ESM2G	-2.83	1.15		25	1.56	
11	GISS-E2-H	-1.60	1.17		33	1.65	
12	GISS-E2-R	-1.80	1.15		41	1.69	
13	HadGEM2-AO	-0.48	1.14		41	1.76	
14	HadGEM2-ES	-1.33	1.12	✓	18	1.30	✓
15	IPSL-CM5A-LR	-1.34	1.27		14	1.40	✓
16	IPSL-CM5A-MR	-2.13	1.19		10	1.37	✓
17	MIROC5	-1.24	1.26		41	1.72	
18	MIROC-ESM	-0.47	1.21		26	1.68	
19	MIROC-ESM-CHEM	-0.54	1.21		29	1.68	
20	MPI-ESM-LR	-0.61	1.17		34	1.55	
21	MPI-ESM-MR	-0.65	1.15		25	1.45	
22	MRI-CGCM3	-1.92	1.15		40	1.63	
23	NorESM1-M	-1.83	1.14		24	1.48	
24	NorESM1-ME	-1.87	1.15		28	1.50	

113 **S3 Method for Mapping Land Use Biomes for Future Scenarios and
114 regional implications**

115 Our approach to developing representations of regional land use/cover for each of the
116 three scenarios (Weak (W), Moderate (M), and Ambitious (A)) was based on an initial
117 regional land cover product, henceforth referred to as the 2016 Land Use Base Map or
118 Base_2016 for short (Supplementary Figure 7). Base_2016 was the initial 2016 base
119 land use dataset used in the algorithm to produce the land use maps for the four
120 scenarios to 2050 (Supplementary Table 2). The algorithm was driven by the percent

121 changes to regional total biome areas. The algorithm distributes these percent changes
122 over the surface of the planet. Base_2016 and all three scenarios were prepared in an
123 equal area Albers projection. From this dataset, we created binary layers for each
124 biome (e.g. urban was assigned 1, everything else was assigned a 0 or NoData) and
125 we combined all cropland into one cropland category, all forest land (e.g. woodland,
126 shrub land, sparse woodland) into one forest land category, all grassland (e.g.
127 high-coverage grassland, medium-coverage grassland, low-coverage grassland) into
128 one grassland category, and all unused land (e.g. sandy land, saline alkali land and
129 bare soil) into one unused land category (Supplementary Figure 6). All water
130 categories (e.g. rivers, lakes, reservoirs) were assigned to an excluded layer, which
131 prevented them from undergoing any transitions. In addition, we created a global grid
132 of random numbers drawn from a uniform distribution ranging from 1 to 100 for
133 every terrestrial pixel, with ocean areas set at 0 (Rnd_Water_0) (Supplementary
134 Figure 6). The approach permits growth or shrinkage of each of the remaining biomes
135 (urban, cropland, forest, grassland, and unused land) by the set percentages
136 (Supplementary Table 1) to produce the land cover changes seen in the three scenarios.
137 The precedence of land cover transitions was as follows:

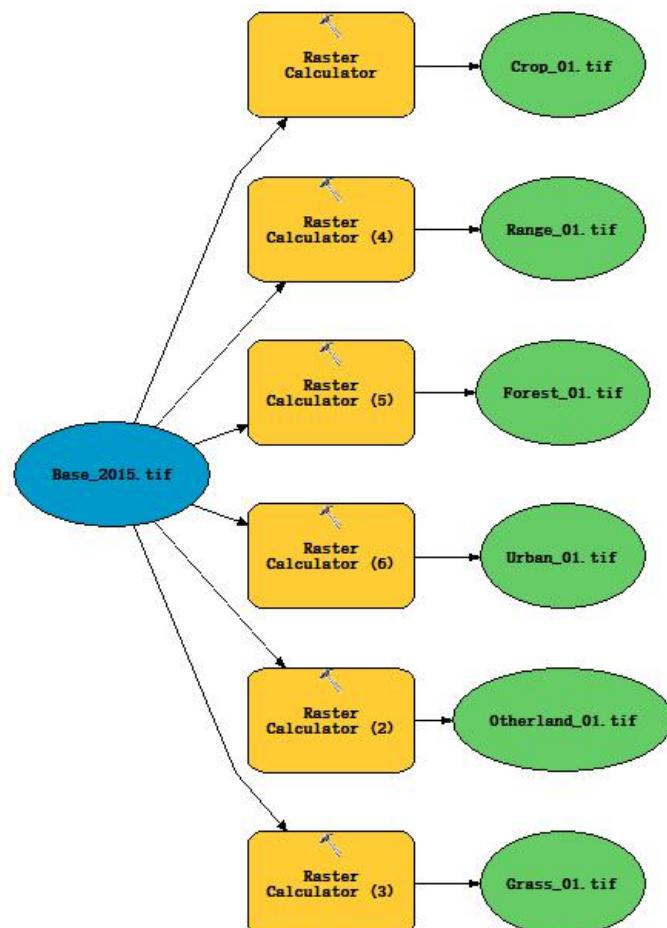
- 138 1) Grew urban extent from existing urban pixels. This growth was permitted to
139 consume all the other biomes not in the excluded layer. (Note: All urban pixels were
140 excluded from future transitions.)
- 141 2) Grew or shrank croplands from remaining croplands. Ensured that the
142 percentage growth or loss was relative to original extent of croplands prior to previous

143 land cover transitions. (Note: At this point both urban and cropland were excluded
144 from future transitions.)

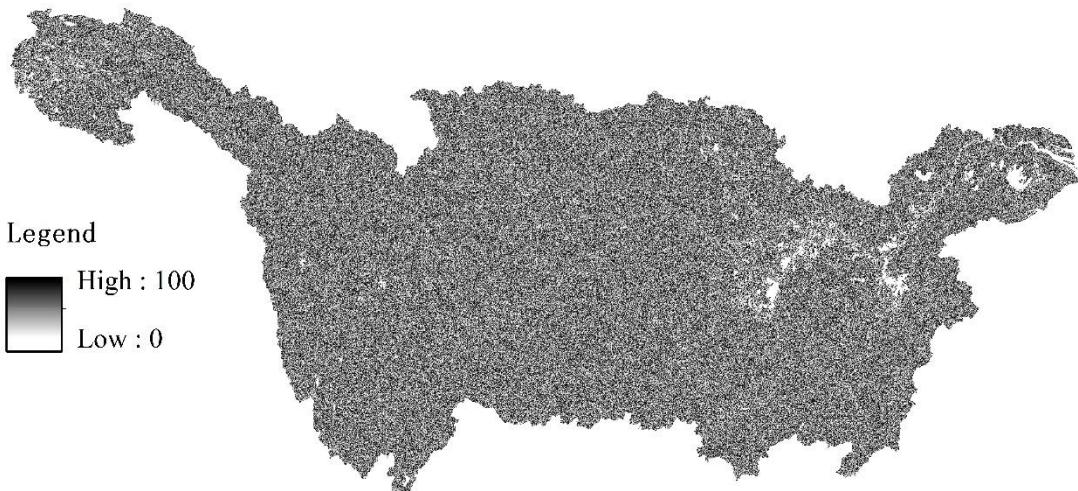
145 3) Grew or shrank forest land from remaining forest land. Ensured that the
146 percentage of growth or loss was relative to original extent of forest land prior to
147 previous land cover transitions. (Note: Forest land now became an excluded layer.)

148 4) Grew or shrank grassland from remaining grassland. Ensured that the
149 percentage growth or loss was relative to original extent of grassland prior to previous
150 land cover transitions. In cases of grassland losses, unused land became grasslands.
151 (Note: Grassland now became an excluded layer.)

152 5) Grew or shrank unused land from remaining unused land. This was done so
153 that the final areal extent of unused land was the correct percentage change relative to
154 original extent of unused land.

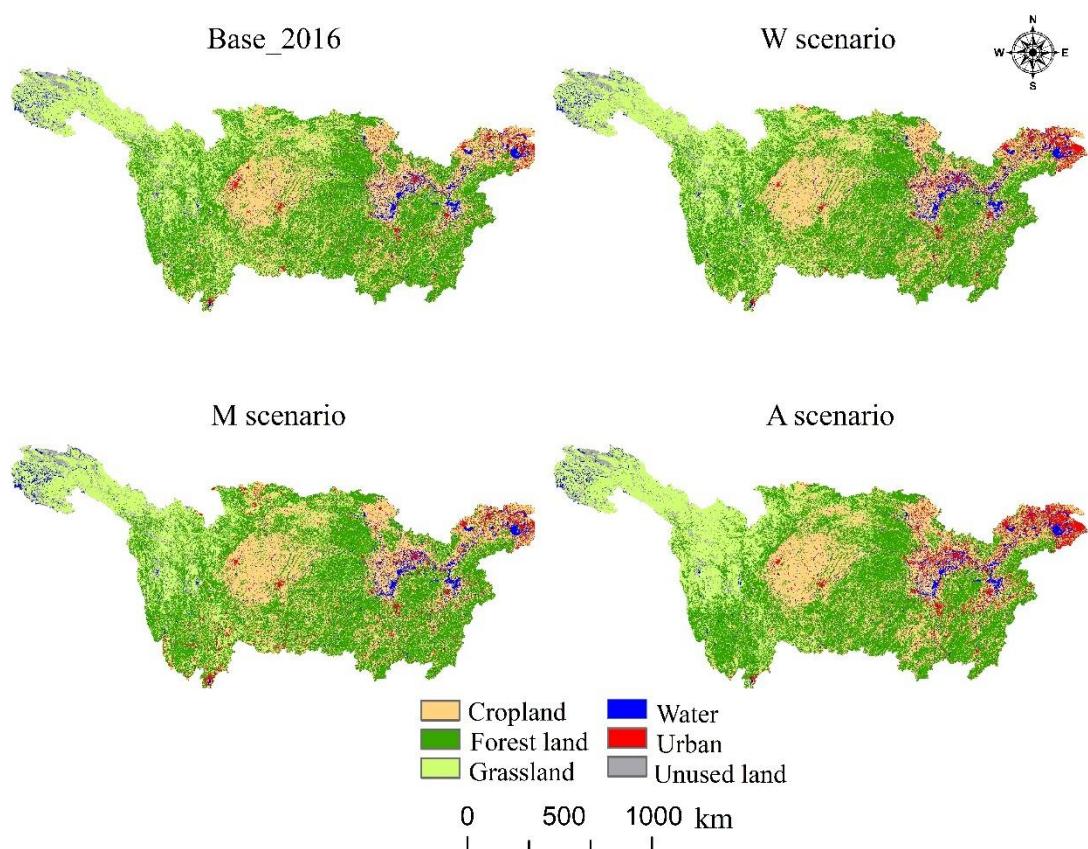

155 We were then able to recombine the new land cover extents into one regional
156 coverage map for each scenario. For detailed information, please refer to the
157 literature⁷. We followed the same procedures to produce the other three scenarios and
158 then got geotiffs datasets of Base_2016, W_Scenario, M_Scenario, and A_Scenario to
159 2050 (Supplementary Figure 7).

160 **Supplementary Table 7.** Three scenarios original changes with land use percent changes


Scenarios	1980	2016	Scenarios to 2050		
			W	M	A
			Weak	Moderate	Ambitious
Total Area (e6 ha)	~178				
Cropland (e6 ha)	51	48	48	49	55
Forest land (e6 ha)	73	73	73	74	77
Grassland (e6 ha)	41	41	40	37	28
Water bodies (e6 ha)	5	6	6	6	6
Urban land (e6 ha)	2	5	6	7	9

Unused land (e6 ha)	6	5	5	5	3
Percent Changes (%)					
Cropland	28.42	26.73	0.24	0.80	4.17
Forest land	40.98	41.17	-0.16	0.41	2.09
Grassland	23.27	23.03	-0.56	-2.25	-7.30
Water bodies	2.93	3.13	0.00	0.00	0.00
Urban land	1.28	3.00	0.37	0.94	2.06
Unused land	3.20	2.99	-0.18	-0.18	-1.31

161 **Notes:** the colours of the numbers indicate: black values are values that have remained
 162 constant, green are values that have increased, red are values that have decreased from the
 163 2016 values.



164
 165 **Supplementary Figure 6.** Creation of Binary Biome Data Layers (ArcGIS Model Builder)

166

167 **Supplementary Figure 7.** Randomized Terrestrial Layer used to partition selections
 168 (Rnd_Water_0). Mask of Rnd_Water_0 was performed using the “Extract by Mask” tool in
 169 ArcGIS software Version10.2.

170

S12

171 **Supplementary Figure 8.** Four land use maps of the YRB showing the 2016 labeled Base
 172 and the land use maps of the YRB for each of the scenarios (labeled Scenario W, M, and A).

173 **S4 Mann-Kendall (MK) trend test**

174 The non-parametric (M-K) trend test was used to detect both the trends and abrupt
 175 changes in hydrometeorological time series ⁸⁻¹² . For a time series $x_t =$
 176 (x_1, x_2, \dots, x_n) , the standardized test statistic Z is given as:

$$Z = \begin{cases} (S-1)/\sqrt{\text{var}(S)} & S > 0 \\ 0 & S = 0 \\ (S+1)/\sqrt{\text{var}(S)} & S < 0 \end{cases} \quad (1)$$

in which

$$S = \sum_{j=1}^{n-1} \sum_{k=j+1}^n \text{sgn}(x_k - x_j) = \begin{cases} 1 & x_k - x_j > 0 \\ 0 & x_k - x_j = 0 \\ -1 & x_k - x_j < 0 \end{cases} \quad (2)$$

$$\text{var}(S) = \left[n(n-1)(2n+5) - \sum_t^p q_t(q_t-1)(2q_t+5) \right] / 18 \quad (3)$$

$$\beta = \text{median}[(x_k - x_j) / (k - j)] \quad 1 < j < k < n \quad (4)$$

177 where S is the test statistic value, n is the length of the sample, x_k and x_j
 178 are from $j=1, 2, \dots, n-1$ and $k=j+1, j+2, \dots, n$ ($k > j$), respectively, p is the
 179 total number of tie groups in the data, and q_t is the number of data points contained
 180 in the t -th tie group; β is Sen's slope estimate, $\beta > 0$ indicates upward trend in a
 181 time series. Otherwise the data series presents downward trend during the time period.

182 **S5 BFAST algorithm**

183 BFAST integrates the decomposition of time series into trend, seasonal, and
184 remainder components with methods for detecting and characterizing abrupt changes
185 within the trend and seasonal components¹³. BFAST can be applied to other
186 disciplines dealing with seasonal or non-seasonal time series, such as hydrology,
187 climatology, and econometrics¹⁴.

$$Y_t = T_t + S_t + e_t, t = 1, 2, 3, \dots, n \quad (5)$$

)

188 where Y_t is the observed data at time t , T_t is the trend component, S_t is the seasonal
189 component, and e_t is the remainder component. It is assumed that T_t is piecewise
190 linear, with break points $t_1^*, t_2^*, t_3^*, \dots, t_m^*$ and define $t_0^* = 0$, so that:

$$T_t = \alpha_j + \beta_j t \quad (6)$$

191 For $t_{j-1}^* < t \leq t_j^*$ and where $j = 1, 2, 3, \dots, m$. The intercept and slope of consecutive
192 linear models, α_j and β_j , can be used to derive the magnitude and direction of the
193 abrupt change (hereafter referred to as magnitude) and slope of the gradual change
194 between detected break points. The magnitude of an abrupt change at a breakpoint is
195 derived by the difference between T_t at t_{j-1}^* and t_j^* , so that:

$$Magnitude = (\alpha_{j-1} - \alpha_j) + (\beta_{j-1} - \beta_j)t \quad (7)$$

196 where the slopes of the gradual change before and after a break point are β_{j-1} and β_j .

197 **S6 Relative contribution calculation**

198 Stepwise Regression and Multiple linear regression (MLR) were used to establish the
199 relationship between sediment load and impact variables.

200 **Step1**, Stepwise regression was first used to fit sediment loads using many potential
201 independent variables as predictors, and the best subset was extracted from them for
202 use in your MLR model.

203 **Step2**, Relative contribution was calculated. The main steps were:

204 (1) Assume an $n \times 1$ vector of criterion scores (y) and an $n \times p$ matrix of predictor
205 scores (X) of full rank, all of which are expressed in standard score form. If X has
206 at least as many as rows as columns, it is possible to find the singular value
207 decomposition of X ,

$$X = P\Delta Q', \quad (8)$$

$$\Delta = \sqrt{\text{eigenvalues}} \quad (9)$$

208 where, P and Q are contains the eigenvectors of XX' , and Δ is a diagonal
209 matrix containing the singular values of X .

210 (2) Find Z , which is the closest orthogonal matrix to X , $Z = PQ'$, Assume $X = \wedge Z$.

$$\wedge^* = (Z'Z)^{-1} Z'X = (QP'PQ')^{-1} QP'P\Delta Q' = Q\Delta Q', \quad (10)$$

211 (3) Calculate the part where y is interpreted by Z ,

$$\beta^* = (Z'Z)^{-1} Z'y = (QP'PQ')QP'y = QP'y, \quad (11)$$

212 where, β^* represent the proportion of predictable variance in y accounted for by
213 Z .

214 (4) Calculate the relative weight,

$$\omega = \frac{(\wedge^*)^2 \cdot \beta^*}{R^2} \times 100, \quad (12)$$

215 where, ω is the vector of relative weight and R^2 is R-square.

216 **S7 B-spline curves**

217 To reflect the changing shape and trajectory trend of the contribution rate of climate
 218 change and human activities to sediment transport, B-spline curves were used for
 219 fitting in this study. The B-spline curve equation can be expressed as:

220

$$P(u) = \sum_{i=0}^n P_i B_{i,k}(u) \quad u \in [u_{k-1}, u_{n+1}] \quad (13)$$

$$B_{i,k}(u) = \frac{u - u_i}{u_{i+k-1} - u_i} \times B_{i,k-1}(u) + \frac{u_i - u}{u_{i+k} - u_{i+1}} \times B_{i+1,k+1}(u) \quad (14)$$

$$B_{i,1}(u) = \begin{cases} 1, & u_i \leq u \leq u_{i+1} \\ 0, & \text{otherwise} \end{cases}, \quad \text{define } \frac{0}{0} = 0 \quad (15)$$

221 Where P_i is the control vertex, $B_{i,k}(u)$ ($i = 0, 1 \dots n$) is the k degree gauge
 222 B-spline basis function, i is the node number, the node vector u is distributed,
 223 equidistant along the parameter axis.

224

225

226 REFERENCES

227 1. Xu, Y., Xu, X. & Tang, Q. Human activity intensity of land surface: Concept,
 228 methods and application in China. *J. Geogr. Sci.* **26**, 1349–1361 (2016).

229 2. Luo, K. Response of hydrological systems to the intensity of ecological

230 engineering. *J. Environ. Manage.* **296**, 113173 (2021).

231 3. Moriasi, D. N. *et al.* Model Evaluation Guidelines for Systematic
232 Quantification of Accuracy in Watershed Simulations. *Trans. ASABE* **50**,
233 p.885-900 (2007).

234 4. Su, B. *et al.* Drought losses in China might double between the 1.5 °C and
235 2.0 °C warming. *Proc. Natl. Acad. Sci.* 201802129 (2018)
236 doi:10.1073/pnas.1802129115.

237 5. Warszawski, L. *et al.* The inter-sectoral impact model intercomparison project
238 (ISI-MIP): Project framework. *Proc. Natl. Acad. Sci. U. S. A.* **111**, 3228–3232
239 (2014).

240 6. Chu, Q., Xu, Z., Liu, W. & Liu, L. Assessment on 24 global climate models in
241 the CMIP5 over the Yangtze River(in Chinese). *Resour. Environ. Yangtze
242 Basin* **24**, 81–89 (2015).

243 7. Kubiszewski, I., Costanza, R., Anderson, S. & Sutton, P. The future value of
244 ecosystem services: Global scenarios and national implications. *Ecosyst. Serv.*
245 **26**, 289–301 (2017).

246 8. Peng, T. *et al.* Quantitative assessment of drivers of sediment load reduction in
247 the Yangtze River basin, China. *J. Hydrol.* **580**, 124242 (2020).

248 9. Kendall, M. G. & Gibbons, J. D. Rank correlation methods. Ed. *Edward Arnold*
249 (1990).

250 10. Kendall, M. G. Further contributions to the theory of paired comparisons.

251 *Biometrics* **11**, 43–62 (1955).

252 11. Mann, H. B. Nonparametric tests against trend. *Econom. J. Econom. Soc.*
253 245–259 (1945).

254 12. Li, B. *et al.* Eco-environmental impacts of dams in the Yangtze River Basin,
255 China. *Sci. Total Environ.* **774**, 145743 (2021).

256 13. Verbesselt, J., Hyndman, R., Newnham, G. & Culvenor, D. Detecting trend and
257 seasonal changes in satellite image time series. *Remote Sens. Environ.* **114**,
258 106–115 (2010).

259 14. Verbesselt, A. J. Package ‘bfast’. 1–8 (2011).

260