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Supplementary Note 1. Summary of device parameters

Table S1 lists some important device parameters.

Device parameters
Symbol Value

Cavity dimension dx×dy×dz 35×35×4 mm3

Bare cavity frequency ωc/2π 5.993 GHz
Maximum qubit frequency ω0

q/2π 7.982 GHz
Qubit-cavity coupling rate J/2π 85 MHz

Anharmonicity α/2π -132 MHz
Room temperature junction resistance Rn 3.67 kΩ

Josephson inductance of SQUID LJ 4.6 nH
Junction capacitance CJ 5 fF

Maximum Josephson energy E0
J/h 33.4 GHz

Charging energy from black-box simulation EC/h 255 MHz
Cavity impedance (simulation) Zc 0.6 Ω
Qubit impedance (simulation) Zq 275 Ω

SQUID loop area A ∼ 166 µm2

Effective SQUID loop width (SQUID area / length of mechanical resonator) w ∼ 3.33 µm
SiN film thickness d1 100 nm

Al coating thickness d2 50 nm
Mechanical resonator length l ∼ 45 µm
Mechanical resonator width b 300 nm

Mechanical resonator thickness d = (d1 + d2) 150 nm
Tensile stress in SiN film T ∼ 2 GPa

Total mass of the mechanical resonator m ∼ 5.6 pg
Mechanical resonator frequency ωm/2π 6.5849 MHz
Maximum applied magnetic field Bmax 3.7 mT

TABLE S1: Summary of parameters for the device studied in the main text

Supplementary Note 2. Device Fabrication and measurement setup:

The device is fabricated on a 5×8 mm2 silicon-(100) substrate coated with 100 nm highly pre-stressed SiN, deposited
using LPCVD method. The entire design is patterned in a single electron-beam lithography step using a bilayer resist
stack of LOR and PMMA. Subsequently, the shadow evaporation technique is used to deposit aluminum with an
intermediate step of oxidation to realize tunnel Josephson junctions. Fig. S1(a) shows the optical image of the device
after aluminum deposition.

To pattern the nanowire and release it from the substrate, we use two steps etching procedure. First, the exposed
SiN is vertically etched by the reactive ion etching using SF6 and CHF3 plasma. The aluminum film naturally acts
as a mask layer and thus protects the SiN underneath it. In the second step of etching, a modified TMAH based
etchant is used to remove the exposed silicon while providing excellent selectivity against Al and SiN1,2. For the
etchant we prepare, the etch rate of Si along 100-direction is much faster than the 110- and 111-directions. Following
wet-etching, the samples are thoroughly rinsed in DI water and IPA. The samples are then dried using a gentle blow
of N2, without any critical-point drying. After the etch processes, we consistently observe a 30-50% increase in the
room-temperature tunnel resistance of the junctions.

The fabricated sample is then placed inside a 3D copper cavity, machined out of OFHC copper (shown in Fig. S1(b)).
Subsequently, the cavity assembly is cooled down to 25 mK in a dilution refrigerator. The copper cavity, along with
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FIG. S1: (a) An optical image of the device before the silicon nitride (SiN) removal. The dark-blue color is due to 100 nm SiN
coating over the Si substrate. (b) Image of the device placed in one half of the 3D waveguide cavity while the other half is
placed beside. Wirebonds used to realize a single-ended qubit mode can be seen as well. The top SMA-port on the cavity-half
showing two connectors is used for mechanical actuation.

a small solenoid, is kept inside a cryoperm-shield to protect from ambient magnetic field fluctuations. Fig. S2 shows
the schematic of the complete measurement setup used in the experiment.

Supplementary Note 3. Device design simulation:

We use the black-box circuit quantization (BBQ) technique to simulate the design of the single-ended qubit3. We
compute the imaginary part of the admittance Ysim, as seen by the Josephson junction, with patterned substrate
placed inside. For such computation, a lumped port is defined at the position of SQUID loop. The total reactive
admittance, including the SQUID inductance and capacitance, is given by Ytotal = Ysim + ωCJ − 1

ωLJ
. Using the

junction capacitance CJ= 5 fF and Josephson inductance LJ = 7.5 nH of the SQUID loop, the plot of Ytotal and
Ysim is shown in Fig. S3(a). The zero-crossings with the positive slops in Ytotal denote the qubit and the cavity mode
frequencies. By varying LJ , we identified the crossing on the right as the qubit mode.

The mechanical actuation electrode is designed in a way that the qubit relaxation rate through it can be kept lower,
while maintaining sufficient actuation ability to drive the mechanical resonator. Apart from restricting the driveline
within the cavity recess, we compute the qubit energy relaxation through the drive port. We simulate the qubit
relaxation rate with and without the mechanical actuation electrode. The difference of two relaxation rates kleak as
a function of qubit frequency, is shown in Fig. S3(b).

Supplementary Note 4. Estimation of the mechanical resonator frequency:

The mechanical resonator is comprised of a highly pre-stressed (∼2 GPa) SiN beam of thickness 100 nm, with
50 nm coating of aluminum on top. Using Euler-Bernoulli’s beam theory4, the estimated frequency of the mechanical
resonator is given by,

fj =
j2π

2L2

√
(EI)eff
(ρA)eff

√
1 +

(σA)effL2

j2(EI)effπ2

where j = 1, 2, 3,... denotes the vibrational mode index, L is the length of nano-beam and (EI)eff , (σA)eff , and
(ρA)eff are the effective tensile stress, effective bending rigidity, and effective density respectively.

The effective density is given by,

(ρA)eff =
ρ1d1 + ρ2d2

d1 + d2
A =ρ A,

the effective bending rigidity is given by

(σA)eff =
(σ1d1 + σ2d2)

d1 + d2
A =σ A,

where A = b (d1 + d2) is the cross sectional area of the mechanical resonator.
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FIG. S2: Schematic of the measurement setup: The input line has 66 dB of cryogenic attenuation, where rf line has 46 dB of
fixed attenuation. The bias-tee adds the rf and dc signals, which are used to actuate the mechanical oscillator. The cavity is
kept inside a superconducting coil, use to apply the magnetic field B. A cryo-perm shield, shown as a red dashed rectangular
box, encloses the sample and superconducting coil setup and provides very effective protection against the magnetic field
fluctuations outside the fridge.
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FIG. S3: (a) Admittance of the design computed using a finite element electromagnetic solver. Ysim is the imaginary part of
the admittance without the Josephson junction, and Ytot is the imaginary part of the total admittance when the SQUID loop
is present. (b) The qubit relaxation rate through the mechanical actuation port is plotted against the qubit frequency.
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FIG. S4: Two-tone spectroscopy measurement of the qubit for two different spectroscopy powers. At low power, the dip
represents the qubit transition from ground to the first excited state. With strong spectroscopy drive, the higher transitions
become visible. An offset of -2 dB has been added to the data at the larger drive power to bring clarity.

The effective tensile stress for in-plane and out-of-plane mode is different. For the out-of-plane mode, it is given by

(EI)eff−oop = b
E2

1d
4
1 + 2E1E2d2(2d3

1 + 2d1d
2
2 + 3d2

1d2) + E2
2d

4
2

12(E1d1 + E2d2)
= E1I

oop
eff .

Similarly, for the in-plane mode, it is given by,

(EI)eff−ip =
b3(E1d1 + E2d2)

12
= E1I

ip
eff ,

where b denotes the width of the mechanical resonator, d1 and d2 are the thickness of SiN and aluminium layers.
We use a Young’s modulus of rigidity of E1 = 160 GPa, tensile stress σ1= 2 GPa, and mass density ρ1 = 2800

kg/m3 for SiN and E2 = 69 GPa, density ρ2 = 2700 kg/m3 for aluminum. The stress in aluminium film is negligible,
and it does not affect the total tensile stress. Effectively, the aluminum coverage over SiN nanobeam increases the
mass of the mechanical resonator, which leads to a decrease in the frequency. Using the parameters given above, we
estimate the resonant frequency of the fundamental in-plane vibrational mode to be 7.7 MHz.

Supplementary Note 5. Measurement of the qubit anharmonicity:

We use the two-tone spectroscopy technique to measure the qubit anharmonicity. A weak probe near the cavity-
frequency is used to continuously monitor transmission through the cavity, while a second spectroscopy tone ωs near
the qubit frequency is swept. When ωs matches with allowed qubit transitions, the transmission through the cavity
changes due to the dispersive coupling.

Fig. S4 shows the two-tone spectroscopy measurements at two different powers of the spectroscopy tone. At larger
spectroscopy power, higher transition ω12, and the two-photon transition ω02 become visible. We determine the qubit
anharmonicity α ≡ ω12 − ωq of −2π×132 MHz. It is important to mention that in a traditional 3D-transmon design,
the qubit anharmonicity is approximately given by −EC . Due to the modified design used here, the geometrical
inductance of the wirebonds Lw dilutes the qubit anharmonicity.

In the limit, SQUID inductance LJ � Lw, the anharmonicity is given by5, α ≈ −EC/(1 + Lw/LJ)3. From the
room temperature SQUID resistance measurement and finite element simulation of EC we estimate Lw ≈ 1.13 nH,
and LJ ≈ 4.6 nH.
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FIG. S5: (a) ac-Stark shift in two-tone spectroscopy: Plot of transmission through the cavity at dressed cavity frequency,
while sweeping the spectroscopy frequency near the qubit transition with varying probe power. The red color represents the
qubit transition. (b) Normalized qubit frequency shift, proportional to the number of intra-cavity photons, with increasing
injected probe power.

Supplementary Note 6. ac-Stark shift and the calibration of the intra-cavity photons:

Fig. S5(a) shows the two-tone spectroscopy measurement when the qubit is dispersively detuned. The qubit
transition frequency decreases with increasing probe power due to the photon-induced ac-Stark effect. The shifted
qubit frequency is given by ω′q = ωq+2nχ, where n is the mean intra-cavity photon number6. We detune the qubit by
∼ 1 GHz above the cavity mode near 6.992 GHz, and perform the two-tone spectroscopy measurements with varying
probe power.

The dispersive shift is given by χ = J2 α
∆(∆+α) , where J is the coupling strength between the qubit and the cavity

mode, α is the anharmonicity, and ∆ = ωq − ωc is the qubit detuning. From the independent measurements of
anharmonicity and qubit-cavity coupling, we compute the dispersive shift. The dispersive shift calculated this way,
is then used to calibrate the number of intra-cavity photons.

The experimentally extracted intra-cavity photon number with increasing probe power from the signal generator, is
plotted in Fig. S5(b). This allows us to estimate the total microwave attenuation of the input line (from the microwave
signal generator to the input port of the cavity), estimated to be 79.7 dB.

Supplementary Note 7. Thermal motion and mechanical mode temperature calibration:

To determine the thermal occupation of the mechanical resonator, we operate the system at ω+/2π = 6.025 GHz.
While pumping this mode with a cw-tone at 6.025 GHz, we measure the total integrated power Pm in lower sideband.
Also, the transmitted power Pd at the carrier frequency ω+ is recorded. To eliminate the records made during any
flux-jump event, we record the transmission |S21| before and after every trace measured by the spectrum analyzer.
While we take this precaution, it is worth pointing out that all the data shown in the main manuscript is from the
measurements runs, where we did not observe any flux-jump. Fig. S6(a) shows a 2D color-map of 200 traces of the
power spectral density (PSD) measured with a spectrum analyzer. A plot of |S21| (at ω+) for all the 200 traces is
shown in Fig. S6(b).

Fig. S6(c) and (d) show the average trace of lower-sideband noise spectra measured at 25 mK and 50 mK,
respectively. The down-converted power at the lower sideband frequency for zero detuning driving is given by
Pm = Pd

(
g+/(κ

2/4 + ω2
m)
)
nthm .

Device parameter T = 25 mK T = 50 mK
Transmitted power at carrier frequency Pd -75.9 dBm -77.3 dBm
Cavity dissipation rate κ/2π 4.1 MHz 5.1 MHz

TABLE S2: System parameters used for the calibration of phonon occupancy

Assuming the vacuum coupling rate to be the same for two temperatures, from the results shown in Fig. S6(c), (d)
and the parameter values in Table S2, we find the ratio n25

m/n
50
m ≈ 1. This led us to conclude that the mechanical

resonator is thermalized to 50 mK or a higher temperature. The vacuum coupling rate, shown in Fig. 3(c) of the
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FIG. S6: (a) A color plot of 200 power spectral density traces. (b) Cavity transmission |S21(ω+)| during the measurement
shown in (a). The transmission value is checked before initiating the PSD trace and validated after the PSD trace is over. (c)
and (d) show the average power spectral density at the lower sideband measured at 25 and 50 mK, respectively. The dressed
mode is driven with a mean photon occupation of 0.2 at 6.025 GHz.
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FIG. S7: (a) The LZS interference pattern with increasing qubit frequency deviation. The time-averaged value of Pg =
(1 − 〈σ̂z〉)/2 is plotted with respect to detuning ∆qs. (b) The top (bottom) plot shows the response for high (low) values of
qubit frequency deviation. The linecuts are taken at Ω/2π = 76 MHz (top) and 18 MHz (bottom), indicated by the black
dashed line in the color plot. The calculations were done using ΩR/2π = 8 MHz, ωm/2π = 2 MHz and γ1/2π = 0.1 MHz.

main text, has been calculated assuming a thermalization to 53 mK as these values fall roughly on the estimated
values of g+ from the device parameters.
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Supplementary Note 8. Theoretical Model to understand Landau-Zener-Stückelberg (LSZ) interference:

When the qubit is detuned far away from the cavity, the total Hamiltonian of the system can be written as6,

Hdis = ~ωcâ†â+
~ωq
2
σ̂z + ~ωmb̂†b̂+ ~χσ̂zâ†â+ ~gqmσ̂z(b̂+ b̂†) (S1)

Due to a large difference between the qubit and mechanical resonator frequency, and gqm being much smaller than
the qubit frequency, we invoke the adiabatic approximation. A coherent drive on the mechanical resonator effectively
results in a frequency-modulated qubit. The effective Hamiltonian can be written as,

H = ~ωcâ†â+
~(ωq + Ω sin(ωmt))

2
σ̂z + ~ωmb̂†b̂+ ~χσ̂zâ†â (S2)

where Ω = gqmεm/xzp is the qubit frequency deviation, and εm is the mechanical amplitude. Due to the longitudinal
coupling, the mechanical resonator only contributes to the modulation of the qubit frequency.

To simulate the two-tone spectroscopy data (main text Fig.4), we add probe and spectroscopy drives to the Hamil-
tonian. After performing the rotating frame transformation at the spectroscopy frequency ωs and the probe frequency,
we get an effective Hamiltonian given by,

H =
~(∆qs + Ω sin(ωmt))

2
σ̂z + ~χ(1 + σ̂z)â

†â+ εprobe(â+ â†) +
ΩR
2
σ̂x, (S3)

where ∆qs = ωq − ωs, εprobe is the amplitude of the probe signal, and ΩR is the amplitude of the spectroscopy signal
(the Rabi-flop rate).

The time evolution of different operators can be calculated by using the master equation solver of the QuTip
package7. We solve for the steady-state of 〈â〉ss using the total Hamiltonian and define the transmission as the ratio

of the time-averaged value of 〈â〉ss to the probe amplitude i.e. S21 = 〈â〉ss/εprobe. Spectroscopy signal was varied near
the qubit transition, while the probe signal frequency was kept fixed at the dressed cavity frequency corresponding
to the qubit being in the ground state. Their amplitudes were kept constant during simulation i.e. ΩR/2π = 3 MHz
and εprobe/2π = 10 kHz. We use a dispersive shift χ/2π = −0.71 MHz. The results from such calculations are plotted
as the solid lines in Fig. 4(b) of the main text.

In the two-tone spectroscopy measurements, the measured signal is directly related to 〈σ̂z〉. Therefore, the spectrum
can also be worked out using the Hamiltonian of the qubit subspace only. The model, therefore, can be simplified to
a two-level system (TLS), which is driven along the longitudinal direction (by the mechanical motion) and along the
transverse direction (by the spectroscopy tone) simultaneously. In a frame rotating at the spectroscopy frequency,
the Hamiltonian can be written as,

HTLS =
∆qs + Ω sin(ωmt)

2
σ̂z +

ΩR
2
σ̂x . (S4)

The time evolution of the system can be worked out by using the Lindblad master equation,

ρ̇ = − i
~

[HTLS , ρ] + γ1D[σ̂−]ρ+
γφ
2
D[σ̂z]ρ, (S5)

where γ1 and γφ are the qubit relaxation and the qubit pure dephasing rates, respectively and the Lindblad superop-

erator D[F̂ ] is defined as,

D[F̂ ]ρ = F̂ ρF̂ † − 1

2
F̂ †F̂ ρ− 1

2
ρF̂ †F̂ . (S6)

This leads to a set of equation of motion as:

d

dt
〈σ̂x〉 = −(∆qs + Ω sin(ωmt))〈σ̂y〉 − (

γ1

2
+ γφ)〈σ̂x〉 (S7a)

d

dt
〈σ̂y〉 = −ΩR〈σ̂z〉+ (∆qs + Ω sin(ωmt))〈σ̂x〉 − (

γ1

2
+ γφ)〈σ̂y〉 (S7b)
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d

dt
〈σ̂z〉 = ΩR〈σ̂y〉 − γ1(1 + 〈σ̂z〉) (S7c)

We compute the steady-state value of 〈σ̂z〉 by numerically integrating the Equation S7. To replicate the measure-
ments, we vary the spectroscopy frequency near the ωq (∆qs) and strength of the modulation Ω and plot the steady
state value of (1− 〈σ̂z〉)/2.

Fig. S7 shows the result from the numerical calculations showing the characteristic Landau-Zener-Stückelberg (LZS)
interference pattern8. In the limit of fast-passage across the avoided crossing (ΩR � Ωωm/ΩR), the interference fringes
are separated by the modulation frequency ωm. In the slow-passage limit (ΩR & Ωωm/ΩR), as the system undergoes
the avoided crossing, the probability of diabatic transition increases, and the separation between the fringes is no
longer solely determined by ωm.

Splitting of the qubit spectrum can also be understand from a semi-classical model. In this approach, we calculate
the time averaged value of 〈σ̂z〉 when qubit frequency is being modulated at ωm, thereby asserting that adiabatic
approximation.

Using Eq. S7, the steady state value of 〈σ̂z〉 can be obtained as

〈σ̂z〉 = −1 +
Ω2
R
γ2
γ1

γ2
2 + Ω2

R
γ2
γ1

+ [∆qs + Ω sin(ωmt)]2
, (S8)

where γ2 =
(
γ1
2 + γφ

)
. We define the time averaged value of 〈σ̂z〉 as,

〈σ̂z〉 =
1

T

∫ T

0

〈σ̂z〉 dt, (S9)

where T = 2π/ωm is the time period of the mechanical oscillation. Therefore,

〈σ̂z〉 = −1 +
Ω2
R

T

γ2

γ1

∫ T

0

dt

γ2
2 + Ω2

R
γ2
γ1

+ [∆qs + Ω sin( 2πt
T )]2

. (S10)

To carry out the integral, we first scale the time variable and then recast the integral as,

〈σ̂z〉 = −1−
Ω2
R
γ2
γ1

2π
√
γ2

2 + Ω2
R
γ2
γ1

Im

∫ 2π

0

dx

i
√
γ2

2 + Ω2
R
γ2
γ1

+ ∆qs + Ω sin(x)

 (S11)

This integral can be transformed into a function of a complex variable and solved using Cauchy’s integral formula
with a contour described by |z| = 1. The important part of the calculation is the fact that for any value of ∆qs, there
is only one pole that exists inside the contour. Using the residue theorem, the final answer can be written as,

〈σ̂z〉 = −1 +
Ω2
R

β

γ2

γ1

∣∣∣∣sin(θ2
)∣∣∣∣ , (S12)

β =

√
γ2

2 + Ω2
R

γ2

γ1

4

√(
∆2
qs − γ2

2 − Ω2
R

γ2

γ1
− Ω2

)2

+ 4∆2
qs

(
γ2

2 + Ω2
R

γ2

γ1

)
(S13)

and

θ = tan−1

 2∆qs

√
γ2

2 + Ω2
R
γ2
γ1

∆2
qs − γ2

2 − Ω2
R
γ2
γ1
− Ω2

 (S14)

Using the decoupled cavity-Bloch equation in the steady state, the normalized transmission through the cavity can
be written as,
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FIG. S8: The solid lines show the results from the Master equation. The dotted lines show the results from semi-classical
calculation. Clearly the calculations performed using the Master equation matches the experimental results better. The
calculations were done using the same parameters as used for Fig-4 shown in the main text.

S21 =
−iκ/2

κ/2 + iχ
(

1 + 〈σ̂z〉
) (S15)

Figure S8 shows the qubit spectrum using Eq. S15. For comparison, solution obtained from the Master equation
have been included as well.
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