Supplementary Information
Supplementary Methods
S.1 An oxidation-reduction (redox) network model
Phosphorylation (i.e., ATP synthesis) in living organisms is achieved by two different biochemical pathways18. First, it can occur via the direct transfer of a phosphate group from a phosphorylated intermediate metabolic compound to ADP. This is known as substrate-level phosphorylation and is exemplified by glycolysis (the first pathway of aerobic respiration) and fermentation. Alternatively, phosphorylation can be achieved by the electron flow generated from an oxidation-reduction (redox) reaction. The electron flow eventually creates ion gradients across membranes, or chemiosmosis, which enables ATP synthase to synthesize ATP. In this model, the energy source for phosphorylation of all chemotrophic species is assumed to be supplied from redox reactions. Here we explain the rules of chemical compounds and redox reactions, which form redox networks.
S.1.2 Half reactions
In this model, there is element X (X = A, B, C, …) with X-containing compounds, denoted by Xj (1 ≤ j ≤ NX) and a given value of the standard Gibbs energy change of formation, ∆fGXjº (kJ mol−1). The subscript i is also an indicator of the oxidation number in this model, but it is not equal to the actual oxidation number of atoms. The following half reaction holds between Xj and Xi (j < i):
Xj + (i−j)e− ⇌ Xi						(S.1.1)
where e− denotes an electron. The total number of half reactions of X-containing compounds is 1/2 NX(NX − 1) (see Extended Data Table 1). The reduction potential ERº of a half reaction is determined by the standard Gibbs energy change of the overall cell reaction of the combination of a half reaction as a reduction reaction and hydrogen electrode: 
	H2 (g) → H+ + e−		ERº = 0			(S.1.2)
as an oxidation reaction. The ERº of a half reaction follows
		(j < i) 			(S.1.3)
where F denotes the Faraday constant (96485 C mol−1).
S.1.3 Possible redox reactions
To formulate all of the possible redox reactions from two half-reactions, the balanced redox reactions were determined by the following rules (I) – (VII):
(I) Select half reaction i as a reduction reaction and half reaction j (i ≠ j) as an oxidation reaction.
(II) Divide the number of electrons in the reduction reaction by that in the oxidation reaction, and multiply the obtained quotient by ∆rGºH and the left and right sides of the reaction selected as oxidation reactions.
(III) Add the oxidation and the reduction reactions. The resulting formula corresponds to the overall redox reaction. Subtract ∆rGºH of the oxidation reaction from     ∆rGºH of the reduction reaction, which corresponds to the standard Gibbs energy change of the overall redox reaction (∆rGº).
(IV) For both the left and right sides of the redox reaction obtained after process (III), sort the terms in alphabetical, ascending order. If compounds of the same element are present, sort the terms in ascending order of subscript numbers.
(V) Remove duplicates from all of the redox reactions obtained after process (IV).
(VI) If the sign of ∆rGº is negative, the reaction is classified into the ‘forward reaction group’ , and if it is positive, the reaction is classified into the ‘backward reaction group’. This classification will influence the determination of abiotic reaction rates (see S.2.2).
(VII) For all of the reactions obtained after processes (V) and (VI), multiply the left and right sides of each and their ∆rGº by a constant so that the stoichiometric number of the compound of the first term on the left side becomes 1.
Extended Data Table 2 summarises the possible redox reactions when (NA, NB, Nc) = (3, 2, 2). Some reactions, such as reaction 9, may appear to have only one reactant. Such reactions are called a disproportionation reaction, whereby a reactant is converted into products by simultaneous oxidation and reduction reactions. Extended Data Table 3 summarises the total number of possible redox reactions at a given NA, NB, Nc.
S.2 Kinetics and dynamics
S.2.1 The microbial catalytic rate of a species i
The microbial catalytic rate of species i, fi (in units of mol Xj L−1 mg−1 time−1) is determined by the consumption rate of compound Xj in the first term of the left side of its energy-source overall redox reaction. When a species harnesses a disproportionation reaction, the microbial catalytic rate follows the Monod (or Michaelis-Menten) equation. Using reaction 9 in Extended Data Table 2 as an example,
	 						(S.2.1)
where [Xj] denotes the molar concentration of Xj, r9 is the maximum catalytic rate constant of species 9 (mol mg−1 h−1), and K9Xj is the half-saturation constant for Xj of species 9. For species that harness the rest of the overall redox reactions, their microbial catalytic rates follow the dual Monod equation17. Using reactions 1 and 4 in Extended Data Table 2 as an example,
							(S.2.2a)
 .					(S.2.2b)
It should be noted that, in addition to the Monod type function, other functional forms have also been proposed to describe microbial metabolic reaction rates19−21.
S.2.2 Abiotic reaction rate
The abiotic reaction rate for reaction i is given by a first- or second-order rate equation where the reaction rate is proportional to the product of the molar concentration of the reactant(s) with reaction rate constant ki. The reaction rate constant of the backward reactions, e.g., reactions 9 – 16 in Extended Data Table 2, was assumed to depend on the reaction rate constant and the standard Gibbs energy change of reaction of the corresponding forward reaction. This assumption was based on the relationship between the reaction rate constants of forward and backward reactions at equilibrium achieved in a closed system. Consider the case where only the following reaction abiotically progresses in a closed system:
	A2 + B1 ⇌ A1 + B2	.					(S.2.3)
Let reaction i be the forward reaction and reaction j (j ≠ i) be the corresponding backward reaction. The dynamics of the molar concentration of Xi would then be described as,
	 				(S.2.4)
When the reaction (S.2.4) achieves equilibrium, the following relationship unfolds:
								(S.2.5)
Furthermore, ΔrGi = 0 holds at equilibrium. Assuming that the activity of A1, A2, B1, and B2 is approximated by its molar concentration,
	.					(S.2.6)
Substituting Eq. (S.2.5) into Eq. (S.2.6) and solving it for kj yields,
.  							(S.2.7)
For example, reaction 10 in Extended Data Table 2 is the backward reaction of reaction 2. The abiotic rate constant of reaction 10 is k10 = k2 . It should be emphasised that this relationship does not always hold in our open system model under non-equilibrium conditions.
The abiotic reaction rate constant of the backward reaction can be significantly slow, leading to a negligible reaction. As the presence of dozens of reactions at very slow rates unnecessarily increases the time required for numerical calculation, for convenience, the reaction rate constant of the backward reaction was set to 0 when kj (calculated using Eq. S.2.7) < 10−9. Hence,
 			(S.2.8)
S.2.3 Dynamics of the molar concentration of compound Xj
The possible redox reactions determined in S.1.3. progress at the microbial and abiotic reaction rates given by S.2.1 and S.2.2. The dynamics of the molar concentration of A1 when (NA, NB, NC) = (3, 2, 2) is
 

 
 
			(S.2.9)
where IXj and DXj are the inflow and outflow rate constants of a compound Xj. When A1 is on the left-hand side of a redox reaction, the reaction rate has a negative sign because A1 decreases as the reaction proceeds. Whereas when A1 is on the right-hand side of a redox reaction, the reaction rate has a positive sign because A1 increases as the reaction proceeds. As the reaction rate of the ith reaction is standardised by the reaction rate per mole of Xj in the first term of the left-hand side of the ith reaction, the reaction rate of a compound in the second term should be described by the product of the ith reaction rate and each stoichiometry constant. In the following text, when compound Xj is in italics, Xj denotes the molar concentration of Xj.
S.3 Simulations
The full model is described by simultaneous differential equations consisting of the variables of the molar concentration of Ntot compounds (Ntot = NA + NB + NC + …) and the biomass of Nreac species. Using the Wolfram language in Mathematica 10, we described an algorithm that automatically generated simultaneous differential equations under a given (NA, NB, NC) condition. The numerical differentiation was performed using the NDSolve function to obtain numerical solutions for a given number of iterations. The files in the attached Programs folder are an example. The outline is explained below.
S.3.1 Initial conditions and default values of the parameters
Extended Data Table 4 summarizes the symbols, definition, units, values of the initial conditions of the variables, and the default values of the parameters. The values of the standard Gibbs energy change of formation of compound (Xj, ΔfGXjº), the maximum reaction rate constant of the ith species (ri), and the abiotic reaction rate constant of forward reactions (ki) were regarded as random variables. The values of ΔfGXjº, ri, and ki in log10 followed a uniform distribution within the range shown in Extended Data Table 4. The random variables were generated by the RandomReal function and were then converted to antilog values.
Within the given range of values of the parameters, the inflow and outflow rates of compound Xj significantly exceeded the reaction rates in the system without microbes (Mi = 0 (1 ≤ i ≤ Nreac)). Consequently, the molar concentration of compounds in the system without microbes was nearly determined by the balance between inflow and outflow: the molar concentration of compounds at the abiotic steady state was Xj = IXj / DX. We defined the availability of compounds as Xtot = .
S.3.2 .nb Files in the Programs folder
The Programs folder consists of Functions.nb, Simulation.nb, and Run.nb (notebook files in Mathematica). Run.nb acts as an executable file that provides the initial conditions and default values for the parameters that are listed in Extended Data Table 4. It then iterates Simulation.nb, which automatically generates simultaneous differential equations and performs numerical differentiation. It also exports the values of parameters that are randomly chosen and the results of numerical differentiation to CSV files unless an error occurs during the process of numerical differentiation (NDSolve function in the Wolfram language) or the execution time of numerical differentiation exceeds a given time limit. Simulation.nb calls module functions defined in Functions.nb when they are needed.
	When all of the cells in Run.nb are executed from top to bottom, the results of numerical differentiation and the values of the parameters as random variables are exported as CSV files at "/Res/Inp*/AnABnBCnC/simi" in the Programs folder. Inp* denotes the given condition for the availability of compounds (Xtot) (Note: The value * is not the value of Xtot itself. The real Xtot is 10^( * − log10DXj)), nA, nB, and nC and the number of compounds of the elements A, B, and C, respectively, and the simi iteration number. The contents of the CSV files will be explained in S.3.3.
When an error occurs during the process of numerical differentiation (NDSolve function), the values of the parameters as random variables are exported as CSV files at "/Res/ Inp*/AnABnBCnC/err/errno " in the Programs folder. Whereas when the execution time of numerical differentiation (NDSolve function) exceeds a given time limit (timeconstth = 10 min. in the default setting of Run.nb), the values of the parameters as random variables are exported as CSV files at "/Res/Inp*/AnABnBCnC/timeconst/timeconstno".
S.3.3 The contents of the CSV files
Four files were created after the execution of Run.nb: comppar.csv, eqs.csv, reacmicrobpar.csv, and sol.csv. 
comppar.csv
The values in the j+1 line correspond to the parameters specific to compounds Xj. The ith column of comppar.csv describes:
1st: Xj: The compound.
2nd: ΔfGXjº: The standard Gibbs energy change of formation of the compound.
3rd: IXj: Inflow rate of the compound.
4th: DXj: Outflow rate constant of the compound. 
eqs.csv
Simultaneous differential equations automatically generated at the simith iteration. 
reacmicrobpar.csv
The values in the i+1 line corresponding to the parameters specific to the ith reaction or species. The ith column of reacmicrobpar.csv describes:
1st and 2nd: Compounds as reactants with “[t]”. The ith reaction is a disproportionate reaction when the 2nd column = 0.
3rd and 4th: Compounds as products with “[t]”.
5th to 8th: The stoichiometric coefficients corresponding to the compounds in 1 to 4.
9th: Index of whether the ith reaction is a disproportionation reaction. If “D”, the ith reaction is a disproportionate reaction. Otherwise (“RED”) the reaction is a usual redox reaction.	
10th: ki: Abiotic reaction rate constant of the ith reaction.
11th: ΔrGiº: Standard Gibbs energy change of the ith reaction.
12th: ri: Maximum catalytic rate of the ith functional group.
13th and 14th: KXij: The half saturation constant for compound Xj in the 1st and 2nd columns of the ith functional group. If the 14th column is 0, the value has no meaning.
15th: The inflow rate of the biomass of the ith functional group if microbes are constantly added to the system.
16th: qi: Biomass yield of the ith functional group for a given energy gain from ATP (in units of kJ).
17th: ci: Energy fraction of the ith functional group that can be used for ATP synthesis.
18th: mi: Maintenance energy of the ith functional group.
sol.csv
The numerical solution of variables at time t. The ith column of reacmicrobpar.csv describes:
1st: t: Time
2nd to Ntot + 1: Xj(t): the numerical solution of the molar concentration of the jth compound at time t. The columns for Xj are specifically determined by the ascending order of the alphabet describing the element and the subscript number. If (NA, NB, NC) = (4, 3, 2), the molar concentrations of A1, A2, A3, A4, B1, B2, B3, C1, and C2 will be exported to columns 2 to 10 in order.
Ntot + 2 to Ntot + Nreac + 2: Mi(t): the numerical solution of the biomass of the ith functional group at time t. The columns for Mi are specifically determined by the ascending order of the subscript number.
S.3.4 Criteria for determining whether a system reaches a steady state at tmax
For each simith iteration, the following procedure determined whether the system reached a steady state at tmax (tmax = 109 for the default setting of Run.nb). For the entire biomass of the ith species (1 ≤ i ≤ Nreac), each ratio of Mi(tmax)/ Mi(tmax−τ) was calculated (τ= 106 for the default settings of Run.nb). If 0.99999 < Mi(tmax) / Mi(tmax−τ) < 1.00001 is satisfied for 1 ≤ i ≤ Nreac, the system was determined to have reached a steady state at the simith iteration.


Supplementary Discussion
S.4.1 An example of the dynamics of the model when (NA, NB, NC) = (3, 3, 3)
Extended Data Fig. 1a shows an example of the dynamics of the model when (NA, NB, NC) = (3, 3, 3). The model comprises the molar concentration of 6 compounds, Xj (1 ≤ j ≤ 6), and 60 functional groups, Mi (1 ≤ i ≤ 60). The initial conditions of the variables and the default values of the parameters are shown in Extended Data Table 4. The values of the parameters as random variables are shown in the csv files in Programs/FigS1/data (see also S.3.3). The results shown in Extended Data Fig. 1a can be reproduced by executing Programs/FigS1/FigS1.nb in Mathematica (I have confirmed that versions later than 9 work). “pardir” in FigS1.nb should be replaced with the absolute path to FigS1.nb.
Extended Data Fig. 1b shows the dynamics of the biomass of species 1-5 and −ΔrGi of reaction 1-5 in which none of the species exist at t = 0 and species 1-5 are added one-by-one to the system every 300 hours. Species 1 or 3 that harnesses a reaction with low −ΔrGº does not persist on its own in the redox network, whereas the presence of species 2, 4, and 5 allow species 1 and 3 to survive. After the invasion of species 1, its biomass gradually decreases because of the insufficient energy gain from reaction 1. After adding species 2, the reaction consuming A2 is microbially catalysed and proceeds. The decrease in the molar concentration of A2 increases −ΔrG1º, which leads to the growth of species 1. Species 3 also decreased its abundance when it invaded the system, but the removal of C1 by species 4 and the recycling of A compounds with species 5 eventually enabled species 3 to grow in the system. As shown here, the microbial catalysation of a reaction may not only decrease but increase the −ΔrG of other reactions, which might help the survival of microbes that harness reactions with increased −ΔrG (more precisely the second term of the Gibbs free energy change of reaction). If reactions are considered as niches, the catalysation of a reaction by a species can be regarded as niche construction for other species13,14. However, as the total free energy of the system decreases by microbial catalysation, the average −ΔrG of the system gradually decreases by the invasion of species. It should be noted that the combination of species that survive at a steady state depends on the order of the invasion of species, which implies the existence of multiple, stable, steady states (see S.4.2).
S.4.2 Simulation when a species is randomly and sequentially added to a system
To explore the possibility of the existence of multiple stability, we repeated the simulation where a species was added at each regular time step in random order until no further species could invade the system. If the microbial community to be established at the steady state depends on the invasion history, the system will have multiple, locally stable, steady states. The simulation was conducted in the following three steps:
Step 1: 
(i) Set all parameters then generate redox reactions and simultaneous equations. Make list = {1, 2, …, i, …, Nreac} and re-organise the order of the list items.
Step 2: 
(ii) Select the ith item in the list and set k to the ith item. Let the biomass of the kth species, Mk, be 10−6 at time t = 0. The biomass of other species are set to 0 at time 0. 
(iii) Execute numerical differentiation from t = 0 to T (T = 104).
(iv) If Mk(T) > 10−6, species k successfully invades the system. Create list2 = {k} that will store the identifier number of species that survive in the system at time t in the following procedures. If Mk(T) < 10−6, species k goes extinct. Return to (ii) and find a new species. Repeat (ii) to (iv) until a species that satisfies Mi(T) > 10−6 is found.
Step 3: 
(v) Select the ith item in the list that does not overlap the items in list2. Set k to the ith item. Let the biomass of the kh species be 10−6 at time nT: Mk(nT) = 10−6. 
(vi) Execute numerical differentiation from t = nT to (n+1)T.
(vii) If Mk((n+1)T) > 10−6, species i successfully invades the system, and go to the step (viii). If not, species i goes extinct. Return to (v) and find a new species until a species that satisfies Mk((n+1)T) > 10−6 is found. 
(viii) For the species in list2, if xm((n+1)T) < 10−6, species m is regarded as extinct and remove m from list2.
(ix) Add k to list2 and increment the time step n.
(x) Repeat (v) – (ix) until no further species can invade the system. The items in list2 give the identifier number of species that survived at a steady state.
We confirmed that, depending on the species selected at process (ii) or (v), the execution of numerical differentiation requires a long time or causes an error due to the stiff problem in differential equations. For this reason, we assumed that species i does not successfully invade the system when the execution time of numerical differentiation takes more than 10 minutes or an error occurs. The flowchart of Steps 2 and 3 are summarised in Extended Data Fig. 2a.
We iterated Steps 1 – 3 10 times when the system of (NA, NB, NC) = (4, 4, 4). We confirmed that there were cases where the simulation always led to the same microbial community (Extended Data Fig. 2b, left) or different stable microbial communities (Extended Data Fig. 2b, right). The multi-stability of this system will be investigated in future research.
S.4.3 Competitive outcomes between one solitary species and two consortium species 
We explored the competitive outcomes between a species that harnesses a reaction with high −ΔrGº, which we called the solitary species, and the consortium of two species that divided the reaction (with each group harnessing the divided reaction). For the system of (NA, NB, NC) = (2, 2, 2), there were six possible redox reactions in total and six functional groups harnessing each reaction. Because half of the redox reactions were endergonic reactions with ΔrG > 0, the other half could potentially supply species with energy. For simplicity, we assumed that there existed three species utilising the following reactions as their energy sources:
A1 + B2 → A2 + B1					(S4.1)
	B1 + C2 → B2 + C1					(S4.2)
	A1 + C2 → A2 + C1					(S4.3)
In this subsection, for simplicity, we refer to the reactions (S3.1), (S3.2), and (S3.3) as reactions (1), (2), and (3) and the species harnessing reactions (1), (2), and (3) as species 1, 2, and 3. The overall reaction of (1) and (2) became reaction (3), where element B behaved as a catalyst or an electron carrier. We selected the values of ΔfGº for all of the compounds to satisfy −ΔrGiº > 0, −ΔrG3º > −ΔrG1º, and −ΔrG3º > −ΔrG2º. In this case, species 1 and 2 together were consortium species and species 3 was the solitary species. The full model is: 
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[bookmark: _GoBack]When a single resource limits the growth of competing species, only the species that can survive at the lowest resource level when it grows alone excludes all other species (R*-rule)22–24. We expected that, similar to the R*-star rule, the competitive outcome between a solitary and consortium species might depend on the steady-state concentration of A1 and C2 when the solitary or consortium species grows alone. As the solitary and consortium species compete for A1 and C2, we let R* = A1*C2*, where * denotes the steady state. When the solitary species grows alone, R* is referred to as Rs*, and when the consortium species grows without the solitary species, R* is referred to as Rc*. If Rs*/Rc* > 1, the consortium species can lower the steady-state abundance of A1*C2* more than the solitary species.
The steady-state analysis was only carried out numerically. In the following simulation, the abiotic reaction rate constants of the reactions (1), (2), and (3) were set to 10−5. The maximum catalytic rates for species 1, 2, and 3 were set to 0.01. The inflow rate of compound Xj was fixed at 1/60000. The values of ΔfGº for the compounds Xj were ΔfGA1º = 205.27, ΔfGA2º = 2.08, ΔfGB1º = 100.00, ΔfGB2º = 16.55, ΔfGC1º = 1.34, and, ΔfGC2º = 43.69. For the other parameters, the default values listed in Extended Data Table 4 were used unless otherwise stated.
Extended Data Fig. 4a-c shows the existence of species at a steady state in response to changes in the supply of B1 and B2. For all (IB1, IB2) conditions under a given parameter condition, the solitary species can exist at a steady state when it grows alone (black regions in Extended Data Fig. 4a), whereas the consortium species cannot grow at relatively low (IB1, IB2) conditions because the growth of each splitter species can be limited by the availability of B1 or B2 (blue regions in Extended Data Fig. 4b). When all of the species invaded the system at t = 0, the solitary species was excluded by the consortium species when IB1 and IB2 are relatively higher (blue regions in Extended Data Fig. 4c). Extended Data Fig. 4d is the contour plot of Rs*/Rc* in which the solid black curve shows Rs*/Rc* = 1. Rs*/Rc* increased by increasing the product of IB1 and IB2 because the stimulated growth of the consortium species enabled them to scavenge more A1 and C2. The (IB1, IB2) conditions where the consortium species outcompeted the solitary species and where Rs*/Rc* > 1 was satisfied generally matched, but did not do so perfectly. This implies that the competitive outcome between the solitary and the consortium species followed a rule similar to the R*-rule.
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