
MICRA-Net: MICRoscopy Analysis Neural Network to solve
detection, classification, and segmentation from a single simple

auxiliary task

Supplementary Figures and Tables
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Supplementary Figure 1: Comparison of the coarse and precise segmentation on the modified MNIST dataset
for three different metrics a) F1-Score, b) intersection over union (IOU), and c) symmetric boundary dice
(SBD). Top row presents the metric as a function of the numbers of digits in the field of view (Density) while
bottom row shows the metrics performance in a per class manner. Solid lines and pale regions represents
the mean and standard deviation respectively.

1



1 2 3 4 5 10 15 20 Max
Density

0.0

0.2

0.4

0.6

0.8

1.0

F
1-

S
co

re

0 1 2 3 4 5 6 7 8 9
0.0

0.2

0.4

0.6

0.8

1.0

F
1-

S
co

re

Class Label

1 2 3 4 5 10 15 20 Max
Density

0.0

0.2

0.4

0.6

0.8

1.0

IO
U

0 1 2 3 4 5 6 7 8 9
0.0

0.2

0.4

0.6

0.8

1.0

IO
U

Class Label

1 2 3 4 5 10 15 20 Max
Density

0.0

0.2

0.4

0.6

0.8

1.0

S
B

D

0 1 2 3 4 5 6 7 8 9
0.0

0.2

0.4

0.6

0.8

1.0

S
B

D
Class Label

b d

UNet UNetdilation 5
UNetdilation 10 UNetdilation 25

c

a
U-Net U-Netdilation 5 U-Netdilation 10 U-Netdilation 25

Supplementary Figure 2: U-Net performance trained in a fully- and weakly-supervised fashion on the mod-
ified MNIST dataset. a) Segmentation examples taken from the testing dataset with an increasing dilation
of the MNIST binary digits to simulate weak supervision. The dilation are computed using a square struc-
turing element of {5, 10, 25} pixel. Metric performance b) F1-score, c) intersection over union (IOU), and
d) symmetric boundary dice (SBD) are assessed and compared for the different training scheme. Top and
bottom rows compare the per density and per class performance respectively. Solid lines and pale regions
represents the mean and standard deviation respectively.
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F1-score Coarse Precise U-Net U-Net5 U-Net10 U-Net25

Coarse - 1.6616× 10−6 1.8475× 10−15 1.0448× 10−11 0.0016 0.1724
Precise 1.6616× 10−6 - 2.0254× 10−12 3.6243× 10−6 1.4390× 10−4 7.3312× 10−8

U-Net 1.8475× 10−15 2.0254× 10−12 - 8.1778× 10−15 5.1211× 10−18 1.5283× 10−16

U-Net5 1.0448× 10−11 3.6243× 10−6 8.1778× 10−15 - 9.4503× 10−16 5.2542× 10−13

U-Net10 0.0016 1.4390× 10−4 5.1211× 10−18 9.4503× 10−16 - 2.2030× 10−5

U-Net25 0.1724 7.3312× 10−8 1.5283× 10−16 5.2542× 10−13 2.2030× 10−5 -

IOU Coarse Precise U-Net U-Net5 U-Net10 U-Net25

Coarse - 5.2650× 10−7 6.3229× 10−18 7.1191× 10−13 0.0013 0.1525
Precise 5.2650× 10−7 - 8.7200× 10−14 4.5055× 10−6 4.4700× 10−5 3.0355× 10−8

U-Net 6.3229× 10−18 8.7200× 10−14 - 2.4485× 10−15 1.3616× 10−19 5.1516× 10−19

U-Net5 7.1191× 10−13 4.5055× 10−6 2.4485× 10−15 - 3.6827× 10−13 3.7153× 10−14

U-Net10 0.0013 4.4700× 10−5 1.3616× 10−19 3.6827× 10−13 - 1.3703× 10−5

U-Net25 0.1525 3.0355× 10−8 5.1516× 10−19 3.7153× 10−14 1.3703× 10−5 -

SBD Coarse Precise U-Net U-Net5 U-Net10 U-Net25

Coarse - 1.1627× 10−5 2.7395× 10−17 1.5261× 10−6 0.0459 0.3958
Precise 1.1627× 10−5 - 5.7291× 10−13 0.1032 1.7367× 10−7 3.5163× 10−5

U-Net 2.7395× 10−17 5.7291× 10−13 - 8.3720× 10−20 3.2693× 10−19 1.2818× 10−17

U-Net5 1.5261× 10−6 0.1032 8.3720× 10−20 - 9.7111× 10−10 4.7895× 10−6

U-Net10 0.0459 1.7367× 10−7 3.2693× 10−19 9.7111× 10−10 - 4.5237× 10−3

U-Net25 0.3958 3.5163× 10−5 1.2818× 10−17 4.7895× 10−6 4.5237× 10−3 -

Supplementary Table 1: Comparison of the performance metrics (F1-score, IOU, and SBD) for MICRA-Net
(coarse and precise) and U-Net (weakly- and fully-supervised) segmentation on the modified MNIST dataset.
The p-values are obtained by a posthoc t-test following a one way ANOVA (pF1−score = 9.9543× 10−34,
pIOU = 8.1207× 10−39 and pSBD = 3.1213× 10−36). Color code: increase (green), decrease (red), and no
significant changes (black) of the metric scores.

a

b

Periodical lattice / Fibers

(-) / (-) (+) / (-) (+) / (+) (-) / (+)

Supplementary Figure 3: Representative examples of 256× 256 pixel crops sampled from the training set of
the F-actin dataset. We present in a) positive (+) and negative (-) crops, and in b) the associated polygonal
bounding box annotations. The F-actin periodical lattice is in green, while longitudinal fibers are depicted
in magenta. Each crop is 3.84× 3.84 µm.
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Supplementary Figure 4: Representative images of F-actin semantic segmentation on dendrites. From top
to bottom : 1) precise expert annotations, 2) MICRA-Net predictions, and 3) weakly-supervised U-Net
predictions. As shown, MICRA-Net can generate a semantic segmentation that is comparable to the expert
annotations for both structures. Scale bars 1µm.

Periodical lattice Fibers
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
et

ric
 P

er
fo

rm
an

ce

F1-score
IOU
SBD

M
IC
R
A
-N
et

U
-N
et

U
se
r-
S
tu
d
y

Supplementary Figure 5: F1-Score (blue), IOU (orange), and SBD (green) metrics for MICRA-Net (dark)
weakly-supervised U-Net (medium), and user-study (light) segmentation masks calculated using a precisely
annotated testing set of 50 images as a ground truth. No statistical differences is measured for F1-score and
IOU (one-way ANOVA, pF1-score = 0.1801 and pIOU = 0.4820) for both structures, while a significant increase
is noted in SBD for fibers over periodical lattice for all methods (one-way ANOVA : pSBD = 0.0023 and
post-hoc t-test : pSBD, MICRA-Net, pl-fibers = 0.0169, pSBD, U-Net, pl-fibers = 0.0234, pSBD, User-Study, pl-fibers =
0.0271). Error bars (black lines) correspond to standard deviation.
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Supplementary Figure 6: Comparison between the user-study and MICRA-Net on the segmentation of F-
actin nanostructures using user defined metrics. a) A significant decrease of the FTT metric is observed for
the MICRA-Net compared to the user-study implying in a smaller different with precise expert annotations,
and therefore a more accurate segmentation (t-test, p = 7.9298× 10−6). b) The pixel intensity distribution
metric for the user-study was calculated as the average histogram of annotated pixels for the 6 experts. A
statistical analysis revealed a significant difference in the number of low-intensity ([5, 9]) foreground pixels
values for the user-study when compared to the expert annotations, while no difference is observed for
MICRA-Net (Figure 3 and Supplementary Tab. 2 for p-values).

Pixel value 0 1 2 3 4 5 6 7 8 9

MICRA-Net 0.1304 0.1835 0.1671 0.12712 0.1720 0.1608 0.0998 0.0633 0.0910 0.0676
U-Net 0.2526 0.9271 0.2924 0.0989 0.0368 0.0169 0.0095 0.0044 0.0046 0.0027

User-Study 0.3484 0.3049 0.1751 0.1091 0.0667 0.0421 0.0274 0.0147 0.0204 0.0177

Supplementary Table 2: Comparison of the expert annotations distribution of intensity and the predicted
segmentation masks for the fiber metric. Only pixel values that are considered low-intensity are shown (see
Methods). The p-values are obtained from a t-test comparing the distribution of normalized pixel counts in
a given intensity bin. Color code: increase (red), and no significant changes (black) of the fiber metric. An
increase corresponds to a significant difference with the ground truth (precise expert annotations).
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Supplementary Figure 7: Evaluation of the segmentation performance of MICRA-Net compared to fully-
supervised, pre-trained U-Net using the same resampling method of images as Falk et al. [1] on the Cell
Tracking Challenge (CTC). While MICRA-Net obtained a high classification accuracy ((95.8± 0.4)%) on
the testing set, it minimally requires examples of negative crops to be able to extract enough context to
differentiate between the cells and background. This is demonstrated by the poor segmentation performance
on DIC-C2DH-HeLa and Fluo-N2DH-GOWT1 cell lines when no negative crops are extracted.

Cell line U-Net MICRA-Net

DIC-C2DH-HeLa 0.38 1.00
Fluo-C2DL-MSC 0.79 1.28

Fluo-N2DH-GOWT1 0.48 1.00
Fluo-N2DL-HeLa 1.29 2.15
PhC-C2DH-U373 1.30 1.30
PhC-C2DH-PSC 3.20 3.20

Supplementary Table 3: Scale factors used to resize the CTC cell lines images for MICRA-Net and fully-
supervised pre-trained U-Net training.

Dataset p-value

DIC-C2DH-HeLa 0.8544
Fluo-C2DL-MSC 0.9402

Fluo-N2DH-GOWT1 0.4031
Fluo-N2DL-HeLa 0.0062
PhC-C2DH-U373 0.0306
PhC-C2DL-PSC 0.0089

Supplementary Table 4: MICRA-Net and fully-supervised U-Net segmentation performance on the CTC
dataset. For half of the cell lines, when comparing U-Net and MICRA-Net, a significantly increased U-
Net segmentation performance is measured (red), while for the other half, the two networks obtain similar
performances. The p-values were calculated using resampling (see Methods) from 5 different network instan-
tiations.
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Dataset p-value

DIC-C2DH-HeLa 0.8116
Fluo-C2DL-MSC 0.0024

Fluo-N2DH-GOWT1 0.0179
Fluo-N2DL-HeLa 0.0075
PhC-C2DH-U373 0.0211
PhC-C2DL-PSC 0.0064

Supplementary Table 5: MICRA-Net and fully-supervised U-Net detection performance on the CTC dataset.
Compared with U-Net detection performance, MICRA-Net shows an improvement for 4 cell lines (green),
similar performance for 1 cell line (black), and an decrease for 1 cell line (red). The p-values were calculated
using resampling (see Methods) from 5 different network instantiations.
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Supplementary Figure 8: Schematic of the training and fine-tuning procedure for MICRA-Net on the P. vivax
dataset. a) Data preparation: 80/20 split of the provided training set for training and validation respectively,
keeping the testing set as is. b) Fine-tuning of MICRA-Net: uniform sample of {12, 24, 36} images from the
testing set. A 3-fold scheme: training on two folds and validating on a separate fold, enabling early stopping.
The average prediction of the 3 fine-tuned models (termed ensemble) was used for testing. All methods were
tested on the same testing set of 84 images. c) Training: 5 different models were trained on the original
dataset (Naive). For fine-tuning, the 3-fold scheme was repeated 5 times, one time for each of the 5 Naive
models as starting points, generating a total of 25 ensemble models.
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Condition (Number of images) Accuracy

Naive (-) (0.8± 0.1)%
Threshold (12) (0.88± 0.02)%
Threshold (24) (0.87± 0.02)%
Threshold (36) (0.87± 0.02)%
Linear (12) (0.893± 0.008)%
Linear (24) (0.888± 0.007)%
Linear (36) (0.890± 0.005)%

Linear + 4 (12) (0.909± 0.005)%
Linear + 4 (24) (0.904± 0.003)%
Linear + 4 (36) (0.905± 0.003)%

Linear + 3, 4 (12) (0.911± 0.003)%
Linear + 3, 4 (24) (0.904± 0.004)%
Linear + 3, 4 (36) (0.906± 0.003)%

All (12) (0.908± 0.005)%
All (24) (0.906± 0.003)%
All (36) (0.906± 0.003)%

Supplementary Table 6: Classification accuracy of the naive and fine-tuned models on their respective
testing set on the P. vivax dataset. The number of images used to adjust the thresholds or fine-tuning is
in parentheses. The accuracy is reported as the mean ± standard deviation. For the network configuration
Naive and Threshold {12, 24, 36} (see Methods) it is calculated from 5 network instantiations. For the fine-
tuned models, the scores from the ensembles that were fine-tuned from a single Naive model were averaged
generating 5 classification scores that are used for calculation.
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F1-score Linear (12) Linear (24) Linear (36) Linear + 4 (12) Linear + 4 (24) Linear + 4 (36) Linear + 3, 4 (12) Linear + 3, 4 (24) Linear + 3, 4 (36) All (12) All (24) All (36) Naive Threshold (12) Threshold (24) Threshold (36)

Linear (12) - 0.7972 0.2409 0.0043 0.0055 0.0062 0.0016 0.0020 0.0020 0.0021 0.0015 0.0043 0.0241 0.1812 0.1539 0.2185
Linear (24) 0.7972 - 0.3826 0.0086 0.0091 0.0096 0.0071 0.0032 0.0060 0.0068 0.0049 0.0093 0.0099 0.1183 0.1009 0.1578
Linear (36) 0.2409 0.3826 - 0.0040 0.0057 0.0059 0.0030 0.0011 0.0028 0.0024 0.0018 0.0026 0.0087 0.0166 0.0197 0.0522

Linear + 4 (12) 0.0043 0.0086 0.0040 - 0.0070 0.0078 0.0038 0.0033 0.0047 0.0048 0.0021 0.0068 0.0085 0.0066 0.0025 0.0045
Linear + 4 (24) 0.0055 0.0091 0.0057 0.0070 - 0.0312 0.9026 0.0725 0.0023 0.7719 0.0267 0.0036 0.0084 0.0083 0.0036 0.0051
Linear + 4 (36) 0.0062 0.0096 0.0059 0.0078 0.0312 - 0.0414 0.1689 0.0273 0.0549 0.7127 0.0137 0.0085 0.0065 0.0043 0.0049

Linear + 3, 4 (12) 0.0016 0.0071 0.0030 0.0038 0.9026 0.0414 - 0.0595 0.0042 0.7141 0.0124 0.0088 0.0043 0.0036 0.0010 0.0024
Linear + 3, 4 (24) 0.0020 0.0032 0.0011 0.0033 0.0725 0.1689 0.0595 - 0.0061 0.1468 0.1310 0.0105 0.0029 0.0025 0.0006 0.0015
Linear + 3, 4 (36) 0.0020 0.0060 0.0028 0.0047 0.0023 0.0273 0.0042 0.0061 - 0.0043 0.0043 0.5320 0.0049 0.0033 0.0008 0.0015

All (12) 0.0021 0.0068 0.0024 0.0048 0.7719 0.0549 0.7141 0.1468 0.0043 - 0.0537 0.0077 0.0064 0.0065 0.0022 0.0028
All (24) 0.0015 0.0049 0.0018 0.0021 0.0267 0.7127 0.0124 0.1310 0.0043 0.0537 - 0.0084 0.0038 0.0030 0.0006 0.0011
All (36) 0.0043 0.0093 0.0026 0.0068 0.0036 0.0137 0.0088 0.0105 0.5320 0.0077 0.0084 - 0.0066 0.0062 0.0029 0.0042
Naive 0.0241 0.0099 0.0087 0.0085 0.0084 0.0085 0.0043 0.0029 0.0049 0.0064 0.0038 0.0066 - 0.0933 0.1115 0.0954

Threshold (12) 0.1812 0.1183 0.0166 0.0066 0.0083 0.0065 0.0036 0.0025 0.0033 0.0065 0.0030 0.0062 0.0933 - 0.9359 0.8587
Threshold (24) 0.1539 0.1009 0.0197 0.0025 0.0036 0.0043 0.0010 0.0006 0.0008 0.0022 0.0006 0.0029 0.1115 0.9359 - 0.9287
Threshold (36) 0.2185 0.1578 0.0522 0.0045 0.0051 0.0049 0.0024 0.0015 0.0015 0.0028 0.0011 0.0042 0.0954 0.8587 0.9287 -

Supplementary Table 7: F1-score detection metric for the fine-tuned networks on the P. vivax dataset. The F-statistic from all groups was bootstrapped
resulting in a p-value of 0. A post-hoc resampling statistical test was performed to compare the distributions of each groups in a one-to-one manner
(see Methods). Color code: increase (green), decrease (red), and no significant changes (black) in the F1-score.
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Supplementary Figure 9: Evaluation of the segmentation performance of MICRA-Net on the P. vivax dataset.
a) Example of segmentation with three different IOU. The IOU were chosen according to the average of IOU
in b). Color code: True positive (green), false positive (yellow), and false negatives (magenta). b) The 3
common segmentation scores (F1-score, IOU, and SBD) were compared between the fine-tuned and Naive
models. The statistical analysis is presented in Supplementary Tab. 8. The presented scores are mean ±
95% confidence interval bootstrapped from the trained and fine-tuned models.
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F1-score Naive Linear (12) Linear (24) Linear (36) Linear + 4 (12) Linear + 4 (24) Linear + 4 (36) Linear + 3, 4 (12) Linear + 3, 4 (24) Linear + 3, 4 (36) All (12) All (24) All (36)

Naive - 0.0095 0.0042 0.0039 0.0192 0.0084 0.0091 0.1674 0.0269 0.0428 0.1895 0.0712 0.0213
Linear (12) 0.0095 - 0.7434 0.7344 0.0975 0.1521 0.1480 0.0085 0.0520 0.0512 0.0172 0.0313 0.1055
Linear (24) 0.0042 0.7434 - 0.9331 0.0364 0.0721 0.0791 0.0047 0.0128 0.0262 0.0049 0.0131 0.0534
Linear (36) 0.0039 0.7344 0.9331 - 0.0457 0.1007 0.0968 0.0035 0.0313 0.0338 0.0115 0.0190 0.0715

Linear + 4 (12) 0.0192 0.0975 0.0364 0.0457 - 0.4275 0.2661 0.0358 0.6065 0.6760 0.0399 0.2724 0.8483
Linear + 4 (24) 0.0084 0.1521 0.0721 0.1007 0.4275 - 0.8856 0.0065 0.1707 0.2480 0.0254 0.0875 0.5632
Linear + 4 (36) 0.0091 0.1480 0.0791 0.0968 0.2661 0.8856 - 0.0077 0.0411 0.1194 0.0073 0.0312 0.3635

Linear + 3, 4 (12) 0.1674 0.0085 0.0047 0.0035 0.0358 0.0065 0.0077 - 0.0343 0.0752 0.9831 0.1463 0.0272
Linear + 3, 4 (24) 0.0269 0.0520 0.0128 0.0313 0.6065 0.1707 0.0411 0.0343 - 0.9686 0.0797 0.4145 0.5521
Linear + 3, 4 (36) 0.0428 0.0512 0.0262 0.0338 0.6760 0.2480 0.1194 0.0752 0.9686 - 0.0944 0.4940 0.5785

All (12) 0.1895 0.0172 0.0049 0.0115 0.0399 0.0254 0.0073 0.9831 0.0797 0.0944 - 0.2135 0.0553
All (24) 0.0712 0.0313 0.0131 0.0190 0.2724 0.0875 0.0312 0.1463 0.4145 0.4940 0.2135 - 0.2313
All (36) 0.0213 0.1055 0.0534 0.0715 0.8483 0.5632 0.3635 0.0272 0.5521 0.5785 0.0553 0.2313 -

IOU Naive Linear (12) Linear (24) Linear (36) Linear + 4 (12) Linear + 4 (24) Linear + 4 (36) Linear + 3, 4 (12) Linear + 3, 4 (24) Linear + 3, 4 (36) All (12) All (24) All (36)

Naive - 0.0107 0.0159 0.0147 0.0973 0.0540 0.0145 0.6296 0.1416 0.1146 0.5647 0.1955 0.0620
Linear (12) 0.0107 - 0.7089 0.7211 0.0614 0.1067 0.1344 0.0018 0.0322 0.0440 0.0115 0.0355 0.1242
Linear (24) 0.0159 0.7089 - 0.9160 0.0321 0.0608 0.0676 0.0016 0.0111 0.0340 0.0037 0.0085 0.0561
Linear (36) 0.0147 0.7211 0.9160 - 0.0431 0.0578 0.0632 0.0020 0.0173 0.0315 0.0109 0.0163 0.0653

Linear + 4 (12) 0.0973 0.0614 0.0321 0.0431 - 0.4465 0.2202 0.0393 0.6931 0.9140 0.0651 0.4117 0.5429
Linear + 4 (24) 0.0540 0.1067 0.0608 0.0578 0.4465 - 0.7080 0.0111 0.2176 0.3453 0.0350 0.1433 0.9274
Linear + 4 (36) 0.0145 0.1344 0.0676 0.0632 0.2202 0.7080 - 0.0059 0.0613 0.1558 0.0068 0.0339 0.7059

Linear + 3, 4 (12) 0.6296 0.0018 0.0016 0.0020 0.0393 0.0111 0.0059 - 0.0346 0.0421 0.9614 0.1089 0.0120
Linear + 3, 4 (24) 0.1416 0.0322 0.0111 0.0173 0.6931 0.2176 0.0613 0.0346 - 0.8171 0.0928 0.6394 0.2773
Linear + 3, 4 (36) 0.1146 0.0440 0.0340 0.0315 0.9140 0.3453 0.1558 0.0421 0.8171 - 0.0834 0.5150 0.4615

All (12) 0.5647 0.0115 0.0037 0.0109 0.0651 0.0350 0.0068 0.9614 0.0928 0.0834 - 0.2094 0.0550
All (24) 0.1955 0.0355 0.0085 0.0163 0.4117 0.1433 0.0339 0.1089 0.6394 0.5150 0.2094 - 0.1811
All (36) 0.0620 0.1242 0.0561 0.0653 0.5429 0.9274 0.7059 0.0120 0.2773 0.4615 0.0550 0.1811 -

SBD Naive Linear (12) Linear (24) Linear (36) Linear + 4 (12) Linear + 4 (24) Linear + 4 (36) Linear + 3, 4 (12) Linear + 3, 4 (24) Linear + 3, 4 (36) All (12) All (24) All (36)

Naive - 0.0665 0.0446 0.0466 0.3973 0.7636 0.6791 0.0501 0.2301 0.3394 0.0631 0.1584 0.6486
Linear (12) 0.0665 - 0.5449 0.5658 0.0076 0.0070 0.0152 0.0092 0.0090 0.0180 0.0080 0.0087 0.0405
Linear (24) 0.0446 0.5449 - 0.8918 0.0074 0.0086 0.0079 0.0087 0.0085 0.0086 0.0085 0.0081 0.0302
Linear (36) 0.0466 0.5658 0.8918 - 0.0088 0.0084 0.0093 0.0055 0.0094 0.0083 0.0084 0.0083 0.0332

Linear + 4 (12) 0.3973 0.0076 0.0074 0.0088 - 0.0964 0.4840 0.0172 0.4120 0.7118 0.0576 0.2452 0.8397
Linear + 4 (24) 0.7636 0.0070 0.0086 0.0084 0.0964 - 0.7498 0.0074 0.0470 0.2947 0.0202 0.1216 0.7521
Linear + 4 (36) 0.6791 0.0152 0.0079 0.0093 0.4840 0.7498 - 0.0302 0.1968 0.4225 0.0583 0.1747 0.9009

Linear + 3, 4 (12) 0.0501 0.0092 0.0087 0.0055 0.0172 0.0074 0.0302 - 0.3277 0.1936 0.7907 0.5190 0.1573
Linear + 3, 4 (24) 0.2301 0.0090 0.0085 0.0094 0.4120 0.0470 0.1968 0.3277 - 0.7440 0.2827 0.7772 0.4555
Linear + 3, 4 (36) 0.3394 0.0180 0.0086 0.0083 0.7118 0.2947 0.4225 0.1936 0.7440 - 0.1665 0.5405 0.6670

All (12) 0.0631 0.0080 0.0085 0.0084 0.0576 0.0202 0.0583 0.7907 0.2827 0.1665 - 0.4252 0.1450
All (24) 0.1584 0.0087 0.0081 0.0083 0.2452 0.1216 0.1747 0.5190 0.7772 0.5405 0.4252 - 0.3625
All (36) 0.6486 0.0405 0.0302 0.0332 0.8397 0.7521 0.9009 0.1573 0.4555 0.6670 0.1450 0.3625 -

Supplementary Table 8: Statistical analysis on the comparison of the F1-score, IOU, and SBD segmentation metric for the fine-tuned networks for
the P. vivax dataset. The main results are reported in Figure 9. The F-statistic from all groups was bootstrapped resulting in a p-value of 0. A
post-hoc resampling statistical test was performed to compare the distributions of each groups in a one-to-one manner (see Methods). Color code:
increase (green), decrease (red), and no significant changes (black) in the metrics scores.
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Models Accuracy

2 : 1 (84± 1)%
1 : 1 (86.7± 0.8)%
1 : 2 (88± 1)%
1 : 5 (88.4± 0.9)%
1 : 8 (89± 1)%
1 : 16 (89.3± 0.6)%

Supplementary Table 9: Classification accuracy of the trained models using different positive-unlabeled ratio
on the scanning electron microscopy dataset. The accuracy is reported as the mean ± standard deviation
calculated from 5 network models.

F1-score 2 : 1 1 : 1 1 : 2 1 : 5 1 : 8 1 : 16

2 : 1 - 0.0289 0.0050 0.0043 0.0055 0.0074
1 : 1 0.0289 - 0.1352 0.0231 0.1314 0.0474
1 : 2 0.0050 0.1352 - 0.2760 0.6855 0.4546
1 : 5 0.0043 0.0231 0.2760 - 0.3985 0.7141
1 : 8 0.0055 0.1314 0.6855 0.3985 - 0.6663
1 : 16 0.0074 0.0474 0.4546 0.7141 0.6663 -

Supplementary Table 10: Statistical analysis on the comparison of the F1-score detection metric of MICRA-
Net for different positive-unlabeled ratios on the scanning electron microscopy dataset (Figure 6). The
F-statistic from all groups was bootstrapped resulting in a p-value of 0. A post-hoc resampling statistical
test was performed to compare the distributions of each groups in a one-to-one manner (see Methods). Color
code: increase (green), decrease (red), and no significant changes (black) in the F1-score.
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Supplementary Figure 10: Segmentation performance of MICRA-Net on the scanning electron microscopy
dataset. a) Original images (top) with their corresponding segmentation (bottom). Scale bars are 1 µm.
Color code : true positives (green), false positives (yellow), and false negatives (magenta). b) F1-score,
IOU, and SBD evaluated on the precisely testing set. Reported is the mean ± 95% confidence interval
from 5 network instantiations. A statistical difference was measured with resampling for SBD only (pSBD =
0.0059, pF1-score=0.1831, and pIOU=0.1845). The post-hoc resampling statistical test for SBD is reported in
Supplementary Tab. 11.
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2 : 1 1 : 1 1 : 2 1 : 5 1 : 8 1 : 16

2 : 1 - 0.0470 0.0210 0.0045 0.0358 0.6600
1 : 1 0.0470 - 0.2004 0.0541 0.7436 0.2544
1 : 2 0.0210 0.2004 - 0.7287 0.5321 0.0562
1 : 5 0.0045 0.0541 0.7287 - 0.3302 0.0203
1 : 8 0.0358 0.7436 0.5321 0.3302 - 0.1766
1 : 16 0.6600 0.2544 0.0562 0.0203 0.1766 -

Supplementary Table 11: Results from the statistical analysis comparison of the SBD segmentation metric
the different positive-unlabeled ratio on the scanning electron microscopy dataset. The main results are
reported in Figure 10. The F-statistic from all groups was bootstrapped resulting in a p-value of 0.0059. A
post-hoc resampling statistical test was performed to compare the distributions of each groups in a one-to-
one manner (see Methods). Color code: increase (green), decrease (red), and no significant changes (black)
in the F1-score.
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Supplementary Note 1: Modified MNIST Dataset

Parameters Values

Epochs 150
Batch size 64

Objective function Binary cross entropy with logits
Learning rate 0.01

Learning rate scheduler N/A
Minimal learning rate N/A
Overfitting criterion N/A
Data augmentation N/A

Supplementary Table 12: Training parameters of MICRA-Net for the modified MNIST dataset.

1.1 MICRA-Net segmentation and evaluation
To obtain the coarse segmentation, the procedure detailed in section 4.1 was followed. For each detected
digits, a minimal certainty of 30% (qualitatively chosen from the validation set) was imposed to lower the
rate of false-positive detection during segmentation and the argmax projection was used over the 10 classes
to avoid overlap between detections. The feature maps was extracted from the network using the procedure
explained in section 4.1 (Figure 2a-c). Precise binary segmentation maps were generated by applying a local
Otsu threshold [2] for each 8× 8 patch from the extracted coarse segmented region, which resulted in more
accurate segmentation maps (Figure 2d,e & Supplementary Fig. 1). A bounding box of 28 pixels centered
on each digit was used to compute the metrics, allowing a more balanced ratio between foreground and
background pixels. The evaluated metrics are shown in Figure 2e & Supplementary Fig. 1.

1.2 Baseline architecture
For each network (fully-supervised and {5, 10, 25} dilation dataset), the U-Net architecture was trained
from scratch, keeping all hyper-parameters constant in all instances. U-Net architecture: Each step in the
contracting path consists of two sets of 3 × 3 convolutional layers, followed by a batch normalization, and
a 2 × 2 max-pooling. The number of filters in each layers was doubled after each contraction and are of
size {16, 32, 64, 128}. The expanding path was symmetrical to the contracting path, but a 2× 2 transposed
convolution (stride of 2) was used to increase the layer size. Skip links are used to propagate information
from higher layers. A final 1 × 1 convolutional layer was used to output the 11 classes segmentation map.
The maximal argument along the class axis of the output was used as the semantic segmentation of the
input image. ReLU activation was used throughout the network.

1.3 Baseline training procedure
The U-Net was trained from scratch using the ADAM optimizer with default values and with a learning
rate 0.001 for 150 epochs. Binary cross entropy with logits was used as the loss to minimize. The model
generalizing the most on the validation dataset was kept for testing. The U-Net was trained to output
segmentation of 11 classes (all digits and background) resulting in a semantic segmentation of the images
in the modified MNIST dataset. Since this architecture requires ground truth segmentation, the digits were
used as binary masks to train U-Net in a fully-supervised manner (Figure 2f & Supplementary Fig. 2). This
fully-supervised training consists in a high-standard baseline since U-Net has access to information that
is not available in a weakly-supervised setting. For a more realistic baseline, the U-Net was also trained
with weak annotations. To this end, the binary ground truth contours from the training dataset were
dilated with an increasing size of the square structuring element ({5, 10, 25} pixel), simulating an annotator
contouring the images with coarse annotations, while still evaluating against undisturbed images (Figure 2f
& Supplementary Fig. 2).
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Supplementary Note 2: F-actin Dataset

Parameters Values

Epochs 250
Batch size 32

Objective function Binary cross entropy with logits with weights
Learning rate 0.001

Learning rate scheduler - Reduce factor : 10
- Validation reduction : <0.01
- Patience : 10 epochs

Minimal learning rate 1× 10−5

Overfitting criterion - Difference (validation - train) : 0.1
- Patience : 10 epochs

Data augmentation - Horizontal flip
- Vertical flip
- Intensity scale
- Gamma adaptation

Supplementary Table 13: Training parameters of MICRA-Net for the F-Actin dataset.

2.1 MICRA-Net weighted objective function
To account for data imbalance, a weighted binary cross entropy with logits was used:

l(ŷ, y) = L = {l1, ..., lN}>, ln = pnyn · log σ(ŷn) + (1− yn) · log σ(1− ŷn), (1)

where pn is the positive weight associated with class n. The positive weights during training were set to 3.3
and 1.6 for the periodical lattice and fibers respectively.

2.2 MICRA-Net segmentation and evaluation

The extracted feature map was globally thresholded to the 80th percentile of the intensity of the image
following a Gaussian blur with σ = 1. These parameters were selected based on a qualitative evaluation
on the validation dataset. Data imbalance (between the number of foreground and background pixels) was
accounted for by calculating the metrics inside the dendritic mask therefore reducing the number of negative
pixels

2.3 Baseline architecture
The baseline architecture is a weakly-supervised U-Net trained using polygonal bounding boxes as annota-
tions. The architecture is the same as in Lavoie-Cardinal et al. [3]. It is trained to output two independent
segmentation maps, i.e. periodical lattice and fibers.

2.4 Baseline training procedure and evaluation
The baseline was trained as in Lavoie-Cardinal et al. [3]. The proper thresholds to generate binary segmen-
tation maps for both structures was extracted from a receiver operating characteristic (ROC) curve on the
validation dataset. As for MICRA-Net, the segmentation metrics were calculated inside the dendritic mask.
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Parameters Values

Epochs 700
Batch size 48

Objective function Binary cross entropy with logits
Learning rate 1× 10−4

Learning rate scheduler - Reduce factor : 2
- Validation reduction : <0.01
- Patience : 20 epochs

Minimal learning rate 1× 10−5

Overfitting criterion - Difference (validation - train) : 1
- Patience : 10 epochs

Data augmentation - Horizontal flip
- Vertical flip
- Random rotations (0-360◦)
- Intensity scale
- Gamma adaptation
- Shearing

Supplementary Table 14: Training parameters of MICRA-Net on the Cell Tracking Challenge dataset.

Supplementary Note 3: Cell Tracking Challenge Dataset

3.1 MICRA-Net training procedure
The number of generated crops from each cell line can greatly vary which could introduce imbalance bias
between cell lines. On the other hand, the number of annotated images is more balanced than the number
of generated crops from each cell lines. Hence, at the beginning of each epoch between 2 and 7 crops were
randomly sampled from each annotated image in the dataset thereby creating a subset of crops that is
balanced in terms of cell lines. The sampled subset of crops were randomly assigned to a mini-batch for
optimization.

3.2 MICRA-Net segmentation and detection
MICRA-Net was trained on two different version of the dataset: i) 256×256 pixel, and ii) 128×128 pixel. For
the former, we computed a dense prediction of the whole image. To avoid undesired edge effects, we padded
each testing image using a symmetric padding and removed a 10 pixel border from the prediction. Hence, the
pixel step between each predictions was 236 in both direction. We applied a Gaussian blur on the extracted
feature map and used Otsu thresholding [2] to generate the segmentation mask. For latter, we used the fully-
convolutional properties of MICRA-Net and computed a dense prediction using 1024×1024 pixel. Again, to
avoid undesired edge effects we padded and cropped the border of the prediction, resulting in a pixel step of
1004 pixels. We computed the dense feature map of each testing images. We used Otsu thresholding for DIC-
C2DH-HeLa, Fluo-N2DL-HeLa, PhC-C2DH-U373, and PhC-C2DL-PSC and used triangle thresholding for
Fluo-C2DL-MSC and Fluo-N2DH-GOWT1. We noted that for the Fluo-N2DL-HeLa cell line, the network
extracted edges of cells instead of the cell itself. For this reason, we inverted the generated segmentation
map. We applied post-processing on the generated masks. We filled small holes (< 100×100 pixel), removed
small objects (< 25× 25 pixel), and applied binary erosion. We used a watershed algorithm on the resultant
segmentation to split merged cells [4] followed by 10 iterations of consecutive binary erosion and dilation
with a disk structuring element for smoothing. All operations were qualitatively assessed on the validation
dataset.

To obtain the localization of detected objects, we used the centroid of each detected cells in each image.
At inference, we used a maximal distance of 50 pixels for MICRA-Net to associate predicted objects with
ground truth objects.
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3.3 Baseline architecture
We used the pre-trained fully-supervised U-Net provided by Falk et al. [1]. This implementation of U-Net was
pre-trained on the Cell Tracking Challenge dataset and other in-house datasets to differentiate between the
cells and the background. We first converted the Caffe model in PyTorch. We essentially used the original
architecture [1], but with 0-padding in the convolutional steps in order to output a segmentation map that
has the same shape as the input image. To maintain similar classification task between MICRA-Net and
U-Net we used 7 channels (6 cell lines and background) from which we take the argmax to generate a class
specific segmentation.

3.4 Baseline training procedure and evaluation

For training, we used the Adam learning optimizer with a learning rate of 1× 10−4 and default parameters.
We reduced the learning rate by a factor of 2 when the validation did not reduce by more than 0.005 for
the past 50 epochs, but kept a minimal learning rate of 1× 10−5. We used early stopping if the difference
between the validation and training loss was higher than 1 for the last 10 epochs. We kept the model with the
best generalization properties on the validation dataset for testing. A weighted cross-entropy loss was used
as in Falk et al. [1] to help with the separation of cells. Briefly, we increased the weights between adjacent
cells and increased the weights on cells compared to background. We trained the network for 1000 epochs
with a batch size of 16. The size of the input crops were set at 256× 256 pixel and the pixel step was set at
192 pixels. Similarly to MICRA-Net, we did not provide all crops in a single epoch as it introduced biases
towards cell lines with more crops. We used the same data augmentation procedure than MICRA-Net.

At testing phase, we generated a dense prediction of the network with a sliding window of 256×256 pixel
and a pixel step of 256 pixels. The argmax generated the semantic segmentation map. As in Falk et al. [1]
we did not use any post-processing of the generated segmentation maps since the U-Net was trained with an
objective function that i) encourages filled structures, and ii) increases the weights between adjacent cells to
effectively split merged cells. The localization of each detected cells was obtained by calculating the centroid
of the binary masks. We used a maximal distance of 30 pixels to calculate the association of objects.

Supplementary Note 4: P. vivax Dataset

Parameters Values

Epochs 1200
Batch size 64

Objective function Binary cross entropy with logits
Learning rate 1× 10−4

Learning rate scheduler - Reduce factor : 2
- Validation reduction : <0.005
- Patience : 50 epochs

Minimal learning rate 1× 10−5

Overfitting criterion - Difference (validation - train) : 1
- Patience : 10 epochs

Data augmentation - Horizontal flip
- Vertical flip
- Random rotations (0-360◦)
- Intensity scale
- Shearing

Supplementary Table 15: Training parameters of MICRA-Net on the P. vivax dataset.
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4.1 MICRA-Net training procedure
The dataset was highly unbalanced towards uninfected red blood cells. Hence, we adapted the training
procedure to balance the number of positive (infected red blood cells) and negative (background or uninfected
cells) crops. Instead of training with all crops from an image at each epoch, we randomly sampled between
5 and 8 crops per images. The sampled crops were then randomly assigned to a mini-batch. We balanced
the number of positive and negative crops by sampling an uninfected cell (or background) with a probability
of 10%.

4.2 MICRA-Net segmentation
We applied a Gaussian blur with a sigma parameter of 3 and thresholded the resultant feature map at the
80th percentile. We used small post-processing operations on the segmentation maps. We removed small
holes (< 50× 50 pixel) from the generated binary masks and kept the most prominent object in cases where
multiple infected cells were present in the extracted crops. This was necessary to evaluate the performance
only on the subset of cells that were precisely annotated to generate the testing set. To do so, we selected
the object which contained the maximal intensity from the extracted feature map of MICRA-Net. This
procedure was qualitatively evaluated on the validation set.

4.3 MICRA-Net detection
We used a sliding window of size 256× 256 pixel with a 32 pixels step and assigned the sigmoid transformed
value to a 256× 256 pixel crop in the image. We then calculated the average prediction at each pixel of the
image and located all maxima using the peak_local_max function from the Scikit-Image Python library [5].
From these predicted positions and their associated probability, we generated a precision-recall curve to
optimize the detection level of a given model on the validation set. We used a maximal distance of 128 pixels
to associate detected and ground truth objects.

4.4 MICRA-Net fine-tuning procedure
To fine-tune MICRA-Net, we randomly selected {12, 24, 36} images from the testing dataset. It is important
to note that the 12 images were a subset of the 24 images, and the 24 images a subset of the 36 images (see
Supplementary Fig 8). We tested several approaches to fine-tune MICRA-Net and compared their results
on the resultant testing set (84 images). The approaches included i) adjusting the detection threshold
[Threshold ], fine-tuning the ii) linear layer [Linear ] iii) linear layer and depth 4 [Linear + 4 ] iv) linear layer
and depths 3 and 4 [Linear + 3, 4 ], and v) all [All ] layers. To adjust the detection threshold, we used the
5 trained models and adjusted the detection threshold on the {12, 24, 36} sampled images. For fine-tuning,
we used a 3-fold training procedure to generate a small validation set for early stopping and to reduce the
probability of over-fitting of the model (see Supplementary Fig. 8). We used Adam as the optimizer with a
learning rate of 1× 10−6 and trained for 100 epochs. We kept the state of the model generalizing the most
on the validation set for each fold. The objective function used was binary cross entropy with logits. We
did not reduce the learning rate of the models as in the original training phase. At inference, we used an
ensemble model of the 3 trained models from each fold and averaged their predictions. We repeated the
3-fold training 5 times from each of the 5 naive models as base model, generating a total of 25 ensemble
models (see Supplementary Fig. 8). We applied the same procedure for the detection and segmentation task
as described above.

Supplementary Note 5: Scanning Electron Microscopy Dataset

5.1 MICRA-Net training procedure for SEM segmentation
We compared different Positive-Unlabeled (PU) ratios [6] for training {2 : 1, 1 : 1, 1 : 2, 1 : 5, 1 : 8, 1 : 16}.
We randomly assigned negative crops according to the PU ratio. The negative crops of a specified PU ratio
are a subset of the next higher PU ratio. Since, the extracted crops are larger in size (1024 × 1024 pixel)
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Parameters Values

Epochs 600
Batch size 16

Learning rate 1× 10−4

Objective function Binary cross entropy with logits
Learning rate scheduler - Reduce factor : 2

- Epochs : 50, 200, 300
Minimal learning rate 1× 10−5

Overfitting criterion - Difference (validation - train) : 1
- Patience : 10 epochs

Data augmentation - Horizontal flip
- Vertical flip
- Random rotations (0-360◦)
- Intensity scale
- Gamma adaptation
- Shearing
- Elastic transform
- Random position

Supplementary Table 16: Training parameters of MICRA-Net on the Scanning Electron Microscopy dataset.

than the training size (512× 512 pixel), we could use random position sampling. This method increased the
effective number of crops and served as another data augmentation technique.

5.2 MICRA-Net Segmentation
We applied a Gaussian blur with a sigma parameter of 5 and thresholded the resultant feature map at the
90th percentile. We used small post-processing operations on the segmentation maps. We removed small
holes (< 45 × 45 pixel) from the generated binary masks and kept only the most prominent object for the
same reason explained in P. vivax dataset. To do so, we selected the object which contained the maximal
intensity from the generated feature map of MICRA-Net. This procedure was qualitatively evaluated on the
validation set.

5.3 MICRA-Net Detection
A sliding window of size 512× 512 pixel with a 128 pixels step was used to assign the sigmoid transformed
value to a 512 × 512 pixel crop. We averaged the predictions at each pixel of the image and located all
maxima using the peak_local_max function from the Scikit-Image Python library [5]. Using these predicted
positions and their associated probability, we could generate a precision-recall curve to optimize the detection
level of a given model on the validation set. We used a maximal distance of 512 pixels to associate detected
and ground truth objects.

References

[1] Thorsten Falk, Dominic Mai, Robert Bensch, Özgün Çiçek, Ahmed Abdulkadir, Yassine Marrakchi,
Anton Böhm, Jan Deubner, Zoe Jäckel, Katharina Seiwald, et al. U-net: deep learning for cell counting,
detection, and morphometry. Nature Methods, 16(1):67, 2019.

[2] Nobuyuki Otsu. A threshold selection method from gray-level histograms. IEEE Transactions on Systems,
Man, and Cybernetics, 9(1):62–66, 1979.

[3] Flavie Lavoie-Cardinal, Anthony Bilodeau, Mado Lemieux, Marc-André Gardner, Theresa Wiesner,
Gabrielle Laramée, Christian Gagné, and Paul De Koninck. Neuronal activity remodels the f-actin based

19



submembrane lattice in dendrites but not axons of hippocampal neurons. Scientific Reports (Nature
Publisher Group), 10(1), 2020.

[4] Serge Beucher and Fernand Meyer. The morphological approach to segmentation: the watershed trans-
formation. Mathematical morphology in image processing, 34:433–481, 1993.

[5] Stefan Van der Walt, Johannes L Schönberger, Juan Nunez-Iglesias, François Boulogne, Joshua DWarner,
Neil Yager, Emmanuelle Gouillart, and Tony Yu. scikit-image: image processing in python. PeerJ, 2:
e453, 2014.

[6] Jessa Bekker and Jesse Davis. Learning from positive and unlabeled data: a survey. Mach. Learn., 109
(4):719–760, 2020.

20


	Modified MNIST Dataset
	MICRA-Net segmentation and evaluation
	Baseline architecture
	Baseline training procedure

	F-actin Dataset
	MICRA-Net weighted objective function
	MICRA-Net segmentation and evaluation
	Baseline architecture
	Baseline training procedure and evaluation

	Cell Tracking Challenge Dataset
	MICRA-Net training procedure
	MICRA-Net segmentation and detection
	Baseline architecture
	Baseline training procedure and evaluation

	P. vivax Dataset
	MICRA-Net training procedure
	MICRA-Net segmentation
	MICRA-Net detection
	MICRA-Net fine-tuning procedure

	Scanning Electron Microscopy Dataset
	MICRA-Net training procedure for SEM segmentation
	MICRA-Net Segmentation
	MICRA-Net Detection


