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Supplementary Figures and Legends 11 

 13 

Supplementary Figure 1. Deep convolutional neural network architecture. a, Schematic of flow of ten-14 

sors through deep convolutional neural network. Convolutional blocks show kernel shapes and input/output 15 

dimensions of feature dimension, starting from 3 (RGB image), expanding to 256 during hourglass blocks, 16 

and ending in 11 for intermediate and final outputs (4 body point targets, 7-part affinity fields). In the drawing, 17 

the hourglass stack is repeated 7 times (the default number), but we find that repeating only 3 times is suffi-18 

cient for our purpose (see following supplementary figures). Full implementation details (e.g., including stride, 19 

padding, bias, etc.) are included in supplementary code. b, Schematic of a single residual block. c, Schematic 20 

of a single hourglass block. Upsampling (green, nearest neighbor) and downsampling (orange, by max pooling, 21 

both a factor of 2) happens along 2D image space (height/width). d, Shapes of tensors flowing through hour-22 

glass block. Along bottom path, feature dimension stays constant, but image dimensions (height/width) are 23 

increasingly downsampled, and then upsampled again. After each upsample, tensors are merged with skip 24 

connections (paths above). e, The hourglass-like shape that gives name to the network architecture.  25 



 
 

 

Supplementary Figure 2. GUIs for labeling of training data for the neural network and for viewing 27 

tracked data. a, For training the network to recognize body parts, we must generate labeled frames by manual 28 

annotation. For each frame, 1-5 body parts are labeled on the implanted animal and 1-4 body parts on the 29 

partner animal. This can be done with any annotation software; we used a modified version of the free ‘Deep-30 

PoseKit-Annotator’ (Graving et al., 2019) (https://github.com/jgraving/DeepPoseKit-Annotator/) included in 31 

the supplementary code. This software allows easy labeling of the necessary points, and pre-packages training 32 

data for use in our training pipeline. Body parts are indexed by i/p for implanted/partner animal (‘nose_p’ is 33 

the nose of the partner animal, for example). b, GUI for viewing and quality control of tracked behavior (raw 34 

data, body skeleton, ellipsoid surfaces and time trajectory) running in an interactive Jupyter notebook. 35 

https://github.com/jgraving/DeepPoseKit-Annotator/


 
 

 

Supplementary Figure 3. Augmentation pipeline for network training. a, Flowchart of augmentation 37 

pipeline used to generate distorted frames during network training. b, Examples of distorted labeling frames 38 

generated by augmentation pipeline, as well as corresponding body part targets and affinity fields used dur-39 

ing training.   40 
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Supplementary Figure 4. Network training history and performance as a function of hourglass stacks. 43 

a, Loss history as a function of training epoch, for networks with 1, 2, 3, 6, and 9 hourglass stacks. b, same 44 

as panel a, but as a function of training time. c, Learning rate schedule (automatically adjusted) as a function 45 

of training epoch. d, Test loss, as a function of training epoch, for networks with 1, 2, 3, 6, and 9 hourglass 46 

stacks. Beyond 3 stacks, there was little improvement in the training loss. e, Relative inference time with no 47 

batching (since the batch size will have to be smaller for a network with more stacks – for real use, we used 48 

batched inference).  49 



 
 

 

Supplementary Figure 5. Network sensitivity and precision as a function of hourglass stacks. a, Num-51 

ber of ‘missed’ keypoints, as a function of number of network stacks, after full training, for ear, nose and tail 52 

keypoints (the three rows). We count a hand-labeled body keypoint as found by the network as ‘detected’ if 53 

it was within 5 pixels of a keypoint suggested by the network.  b, Same as a, but counting the number of 54 

‘false detections’. We defined a false detection, as a keypoint suggested by the network, which was more 55 

than 5 pixels from a corresponding hand-labeled keypoint. c, Plots of false alarm rate (p(false alarm)) as a 56 

function of detected rate (p(detected)) for all keypoints in the test data, plotted for different probability cut-57 

offs (from 0.1 to 0.9 in 0.1 steps, indicated by dots on the curves). d, Shortest distance from a proposed key-58 

point location to a hand-labeled keypoint location (d_match), across images in the test data, for ear, nose 59 

and tail keypoints (rows) as a function of image stacks (columns).   60 



 
 

 

Supplementary Figure 6. Performance of the network, with and without different types of augmenta-62 

tion. a, Training loss as a function of training epoch, for networks with all augmentation (‘3 stacks’), with-63 

out the artificially generated laser dot pattern (‘no SNOW’), and without any augmentation (‘no AUG’). b, 64 

Loss on the test data, as a function of training epoch. c, Percentage of missed keypoints, with/without differ-65 

ent levels of augmentation. d, Percentage of falsely detected keypoints, with/without different levels of aug-66 

mentation. e, Plots of false alarm rate (p(false alarm)) as a function of detected rate (p(detected)) for all key-67 

points in the test data, plotted for different probability cutoffs (from 0.1 to 0.9 in 0.1 steps, indicated by dots 68 

on the curves), across the three levels of augmentation. The artificially-generated laser dot pattern does not 69 

generally improve detection of ears and noses, but makes a substantial difference in the detection of the tail 70 

keypoints.  71 



 
 

 

Supplementary Figure 7. Performance of the network, with and without part affinity fields (PAFs). a, 73 

Training loss as a function of training epoch, for networks with/without PAFs. b, Loss on the test data, as a 74 

function of training epoch. c, Percentage of missed keypoints, with/without PAFs.  d, Percentage of falsely 75 

detected keypoints, with/without PAFs. e, Plots of false alarm rate (p(false alarm)) as a function of detected 76 

rate (p(detected)) for all keypoints in the test data, plotted for different probability cutoffs (from 0.1 to 0.9 in 77 

0.1 steps, indicated by dots on the curves), with/without PAFs. Note that contrary to expectation, inclusion of 78 

PAFs usually did not improve the keypoint detection performance, over a network with an identical dimen-79 

sionality but where the network was not required to learn PAF representation. The network without PAFs had 80 

a similar architecture to the network with PAFs. The representation without PAFs led to a lower overall loss 81 



 
 

 

and a lower number of false alarm and missed detections. As the performance differences with/without forcing 82 

the PAFs are minimal, our code imposes the PAFs by default.  83 
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Supplementary Figure 8. Loss function calculation details. a, Shortest distance to surface of an ellipsoid,  86 

𝑑𝑑, and our approximation, 𝑑̃𝑑. b, 𝑑̃𝑑 is a good approximation to 𝑑𝑑. Color map, value of 𝑑𝑑/𝑑̃𝑑. White line, ellip-87 

soid surface. c, The loss function, ρ, associated with the pointcloud is the mean absolute error of the distance 88 

estimate, truncated at +/- 3.0 cm d, Pixel density of the point-cloud depends on distance to the fixed-resolution 89 

depth cameras. e, Pixel density is inversely proportional to the square of the distance to depth camera. f, 90 

Overlap barrier spheres (implant sphere and spheres centered on the body ellipsoids with a radius equal to the 91 

minor axis). g, Example of mirror symmetric body position (side-by-side, facing same direction), resulting in 92 

ambiguity in animal identity if only one frame is considered. h, To include the context of previous frames, we 93 

add an overlap loss penalty (similar to f) between each mouse and the position of the interaction partner in 94 

the previous frame. In panel g, right, we would add a penalty term to the particle representing joint body pose. 95 

In contrast, in panel g, left, this penalty is zero as there is no overlap with the position of the conspecific in 96 

the previous frame.  97 



 
 

 

Supplementary Figure 9. Automatic initialization procedure for the tracking algorithm. a, Example 99 

starting frame, where the mice are too close together for the automatic initialization. b, By scanning forward 100 

in the 3D video, the algorithm finds a frame, where both the “head cluster” (cluster of detected ear/nose points) 101 

and the “tail cluster” (cluster of detected tail points) are separated by a threshold distance. The algorithm uses 102 

an average of the head, tail and implant clusters to initialize the tracking procedure (initial guess shown by 103 

the black/brown lines, top row of plots shows the pointcloud data, bottom row of points shows only the initial 104 

guesses). 105 



 
 

 

Supplementary Figure 10. Quasi-random particle filter exploration strategy. a, Left, 3D plot. Middle, 107 

2D projection plots of three random variables, drawn from independent uniform distributions. Points in 3D 108 

space do not fill space well; in the 2D projections, there are squares (i.e., full rows, columns and pipes) of the 109 

3D space not sampled at all (dashed lines). Right, partitioning space in 20%-cubes (green lines), only 76.8 % 110 

of cubes are occupied. b, Same as a, but variables are drawn from quasi-random Sobol sequence (Sobol, 111 

1967). Points are more evenly dispersed in space, and 90.4% of all 20%-cubes are sampled. c, Mean discrep-112 

ancy as function of sample number, for 3-dimensional (like panels a,b) uniform random sequence and a Sobol 113 

sequence, calculated across 100 random sequences. The Sobol sequences have a lower discrepancy, i.e. sam-114 

ple more regions of space. d, Same as c, but for 17-dimensional variables (like our joint body posture particles). 115 

116 
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Supplementary Figure 11. Particle filter convergence and examples of tracked behavioral data. a, Ex-118 

ample of manual initialization of the tracking algorithm, by manual clicking of approximate locations of the 119 

two animals (light green dots, lines) on a top-down view of the behavioral arena (dark green dots, shade in-120 

dicates z-coordinate). b, 3D view of initialized body model (top) and fitted body model (bottom) after run-121 

ning tracking algorithm on the frame. Black wireframe model, implanted mouse; brown wireframe model, 122 

partner animal. c, Particle filter state across 9 iterations of the fitting algorithm. After iteration 2, we shrink 123 

(‘anneal’) the exploration space with each step. d, Loss function values and size of filter search space across 124 

filter iterations. e, Tracked data (light green) and running adaptive estimate (dark green) across 600 frames 125 

(10 s). f, Data and fitted joint posture model, across 10 seconds of behavior. Trailing lines, location of hip 126 

ellipsoid center in the last 10 seconds.   127 



 
 

 

Supplementary Figure 12. State space filtering of tracked body models. a, Estimated 3D locations of body 129 

model surfaces (wireframes, left) and skeletons (dots and lines, right) for an example frame. b, Fitted joint 130 



 
 

 

pose parameters for the two mouse body models (left, 100 s snippet) and corresponding 3D coordinates of the 131 

body skeleton points, and the spine scaling, s, for the implanted mouse (right, same 100 s). c, Raw 3D rotation 132 

angle of the nose ellipsoid of the implanted animal (axis-angle representation), recalculated 3D rotation angles 133 

from the filtered skeleton points, and final 3D rotation angles after quaternion smoothing (note the smoothing 134 

out of noise, indicated by arrow). d, Recalculated c_nose and c_tail from the smoothed 3D rotations and 135 

smoothed spine scaling. e, Example frame before (left) and after state space filtering of the tracked data (right).    136 



 
 

 

Supplementary Figure 13. Implant-to-nose distance demonstrates that there are no swapped identities. 138 

a, Schematic showing two common errors in tracking algorithms: Swapped identities and swapped directions. 139 

When the mice approach each other, their point clouds will merge. Because resolution and frame rates are 140 

limited, it can be hard to estimate body postures in this configuration. For example, if the tracking algorithm 141 

is not properly spatiotemporally regularized, the algorithm might mistakenly swap mouse identities, such that 142 

the mice appear to be running backwards (shown in bottom row). Direction swaps and identity swaps can also 143 

happen independently. For example, when mice are allogrooming, or passing over/under each other, identities 144 

might swap, but both mice can still appear to run normally with no apparent errors. Conversely, when a mouse 145 

is self-grooming, their point-cloud essentially resembles a ball, and when they start moving again, it may not 146 

be clear if they are ‘really’ moving forward or backwards. b, For all frames, we calculated the distance be-147 

tween implant key-points and the centroid of both nose ellipsoids. c, If there is an identity swap of the mice, 148 



 
 

 

this is will be evident in the distance between the implant key-points and the head of both mice. In correct 149 

tracking (top row), implant body model always follows the same mouse. In tracking with mistakes (bottom 150 

row), implant will switch from being close to one mouse, to being close to the other mouse. d, The head-to-151 

head (nose-centroid-to-nose-centroid) distance for the two mice, across the session. The mice often closely 152 

interact (low head-to-head distance), allowing for potential identity swaps. e, Distance between implant key-153 

points and the nose centroid for both mice, across the session. The implant key-points are always near mouse0 154 

and there are no identity swaps. f, The actual implant-key-point to implant-skeleton-point distance for mouse 155 

0, across the session, is lower than the distance to the centroid of the nose ellipsoid.  156 



 
 

 

Supplementary Figure 14. Calculation of movement speed in egocentric coordinates. a, Running be-158 

havior of the two mice (centroid of the hip ellipsoid) across the behavioral session, shown in 2D (top-down 159 

view) and 3D. b, Running speed decomposed into two components, ‘forward speed’ (v_fwd, projected onto 160 

the orientation of the hip ellipsoid) and ‘left speed’ (v_orthog, the orthogonal component). c, In correct 161 

tracking (top row), running bouts will have positive forward speed. If there is a mistake in the tracking (bot-162 

tom row), such that the mouse body model has switched direction, the mouse will appear to be ‘running 163 



 
 

 

backwards’. d, Top to bottom: The x,y,z-coordinates of the position (c_hip) of the mouse at each tracked 164 

frame, the change in position between frames, the forward speed, and the left speed. The four rows are re-165 

peated for both mice. There are no direction swap mistakes, and across the whole session, both mice only 166 

displayed bouts of forward running (confirmed by visual inspection of raw video).  167 



 
 

 

Supplementary Figure 15. Manual error checking. a, By manual inspection of 500 frames, we detected 169 

one tracking error. b, Median point-cloud residual (top) and number of point-cloud points with a residual 170 

larger than the cutoff (bottom, cut = 0.03 m) across an example 21 min recording. These traces show two 171 

anomalies: One tracking error (around frame 17000, the error we also detected by manual inspection of the 172 

500 frames) and one depth camera artifact (tracking was fine, but a ghostly artifact showed up in the point-173 



 
 

 

cloud for few a seconds. Due to the of the robust loss function, tracking was not distorted by the artifact). c, 174 

Ten example frames showing the tracking error (0.5 s between frames, indicated by vertical lines in panel b). 175 

Note that after the error, the particle filter quickly recovers to correct tracking again. d, Ten example frames 176 

showing the depth camera artifact.  177 



 
 

 

Supplementary Figure 16. Bayesian modeling and automatic classification of behavioral states. a, Gen-179 

erative model fit to the running behavior to automatically classify behavioral states. The model is a hidden 180 

Markov model with discrete latent states (circles), and each state emits a forward speed and a left speed, 181 

drawn from a two-dimensional gaussian distribution with a full covariance matrix. b, The generative model 182 

expressed as equations, showing Bayesian priors for estimating the parameters. c, Joint distribution (on a log-183 

scale) of the forward speed and left speed, for both mice, across an entire behavioral session. d, Initial position 184 



 
 

 

for the variation inference, for the model of forward and left speed. Crosses, cluster centers and standard 185 

deviations (calculated independently for fwd/left speed) for clusters assigned by k-means clustering into 5 186 

clusters. Dots, individual samples of fwd/left speed (colors indicate clusters, every 50th sample is show). e, 187 

Bayesian model was fitted to a subset of the data (5 mins), split and run in parallel on 10-s sequences. The 188 

plot shows example 10-s sequences. f, Joint distribution (on a log-scale) of the forward speed and left speed, 189 

for the training data, overlaid with the cluster centers and standard deviations from all data (i.e., from d). 190 

Training data cover same velocity space as the whole session (compare with a). g, Convergence plot showing 191 

the decrease in model loss (increased evidence lower bound) across iterations for the training data. h, Loca-192 

tions and covariance ellipsoids (indicating three standard deviations) for the gaussian emission distributions 193 

associated with the five latent states, after model fitting. The five clusters are easily interpretable, and the 194 

labels are shown on the right. j, Initial position for the variation inference for the up speed. Distribution of the 195 

up speed (grey bars), as well as the center and standard deviation of three clusters (colored bars and dots), 196 

assigned by k-means clustering. i, Automatically-assigned states (by maximum a posterior probability) to an 197 

example sequence of forward and left speed. k,l,m,n, same as e,g,h,i, but for the model fitting of the emission 198 

gaussians (in one dimension) of the up speed. o, Transition probabilities between latent states, for both for-199 

ward/left speed and up speed models. The sample rate is 60 frames/s, so – since behavioral states are longer 200 

than that – the self-transition probabilities (diagonals) are very high. p, As o, but without showing the self-201 

transition probabilities (the diagonals, crossed out). These matrices have understandable structure. For exam-202 

ple, in the left matrix, the most likely transition from “rest” is to “slow forward”. From “slow forward”, the 203 

mouse is likely to transition to “turning left”, “fast forward” or “turning right”. It is very unlikely to transition 204 

directly from “fast forward” to “rest” or from “turning left” to “turning right”. From the right matrix, we can 205 

see that it is unlikely to transition directly from “rear up” to “rear down”, it is more probable to have a period 206 

of “rest” in between.  207 



 
 

 

Supplementary Figure 17. Estimation of 3D heading direction in the partner animal, part I. a, We use 209 

the 3D position of the ear keypoints to determine the 3d head direction of the partner animal. We assign the 210 

ear keypoints to a mouse body model by calculating the distance from each keypoint to the center of the nose 211 

ellipsoid of both animals. b, To estimate the 3D head direction, we calculate the unit rejection (v_rej) between 212 

a unit vector along the nose ellipsoid (v_nose) and a unit vector from the neck joint (c_mid) to the average 213 

3D position of the ear keypoints that are associated with that mouse (v_ear_direction). c, The distance from 214 

all ear keypoints to the center of the nose ellipsoid, for both mice, for an example portion of the recording 215 

session. d, The distance from ear keypoints to the center of the nose ellipsoid, only showing the keypoints 216 

that we estimate to be associated with each mouse. e, Estimated mean 3D position of the ear keypoints asso-217 

ciated with the partner animal (‘Mouse 1’). Top to bottom: Raw 3D position of all keypoints, mean position 218 

using linear interpolation, smoothed with a Gaussian kernel (𝜎𝜎 = 3 frames). f, The z-component of v_ear_di-219 

rection and v_rej. The z-component is high, indicating that the ears are on the dorsal side of the head ellipsoid. 220 



 
 

 

When the mouse is running on the ground, both v_ear_direction and v_rej have high z-components (marked 221 

with rightmost arrow), but when the mouse is rearing and tilting the head backwards, v_rej will be more in 222 

the xy-plane, and have a low z-component (marked with leftmost arrow). g, The 3D body positions, of the 223 

frames indicated by arrows in panel f.  224 



 
 

 

Supplementary Figure 18. Estimation of 3D heading direction in the partner animal, part II. a, The joint 226 

distributions of the components of v_rej shows that mouse mostly keeps the ears horizontal, rarely tilting the 227 

head more than 17 degrees towards the left or right. The z-component is mostly close to 1 (pointing straight 228 

up), but sometimes smaller, closer to 0 (meaning that the nose is pointing up towards the sky). b, We can 229 

examine the details of the 3D head direction behavior. For example, we can monitor the head direction, when 230 

the z-coordinate of the neck (z_mid) is high (i.e., when the mouse is rearing). Here we find a clear negative 231 

correlation between the z-component of v_rej and z_mid, which matches the visual inspection of the videos: 232 

When the mouse rears up or climbs up against the walls of the transparent social arena, the head tilts back to 233 

extend the nose upwards.  234 



 
 

 

Supplementary Figure 19. Details of 3D social behavior. a, Distribution of the behavior occupancy in the 236 

bins of the GLM model, for both the social features, the ‘own body’ features and the ‘partner body’ features. 237 

b, The ‘co-encoding matrix’ of the neural population: The grayscale color in i’th and j’th bin in the heatmap 238 

indicates the number neurons that encode both feature i and j, shown here with the full variable names on 239 

the matrix axes.   240 



 
 

 

Supplementary Videos and Legends 241 

Supplementary Video 1. Pre-processing pipeline. 243 
 244 
 245 

Supplementary Video 2. Particle filter behavior. 247 
 248 
 249 

Supplementary Video 3. State-space filtering. 251 
 252 
 253 



 
 

 

Supplementary Video 4. Social events. 255 
 256 
 257 

Supplementary Video 5. MousePlayer. 259 


	Supplementary Figures and Legends

