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Figure S1 | Climate-induced shifts in biomass of phytoplankton, zooplankton and small pelagic 

fish. The mean log10 biomass (g m-2)  in 1980-2000 of: a Phytoplankton; b Zooplankton (both micro 

and macrozooplankton); c Small pelagic fish; d–l Maps of the mean change in the total biomass of: d, 

g, j Phytoplankton; e, h, k Zooplankton; and f, i, l Small pelagic fish in 2080–2100 compared with  

1980–2000 under emission scenarios SSP1-2.6, SSP3-7.0 and SSP5-8.5 (rows). 
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Figure S2 | Climate-induced shifts in biomass of small and large phytoplankton, and 

microzooplankton. The percentage of total phytoplankton and microzooplankton (heterotrophic 

flagellates and ciliates) biomass in 1980-2000 comprising: a Small phytoplankton (<5μm ESD); b 

Large phytoplankton (≧5μm ESD); c Microzooplankton. d–l Maps of the mean change in the total 

biomass of: d, g, j Small phytoplankton; e, h, k Large phytoplankton; and f, i, l Microzooplankton in 

2080–2100 compared with  1980–2000 under emission scenarios SSP1-2.6, SSP3-7.0 and SSP5-8.5 

(rows). 
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Figure S3 | Climate-induced changes in small pelagic fish diet quality and trophic level. Maps of 

mean small pelagic fish (SPF) a Diet quality (% carbon content) and b Trophic level in 1980-2000, and 

maps of the mean percentage change in SPF c Diet quality and d Trophic level in 2080–2100 

compared with 1980–2000 under emission scenario SSP5-8.5. 
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Table S1 | Trait values for the nine zooplankton and three fish groups (reproduced from Heneghan et 

al. 2020). 

Group 
Min. Size, 

log10(g)* 

Max Size, 

log10(g)* 

log10PPMR 

range  

Carbon (% of wet 

weight)  

Heterotrophic 

flagellates  

–10.7a –6.8a 0.2–0.72 154 

Heterotrophic ciliates –9.3b –6.3a  2.5–2.92 154 

Larvaceans –6.4c –3.2c  6.8–10.87 29 

Omnivorous copepods –7.5d –3.5e  3.6–4.62 121 

Carnivorous copepods –7.5d –2.5e  0.8–1.92 121 

Euphausiids –4.2f 0.2g  6.6–7.83,15 121 

Chaetognaths –5.9h –0.9h  1.9–3.416 41 

Salps –4.7i 1.4i  6.8–11.719 29 

Jellyfish –3j 2j  2.7–4.71 0.51 

Small pelagic fish –3k 2  222 1023 

Medium pelagic fish –3k 4  222 1023 

Large pelagic fish –3k 6  222 1023 

* g wet weight calculated from ESD, assuming 1 gram = 1 cm3. 

 
a From Table 3 in (1), b From figure 1 in (5), c  Minimum and maximum larvacean trunk lengths taken from (6) and (8) 

respectively, and converted to ESD and wet weight using equation derived in (7), d Carbon mass obtained from 

supplementary material in (10), converted to wet weight and ESD using carbon: wet weight ratio from (1) e Maximum 

omnivorous and carnivorous copepod lengths taken from (11) and converted to ESD and then wet weight using equation 

derived in (12), f Euphausiid embryo ESD from figure 2 in (13), g Maximum length taken from supplementary material in (3) 

and converted to ESD and wet weight using equation from (14), h Minimum and maximum ESD from supplementary material 

in (3), lengths derived using head width: body length ratio from (16) i Minimum and maximum salp length taken from (17) 

and converted to ESD and wet weight using equation derived in (18), maximum salp body size taken as geometric mean of 

Salpida and Pyrosomatida from (17), after using equation in (18) j From supplementary material in (20), k From (21). 
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