
Supplementary figures 



Supplementary Fig. 1: GPCCA and fate probabilities extract the essence of cellular state             
transitions 

a. ​Markov transition graph of a toy example of cellular state changes. Starting from a cyclic 
initial state, cells transition via an intermediate state into either one of two terminal states, both 
of which are cycling again. Note that cell number 3 is more likely to go to cell number 4 than 5, 



which results in a global fate bias towards the first terminal state. ​b. ​The corresponding 
transition matrix can be decomposed into real Schur vectors, each corresponding to one 
eigenvalue. The 4 eigenvalues close to one are associated with the initial, terminal and 
intermediate states. Complex eigenvalues appear because the transition matrix is 
non-symmetric. ​c. ​The original transition matrix. The block structure shows the separation into 
the 4 macrostates and the possible transitions between them. ​d. ​The coarse-grained transition 
matrix, identifying  the different macrostates and their transition probabilities relative to 
one-another. The initial state is the macrostate with almost no incoming but large outgoing 
transition probability. The intermediate state is the state with both large incoming and large 
outgoing transition probability, and relatively little self-transition probability. The terminal states 
are the states with large incoming, but almost no outgoing and large self-transition probability. ​e. 
Each macrostate is associated with a membership vector that assigns cells to the state in a soft 
fashion, i.e. using weights that sum to one. We show the 4 membership vectors in a heatmap. ​f. 
Fate probabilities towards the two terminal states.​ ​We correctly recover the global bias towards 
the first terminal state.   



 
 

Supplementary Fig. 2: Spectrum of the pancreas transition matrix 

a. ​Real part of the top 20 eigenvalues. Purely real eigenvalues are shown in blue. Complex 
eigenvalues come in pairs of complex conjugates for real matrices and are shown in orange. 
Dashed line highlights the first 12 eigenvalues, which we use to compute macrostates in Fig. 2. 
b. ​Eigenvalues from (​a​) in the complex plane.   



 

Supplementary Fig. 3: Recovering structure in the transition matrix 

a.​ Heatmap of the transition matrix for the pancreas dataset from Fig. 2. The ordering of cells 
(rows and columns) in the matrix is arbitrary. The colorbar has been adjusted such that values 
larger than the 90th percentile are clipped to the 90th percentile to avoid skewing the colorbar 
towards extreme values. However, there is still no visible structure in the matrix because of 
sparsity, noise and the random order of cells.  ​b.​ Same matrix as in (​a​), just re-ordered such that 
cells which likely belong to the same macrostate are next to each other. This recovers the 
structure of the developmental dynamics. Note that the sparsity structure of the matrix is 
symmetric (KNN graph is symmetric) while the actual values are not (RNA velocity infused 
directionality). ​c​. Coarse-grained transition matrix from Fig. 2. Macrostates defined in this matrix 
were used to reorder cells in (​b​).   



Supplementary Fig. 4: Marker genes confirm CellRanks initial and terminal state           
annotations in the pancreas data 

a. ​CellRanks initial and terminal states from Fig. 2 ​b. ​ Cells are colored based on the expression 
level of the indicated gene in each UMAP.  The terminal states express the key marker genes 
relevant for each respective cell type.  Showing for beta: Ins1 and Ins2 (insulin), alpha: Gcg 
(glucagon), epsilon: Ghrl (ghrelin), delta: Sst (somatostatin)​38​. For the initial state, we show 
expression of ductal cell markers Sox9, Anxa2 and Bicc1​29,38​.   

https://paperpile.com/c/4UFf4W/tWPk
https://paperpile.com/c/4UFf4W/tWPk+lN4F


Supplementary Fig. 5: Visualising fate probabilities in a new directed PAGA graph 

a. ​Lineage probabilities for the pancreas data from Fig. 2, visualised as a fate map where each 
cell is colored according to its most likely fate. Color intensity reflects the degree of lineage 
priming. ​b. ​Probabilistic approximate graph abstraction (PAGA)​11​ in a new directed flavour, 
combined with CellRank’s lineage probabilities, shown as pie charts. Arrows represent 
aggregated velocity flow (Online Methods).   

https://paperpile.com/c/4UFf4W/jxOF


Supplementary Fig. 6: Palantir pseudotime for the pancreas data 

a.​ UMAP of the pancreas data with cluster annotations from the original publication​29​. ​b. 
Membership vector corresponding to the Ngn3​low​ EP_1 macrostate which we identified as an 
initial state. ​c.​ We selected one of the cells which had high initial state confidence in (​b​) and 
supplied it to Palantir to compute a pseudotemporal ordering of all cells​25​.   

https://paperpile.com/c/4UFf4W/lN4F
https://paperpile.com/c/4UFf4W/2Gq5


Supplementary Fig. 7: Varying the number of macrostates for the pancreas does not             
change biological interpretation 

a. ​Real part of the 20 eigenvalues with the largest real part for the pancreas transition matrix of 
Fig. 2. We highlight eigenvalues that come in pairs of complex conjugates. Splitting pairs of 



complex conjugates leads to non-invariant subspaces (Online Methods), therefore, we choose a 
number of states which always includes both eigenvalues from pairs of complex conjugates. ​b-f. 
When varying the number of macrostates, we consistently recover the alpha, beta, epsilon, 
delta and Ngn3​low​ EP_1 states. Increasing the number of macrostates increases the resolution 
at which we interpret the data. However, for the findings we report in Fig. 2, any of the number 
of macrostates presented here would lead to similar results and near identical biological 
interpretation.  



Supplementary Fig. 8: CellRank is robust to parameter choice and random subsampling 

 
a-d ​Pairwise correlations of fate probabilities per lineage when varying (​a​) the number of 
nearest neighbors in KNN graph construction, (​b​) the gene filtering parameter 



“min_shared_counts” which determines the minimum required number of spliced and unspliced 
counts, (​c​)​ ​the number of highly variable genes, (​d​) the number of principal components used 
for KNN graph construction. Across the 4 parameters, we achieve a minimum median 
correlation of 0.81, highlighting CellRanks robustness to a wide range of parameter choices. ​e. 
Pairwise correlations of fate probabilities per lineage when randomly subsampling the data to 
90% of cells. CellRank is very robust to subsampling with a minimum median correlation of 0.96.  



Supplementary Fig. 9: Fixing the terminal states further increases robustness 

a-e​ Like Suppl. Fig. 8, only that we fix the terminal states to restrict the robustness comparison 
to the computation of fate probabilities, i.e. the terminal states have been computed once and 
were fixed across all parameter variations and subsampling of cells. Note that the color scale 



changed. This increases the minimum median correlation for parameter variations (​a-d​) from 
0.81 with recomputed terminal states to 0.92 here and for subsampling (​e​) from 0.96 with 
recomputed terminal states to 0.97 here.   



 
 

Supplementary Fig. 10: Cell type proportions in the pancreas data 

a. ​UMAP representation of the pancreas data from Fig. 2 with original cluster annotations​29​. ​b. 
Cell type proportions. Delta cells are the rarest cell type in this data with only 3% abundance. ​c. 
Sub-clustering of the data from the original publication​29​. Alpha and beta cells have been 
sub-clustered by us.  
 

https://paperpile.com/c/4UFf4W/lN4F
https://paperpile.com/c/4UFf4W/lN4F


Supplementary Fig. 11: Splicing kinetics do not capture delta cell development 

a. ​Phase portraits of the top 30 genes which are assigned the highest likelihoods by scVelo’s 
dynamical model of the mRNA lifecycle. Unspliced counts are on the x-axis, spliced counts are 
on the y-axis. Cells are colored according to the clusters from Fig. 2. The solid purple curve is 



scVelo’s dynamical fit and the dashed purple line is scVelo’s inferred steady-state ratio. The top 
30 genes are dominated by drivers for the alpha (​Gcg​38​), epsilon (​Ghrl​38​) and beta (​Gng12​89​, 
Pdx1​40,87​) lineages while delta drivers are not present. ​b. ​Hhex​41​, which is the major known 
delta-driver, could not be fit by scVelo because of too little expression and too large noise 
levels. ​Hadh​, another likely delta driver, could be fit. However, delta cells are an outlier in this fit 
(see inlet) and were not correctly assigned to the steady-state. ​Cd24a​, another likely delta 
driver, did not make it through scVelo’s filters to be considered a “velocity gene”, possibly 
because of too little expression and too high noise levels. ​c. ​UMAP with projected scVelo 
velocity vectors, inlet highlights delta cells and their noisy velocity vectors. Splicing kinetics do 
not reveal development towards this state.  
 
 
 
 
 
  
 
 
  

https://paperpile.com/c/4UFf4W/tWPk
https://paperpile.com/c/4UFf4W/tWPk
https://paperpile.com/c/4UFf4W/huTU
https://paperpile.com/c/4UFf4W/1lww+JWrG
https://paperpile.com/c/4UFf4W/deGS


 

 

Supplementary Fig. 12: Projected velocities do not reveal how delta cells are generated 

a. ​scVelo velocities projected onto the UMAP show three possible paths for delta cell 
differentiation (i-iii). Velocities reveal short-range fate relationships but cannot be combined to 
give long-range fate predictions from looking at an embedding.  



Supplementary Fig. 13: Heatmap of genes whose expression correlates well with delta            
fate 

a. ​Heatmap of Fig. 3d with all gene names shown.  
 
 



Supplementary Fig. 14: Comparing fate probabilities between deterministic and         
stochastic modes 

a. ​Sub-clustering of the Fev+ cluster in the pancreas data​29​. ​b. ​Comparing average fate 
probabilities per sub-cluster. These were obtained from not propagating (“deterministic”) or 
propagating (“stochastic - analytical” and “stochastic - sampling”) velocity uncertainty. Both 
stochastic approaches agree in down-weighting probability towards the dominant beta fate and 
up-weighting probability towards the alpha, delta and epsilon fates.  
 

https://paperpile.com/c/4UFf4W/lN4F


 

Supplementary Fig. 15: Robustness increases when propagating uncertainty 



a-e.​ Like Suppl. Fig. 8, only that we use the analytical approximation to propagate uncertainty 
into the transition probabilities. Apart from the delta lineage for the number of nearest neighbors, 
this increases the minimum median correlation for parameter variations (​a-d)​ from 0.81 in the 
deterministic case to 0.92 here. When we vary the number of nearest neighbors for the delta 
lineage, we observe outlier terminal states when using 70 nearest neighbors. This effect 
disappears when we fix the terminal states (Suppl. Fig. 16a). ​e. ​For subsampling, using the 
stochastic approximation increases the minimum median correlation from 0.96 in the 
deterministic case to 0.97 here.  



 

Supplementary Fig. 16: Robustness further increases when propagating uncertainty and          
fixing the terminal states 



a-e.​ Like Suppl. Fig. 15, only that we fix the terminal states to restrict the robustness comparison 
to the computation of fate probabilities, i.e. the terminal states have been computed once and 
were fixed across all parameter perturbations and subsampling of cells. This increases the 
minimum median correlation for parameter variations (​a-d)​ from 0.57 with recomputed terminal 
states to 0.94 here and for subsampling (​e)​ from 0.97 with recomputed terminal states to 0.99 
here.  
 

 

 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 



Supplementary Fig. 17: Gene expression trends for CellRank and Palantir 

a-b.​ Gene expression trends for key regulators ​Pax4​39​ and ​Pdx1​40,87,88​ (beta), ​Arx​39​ (alpha), 
Ghrl​38​ (epsilon), ​Hhex​41​ and ​Cd24a​44,45​ (delta) as well as lineage associated genes ​Peg10​42,89 
(alpha) and ​Irs4​42​ (epsilon) for CellRank (​a) ​and Palantir (​b). ​The x-axis is given by Palantir’s 

https://paperpile.com/c/4UFf4W/xwE8
https://paperpile.com/c/4UFf4W/1lww+JWrG+yNfW
https://paperpile.com/c/4UFf4W/xwE8
https://paperpile.com/c/4UFf4W/tWPk
https://paperpile.com/c/4UFf4W/deGS
https://paperpile.com/c/4UFf4W/aeHH+Gp1x
https://paperpile.com/c/4UFf4W/Q8FO+huTU
https://paperpile.com/c/4UFf4W/Q8FO


pseudotime (Suppl. Fig. 6c). Expression values were imputed using MAGIC​85​. Green ticks 
indicate that methods correctly predicted lineage-specific gene regulation. CellRank and Palantir 
give similar results because both methods were supplied with CellRank’s terminal states. ​c. 
Cluster labels from ref.​29​ as well as expression of the genes from (​a​) and (​b​) in the UMAP.   

https://paperpile.com/c/4UFf4W/gWdX
https://paperpile.com/c/4UFf4W/lN4F


 

Supplementary Fig. 18: FateID gene expression trends for alpha- and beta-fate           
associated genes  

a-d.​ Gene expression trends for key regulators ​Pax4​39​ and ​Pdx1​40,87,88​ (beta), ​Arx​39​ (alpha) as 
well as the lineage associated gene ​Peg10​42,89​ (alpha). We color each gene by its associated 
lineage. Expression trends computed using FateID towards the alpha, beta, epsilon and delta 
fates for these genes are shown in the first four columns. On the x-axis are the indices of the 
pseudo-temporally ordered cells assigned to the given lineage, on the y-axis is normalised gene 
expression. The line represents a local regression of z-transformed gene expression values 
(Online methods). In the last column, we show gene expression values in the UMAP. Yellow 
denotes high expression, blue denotes low expression. ​e. ​For each lineage, we show the cells 
assigned to it by FateID, colored by diffusion pseudotime​10​ (DPT) which was used for 
gene-trend smoothing (Online methods). The yellow dot denotes the root cell used for  DPT 
computation in the corresponding lineage. Cells not assigned to a lineage are colored in grey. ​f. 
Cluster annotations from the original publication​29​.  
 

https://paperpile.com/c/4UFf4W/xwE8
https://paperpile.com/c/4UFf4W/1lww+JWrG+yNfW
https://paperpile.com/c/4UFf4W/xwE8
https://paperpile.com/c/4UFf4W/Q8FO+huTU
https://paperpile.com/c/4UFf4W/n8hK
https://paperpile.com/c/4UFf4W/lN4F


Supplementary Fig. 19: FateID gene expression trends for epsilon- and delta-fate           
associated genes 

a-d.​ Like Suppl. Fig. 18, only that we show trends for the key lineage drivers ​Ghrl​38​ (epsilon), 
Hhex​41​ and ​Cd24a​44,45​ (delta) as well as for the lineage associated gene ​Irs4​42​ (epsilon). Panels 
e ​and ​f ​remain unchanged.  
 

https://paperpile.com/c/4UFf4W/tWPk
https://paperpile.com/c/4UFf4W/deGS
https://paperpile.com/c/4UFf4W/aeHH+Gp1x
https://paperpile.com/c/4UFf4W/Q8FO


Supplementary Fig. 20: Comparing peak memory usage across methods 

a.  ​Boxplot comparing peak memory usage of CellRank to compute macrostates and fate 
probabilities with FateID, Palantir and STEMNET to compute fate probabilities, given CellRank’s 
terminal states on the reprogramming dataset​63​ of Fig. 5f (Online methods). Box plots show the 
median, the box covers the 25 to 75% quantiles, whiskers extend up to 1.5 times the 
interquartile range above and below the box. Outliers are shown as dots and the dashed lines 
connect the medians. FateID did not finish on 100k cells because of memory constraints. Note 
that parallelisation across 32 cores increases peak memory usage for Palantir and CellRank, 
the only two methods that make use of parallelisation. We report decreased peak memory 
usage on 100k cells using a single core for Palantir and CellRank in Supplementary Table 3.  
 

 

 
 
 
  

https://paperpile.com/c/4UFf4W/YBWg


 

Supplementary Fig. 21: Cluster labels and time point annotations for the lung data 

a. ​Original cluster labels for the lung regeneration data​64​ in a UMAP projection. The data 
contains 24,051 murine lung epithelial cells sequenced using the Dropseq workflow​90​ at 13 time 
points spanning days 2-15 past bleomycin injury. The ‘activated’ label refers to cell states that 
emerge after bleomycin injury. ​b. ​Same as (​a​) with time points colored in. Time points refer to 
time passed since bleomycin injury. ​c. ​Expression of goblet cell markers ​Muc5b, Muc5ac and 
Bpifb1 ​agrees with the goblet annotation of (​a​).  
 

https://paperpile.com/c/4UFf4W/jcyL
https://paperpile.com/c/4UFf4W/c6Gn


Supplementary Fig. 22: CellRank correctly recovers club to ciliated trajectory 

a. ​CellRank identified macrostates in the UMAP. For each macrostate, we show the 30 most 
confidently assigned cells. We color macrostates according to the cluster from Suppl. Fig. 21a 
that they mostly overlap with. We highlight 3 macrostates that overlap with the ciliated clusters: 



the ‘Ciliated activated 1’, ‘Ciliated activated 2’ and ‘Ciliated’ macrostates. Note that the 
‘activated’ label has been assigned in the original publication to denote populations that appear 
upon injury​64​. ​b-d. ​Same UMAP as in (​a​), colored by fate probabilities towards the Ciliated 
activated 1, Ciliated activated 2 and Ciliated macrostates. Among the genes that correlated best 
with fate probabilities towards the Ciliated macrostate were ​Mcidas, Deup1 ​and ​Ccno, ​all of 
which are involved in the normal development of ciliated cells​91–94​. ​e. ​Violin plots showing the 
distribution over fate probabilities to transition towards any of the three ciliated states within the 
club, goblet and basal cell clusters shown in Suppl. Fig. 21a. We summed over fate probabilities 
towards the three individual ciliated macrostates. The cluster annotated ‘Club to ciliated’ in the 
original publication​64​ is assigned the highest probability by CellRank. Interestingly, goblet cells 
are assigned a small probability to transition towards the ciliated population, an observation that 
was also made by others recently​95​.  
 
 
 
 

https://paperpile.com/c/4UFf4W/jcyL
https://paperpile.com/c/4UFf4W/Qxbu+CK9H+9V0o+xX5f
https://paperpile.com/c/4UFf4W/jcyL
https://paperpile.com/c/4UFf4W/Ulzx


Supplementary Fig. 23: CellRank predicts a goblet to basal dedifferentiation trajectory 

a. ​9 macrostates, computed using CellRank. We highlight a subset of airway cells, composed of 
club, goblet and basal cells​.​ ​b. ​Single-cell fate probabilities of transitioning towards the basal 
state. We see a ‘band’ of cells within the goblet cluster which has high basal probability. ​d. 
Single-cell fate probabilities of transitioning towards the goblet state. Basal cells do not show 
any probability of transitioning towards the goblet state. ​e. ​Quantification of the results from (​c​) 
and (​d​). Goblet cells have a large probability of transitioning towards basal cells, but basal cells 
have no probability of transitioning towards the goblet state. This confirms that the direction of 
the recovered trajectory is goblet -> basal.   



 

Supplementary Fig. 24: Computing a pseudotime for the goblet to basal transitions 

a. ​Diffusion map of a subset of the cells from the lung data of Fig. 6 labelled as “Goblet” and 
“Basal” in the original publication​64​. ​b ​Coarse-grained transition matrix, computed for three 
macrostates. The macrostate labelled as ‘Goblet_2’ was automatically detected as initial by 
CellRank because it had the smallest value in the CGSD. ​c. ​Showing the 30 cells most 
confidently assigned to their macrostate in the diffusion map. We kept the color for the basal 
state but created two new colors for the initial and terminal goblet states because they both 
overlap with the same transcriptomic goblet cluster and hence would both get the same color. ​d. 
Membership vector corresponding to the initial ‘Goblet_2’ state, here labelled as ‘initial state 
confidence’. The cell which had the maximum value in the initial state confidence was used as 
initial cells to compute Palantir’s pseudotime. ​e. ​Palantir pseudotime. 
 

https://paperpile.com/c/4UFf4W/jcyL


 

Supplementary Fig. 25: Quantifying the abundance of triple positive cells 

a. ​We quantify the abundance of cells positive for the goblet cell marker ​Bpifb1 ​as well as the 
basal cell markers​ Krt5 ​and ​Trp63​ in the three stages in control mice treated with PBS (n=2), ten 
days past bleomycin injury (Bleo d10, n=2), and 22 days past bleomycin injury (Bleo d22, n=2) 
in ten different intrapulmonary airway regions (n=5 per mouse). We find triple positive cells in 
bleomycin-injured lungs and rarely in PBS treated control mice.  
 
 
 
 
 


