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A1 Additional information on data and methods

A1.1 Target selection for the ChEMBL datasets
Target datasets were selected following a collection of 1360 ligand sets provided by Škuta et al.1 for similarity searching,
bioactivity classification and scaffold hopping. First, the 29 target datasets, for which Škuta et al. found ≥ 1000 compounds
with reported pIC50 values, were downloaded, including pIC50 values and publication year. The following cleaning procedure
was applied to each target dataset: If there were multiple measurements per compound and endpoint, the mean and standard
deviation were calculated. Only the mean measurement of those duplicates was kept if the standard deviation was lower or
equal than 0.5, otherwise they were discarded. The oldest publication year (i.e. lowest number) was kept for aggregated data
points. The compounds were standardised as described in the main manuscript (Section 2.1.2) and temporally split into training,
update1, update2, and holdout set as explained in 2.1.4. If fewer than 50 active and 50 inactive compounds were left in the
holdout set after the time-split, the target dataset was excluded from the study. Finally, 20 targets remained which match the
filtering criteria. Of these, a total of twelve targets were selected that are linked to toxicity. A target was defined to be associated
to toxicity if it was either assayed in ToxCast2, or part of the list of targets that are recommended to early assess the potential
hazard of a compound3.

A1.2 Public datasets for liver toxicity and MNT
To assess drifts between data originating from different sources, public and proprietary datasets for liver toxicity and micro
nucleus test (MNT) were collected. For conformal prediction (CP) model training, the same public datasets for liver toxicity
(more specifically here drug-induced liver injury (DILI)) and MNT in vivo were used as described by Garcia de Lomana et
al.4. Data for the DILI endpoint were gathered from the U.S. Food and Drug Administration (FDA)5 and for the MNT in
vivo endpoint from three sources (eChemPortal6, the work of Benigni et al.7 and Yoo et al.8). The respective datasets contain
692 (445 active and 247 inactive compounds) and 1791 compounds (316 active and 1475 inactive compounds) after the data
pre-processing and deduplication steps conducted by Garcia de Lomana et al.4.

A1.3 Inhouse datasets for liver toxicity and MNT
Two inhouse datasets for liver toxicity and MNT in vivo, with data generated by BASF SE, were used as holdout and update set
to investigate data drifts between data with different origin. Liver toxicity was measured in oral assays on rats (including OECD
Guidelines 407, 408 and 422, as well as range finding oral studies). Compounds showing adverse or adaptive effects in the liver
in any of these studies were labelled as active. MNT in vivo was determined in mice in an assay following the OECD Guideline
474 or in (non-GLP) screening assays (with 18 animals). The liver toxicity dataset contains 140 (63 active and 77 inactive)
compounds and the MNT in vivo dataset contains 366 (194 active and 172 inactive) compounds after the data pre-processing
and deduplication steps (following the same procedure as Garcia de Lomana et al.4, see "Chemical structure standardisation").

A1.4 Time-splitting procedure
Note that all compounds published (ChEMBL data) or assayed (inhouse data) in the same year were assigned to the same split.

ChEMBL data After standardising the compounds (see 2.1.2), the ChEMBL data were time-split into four datasets, i.e. train,
update1, update2, and holdout set based on the publication year. A minimum number of compounds per dataset was defined
based on a predefined ratio, i.e. the training set must contain at least 50% of the total number of compounds, the update1 and
update2 sets must contain at least 12% each. Starting from the earliest year, all compounds published in that year were assigned
to the training set and the number of training compounds was assessed. Same for the next year(s) until the training set contained
at least the minimum number of training compounds defined. Then, all compounds published in the following year(s) were
assigned to the update1 set until the respective threshold was reached. With the same procedure, the compounds published in
the subsequent year(s) were allocated to the update2 set. All remaining compounds belong to the holdout set. The number of
active and inactive compounds available per subset of the twelve holdout ChEMBL target datasets, as well as the corresponding
time thresholds for splitting, are provided in Table 2.



Liver toxicity and MNT data To investigate the occurrence of discrepancies between external and internal data (see A1.2), the
liver toxicity and MNT datasets were investigated. The external data were used for model building as well as for the original
calibration set. The internal data were time-split into update and holdout set based on the date they were measured internally.
Due to the small number of available inhouse compounds, only one update set was deducted. The data was selected by year as
described for the ChEMBL data until at least 50% of the compounds were assigned to the update set. The number of training,
update and holdout compounds available for the liver toxicity and MNT endpoints are shown in Table 2.

Table S1. ChEMBL datasets and their biological relevance. A selection of possible toxicological or adverse effects due to
agonism (or activation) or antagonism (or inhibition) with the targets is provided.

ChEMBL ID name toxicological or adverse effects
CHEMBL220 Acetylcholinesterase (human) decreased blood pressure or heart rate, increased GI motility3, 9

CHEMBL4078 Acetylcholinesterase (fish) decreased blood pressure or heart rate, increased GI motility3, 9

CHEMBL5763 Cholinesterase decreased heart rate, QT interval prolongation10

CHEMBL203 EGFR erbB1 skin toxicity, cardiotoxicity11, 12

CHEMBL206 Estrogen receptor alpha antiandrogenic effects, hormone-dependent cancers13, 14

CHEMBL279 VEGFR 2 hypertension, disturbed wound healing, GI and skin toxicity15

CHEMBL230 Cyclooxygenase-2 myocardial infarction, increased blood pressure, ischaemic stroke,
atherothrombosi3, 16

CHEMBL340 Cytochrome P450 3A4 drug-drug interactions, detoxification by metabolism, activation of toxic
metabolites17

CHEMBL240 HERG QT interval prolongation18

CHEMBL2039 Monoamine oxidase B cell death19

CHEMBL222 Norepinephrine transporter increased heart rate or blood pressure, constipation3, 20

CHEMBL228 Serotonin transporter increased GI motility, insomnia, anxiety, sexual dysfunction3, 21
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A2 Additional information on results
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(a) Evaluation for inactive compounds
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(b) Evaluation for active compounds

Figure S1. Class-wise time split evaluation (validity, efficiency, accuracy) of cross-validation (CV) experiments and
predictions for the holdout set using the original (cal_original), update1 (cal_update1), update2 (cal_update2) and combined
update1_and_2 (cal_update1_and_2) calibration sets for twelve ChEMBL datasets.
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Figure S2. Inactive compounds evaluation of time-split experiments for individual ChEMBL endpoints. i) cross-validation on
training data, predict holdout data using ii) original calibration set iiia) update1, iiib) update2, iiic) combined update1+2
calibration sets.
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Figure S3. Active compounds evaluation of time-split experiments for individual ChEMBL endpoints. i) cross-validation on
training data, predict holdout data using ii) original calibration set iiia) update1, iiib) update2, iiic) combined update1+2
calibration sets.
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Figure S4. Balanced evaluation of time-split experiments for individual ChEMBL endpoints. i) cross-validation on training
data, predict holdout data using ii) original calibration set, iii) updated calibration set, a) update1, b) update2, c) combined
update1+2 sets. The doted line at 0.8 denotes the expected validity for the chosen significance level (of 0.2).
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Figure S5. Spreading of clusters amongst the data subsets (i.e. splits) for the ChEMBL datasets. Most of the clusters (with at
least two compounds) do not spread over more than one subset (i.e. training, update1, update2 or holdout set).
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(a) training set (b) Update1 set (c) Update2 set

Figure S6. Distribution of Tanimoto coefficients between each holdout compound to its nearest neighbour in the
corresponding subset (training, update1 and update2) for ChEMBL206 endpoint .
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Figure S7. Time split evaluation (validity, efficiency, accuracy) of experiments i) CV, predictions using ii) original calibration
set, iii) update calibration set for the liver toxicity and MNT inhouse datasets.
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Figure S8. Distribution of Tanimoto coefficients between each holdout compound to its nearest neighbour in the training (left)
and update (right) set for the liver (top) and MNT (bottom) endpoints.
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