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1. Extended Dataset Description

We gathered a total of 894 14C dates from samples collected from Chulmun sites in South Korea. We built
our 4C date database using the previous compilation of the Chulmun dates made available to the scholarly

communities by Chulmun specialists’-2.

To ensure the scientific reproducibility and validity of the data used for analysis, we further apply filters to
the collected dates. First, we eliminated the dates, of which we could not clearly identify its published
primary source (i.e. site excavation reports). Second, we eliminated dates, which could be deemed too early
or late to establish a reliable cultural association to the Chulmun period. Thus we removed the dates, whose
uncalibrated *C age were earlier than 6,200 BP. and later than 2,800 BP. Third, we eliminated the dates
with potential marine signatures to control for the marine reservoir effect potentially impacting the result
of our analysis. The dates removed include those whose dated materials include shell and animal bone.
Finally for multi-component sites spanning multiple chronological periods, we only selected the dates with
clear contextual association with a Chulmun feature to eliminate chronological ambiguity in dates. After the
series of filtering, the total number of 14C dates used for our analysis was 682.

We then divide the #C datasets into two spatial groups: inland and coastal. We deemed a date to be coastal,
if it was recovered from a site located within 2 km of the current coastal line. Otherwise, the date was placed
into the inland group. To account for the sea-level change that occurred since the Chumun period, an
exception was made if an inland site is known to have been located on the coast during the Chulmun
occupations. The sites applicable to this exception were Bibongri, Sugari, Gadong, and Jukrimdong shell
mounds sites in the Southeastern region of Korea*56. These now-inland sites yielded artifacts and ecofacts
of clear marine origins such as marine mammals, fish, and shells, thus the dates recovered from these sites

are regarded as coastal.

2. Data Preparation for Summed Probability Distribution and Bayesian
Analysis

We generated summed probability distributions of calibrated radiocarbon dates (hereafter SPD) of the
coastal and inland regions between 7,000 and 3,000 cal. BP, using the rarbon package’ (v.1.4.1) of the R
statistical computing languages. To account for potential biases arising from idiosyncratic definitions of
archaeological sites (which often do not necessarily equate to past settlements) and inter-site variations in
the sampling intensity of radiocarbon dates, we first grouped sites into spatial clusters using the DBSCAN
algorithm?, using a distance threshold e equal to 1km and setting the minimum number of points per cluster
to 1, and subsequently generated temporal bins'? using the binPrep function in rearbon and setting a temporal
distance (b) to 100 years. We thus define each spatio-temporal i to be a group of radiocarbon dates that
are close to each other in space and time. Both the visual display of the regional SPDs (Fig. 1, main text)



and the mark-permutation test for assessing the difference in their shapes (Fig. S1, see below) were carried
out by using as a basic unit of analyses these spatio-temporal bzzs. In both cases, radiocarbon dates from
the same bin were calibrated using the IntCal20 calibration curve!l, and their resulting vector of probabilities
summed and divided to the number of dates in the same bin (i.e. normalised to sum to unity).

The Bayesian model fitting procedure had a slightly different workflow. Firstly, to account for potential
edge effects we excluded from our sample all dates with a calibrated cumulative probability within the time
range of analyses (i.e. 7,000 - 3,000 cal. BP) below 0.5. Then we selected from each spatio-temporal bin the
radiocarbon date with the smallest *C error (randomly selecting one in case multiple dates had the same
14C error). Table S1 shows the number radiocarbon dates, bins, site clusters, and the sample used for
Bayesian analyses for each region.

Number of Number of Number of Number of Sample size for
14C Dates Sites DBSCAN clusters temporal bins Bayesian Analysis
Coastal 363 51 42 201 197
Inland 319 85 76 183 179
Total 682 136 118 384 376

Table S1. Sample size for coastal and inland regions.
2. Mark Permutation Tests

3.1 Coastal vs Inland Site Dates

Temporal density of 14C dates associated with coastal and inland sites were compared using mark
permutation test'2 with 1,000 Monte-Catlo iterations to compute the local and global P-values. Results
(Fig. S1) show significant departures from the null hypothesis of the two SPDs being samples from the
same statistical population, with a Global P-value < 0.001.
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Figure S1 Mark permutation test between coastal and inland site.

3.2 Millet Dates

To assess the relationship between foxtail (Sefaria Italica) and broomcorn millet (Panicum wmiliacenm)
cultivation on the one hand and demography on the other, we extracted all radiocarbon dates associated
with either crops from both regions (Fig. S2), generated an SPD (Fig. S3) and compared its shape to an
SPD based on all radiocarbon dates via a mark permutation test'? as implemented in the rcarbon R package’.
The technique consists of comparing the observed SPD (in this case of millet dates, Fig. S1) against an
envelope of simulated SPDs generated by randomly shuffling the marks associated with each date (in this
case millet vs non-millet dates). Thus in practice, in this case the procedure is equivalent to generating SPDs
by randomly sampling 45 radiocarbon dates from the pool of all radiocarbon dates available in the window
of analysis. The null hypothesis is that there is no difference in the shape of the SPD based on millets vs
the SPD based on all dates, which is equivalent to a stationary proportion of dates associated with the crop.
SPD in this case were generated without spatio-temporal binning and the global P-value obtained via 1,000
permutations. The results (Fig. 4, main text) yielded a p-value of 0.69, suggesting that we cannot determine
whether the rise and fall in the millet SPD is different from the overall fluctuations in the density of
radiocarbon dates, and hence possibly human population dynamics.
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Figure S2 Calibrates dates associated with foxtail and broomcorn millets from coastal and inland sites (#=45).
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Figure 83 SPD of radiocarbon dates associated with cither foxtail or broomcorn millet from coastal and inland regions. Vertical bars represent
the median calibrated date of each specimen.

4. Age-Depth Modelling

We used a compound Poisson-Gamma model as implemented in the Behron R package!? to re-fit an age-
depth model for the SSDP-102!* (Fig. S4), GY-115 (Fig. S5), and Pomacho!¢ (Fig.S6) sediment cores using
the recently published 1#2Ca/20 and Marine20 calibration curves!''-'”. For each dataset we used 50,000 MCMC
iterations with 10,000 burn-in steps to infer the posterior dates of each layer of the sediments and iteratively
removed dates with an outlier probability above 0.1 (see Tables S2-S4 for the final dates used). We applied
different Delta R corrections for marine dates depending on the location of the core. For the Pomaeho
core we estimated a local Delta R of -213%52 using Reimar and Reimar!8 formula on two dates (KGM-
OWd150387 and BETA-449188) recovered from the same sediment layer at 1,184 cm (see table S2). For
the SSDP-102 sediment core we used a Delta R of 1341100 which is the the weighted mean between four
published Delta R values from the southern coast (-94+22 and -71% 2419, -296135 and -2531+4520) adjusted
tor the Marine20 calibration curve.

LabCode C14 Age Depth (in cm) Material Included
KIA 19445 682160 47 Bulk benthic foraminifera | Yes
KIA 19446 209025 305 Bulk benthic foraminifera | Yes
KIA 14913 1885%35 412 Bulk benthic foraminifera | Yes
KIA 19447 2630120 509 Bulk benthic foraminifera | Yes
KIA 19448 4830£50 1050 Bulk benthic foraminifera | Yes




KIA 19449 499030 1125 Bulk benthic foraminifera | Yes

NZA10040 5715181 1405 Lenticulina calcar (Linne) | Yes

NZA10041 7610155 1623 Bulk benthic foraminifera | Yes

NZA10042 10858%80 2293 Bulk benthic foraminifera | Yes

NZA10757 11474£60 2310 Peaty Sediment Yes
Table S2. Radiocarbon dates for the SSDP-102 sediments.

LabCode C14 Age Depth (in cm) Material Included
KGM-0OCa150061 370£30 487 Shell (Potamocorbula sp.) | No
BETA-447816 1160£30 584 Shell (Potamocorbula sp.) | Yes
BETA-447818 198030 684 Bulk sediments Yes
BETA-447819 2640£30 750 Bulk sediments No
KGM-OCal50062 199030 831 Shell (Lacuna sp.) Yes
BETA-447817 1910£30 871 Shell (Lacuna sp.) No
BETA-457776 2750£30 891 Bulk sediments Yes
BETA-457777 3700£30 931 Bulk sediments Yes
BETA-447820 3600£30 970 Bulk sediments Yes
BETA-457779 276030 1051 Bulk sediments No
BETA-447821 6440%30 1105 Bulk sediments No
BETA-457778 5040430 1111 Bulk sediments Yes
KGM-OWd150387 5880£40 1184 Wood fragments Yes
BETA-449188 6230£30 1184 Bulk sediments Yes

Table S3. Radiocarbon dates for the Pomaceho sediments.

LabCode C14 Age Depth (in cm) Material Included
KGM-1Wd170355 180030 363 Plant fragments Yes
KGM-1Wd170356 2810£30 739 Plant fragments Yes
KGM-1Wd170357 4150£30 889 Plant fragments Yes
KGM-1Wd170358 610040 917 Plant fragments Yes
KGM-IWd170359 721040 1416 Plant fragments Yes
KGM-IWd170360 7900140 1839 Plant fragments Yes
KGM-IWd170361 7960140 2060 Plant fragments Yes
KGM-IWd170362 8030140 2351 Plant fragments Yes




KGM-1Wd170363 887040 2892 Plant fragments Yesl

Table S4. Radiocarbon dates for the GY-1 sediments.
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Figure S4. Age-depth model of the SSDP-102 sediment core.
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Figure S5. Age-depth model of the Pomacho site core.
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Figure S6. Age-depth model of the GY-1 sediment core.

For each dataset we have identified the start and end point of the largest cooling event within the temporal
window of analysis (Fig. S7), namely between layer 1050cm and 1035cm in SSDP-102 (di and d»), between
1020 and 1017cm at Pomaceho (fi and f2), and between 890 and 887 cm at GY-1 (g1 and g»), and extracted
posterior samples (Fig. S8) to determine their chronology.
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Figure S8. Posterior distribution of the start and end point of abrupt cooling events between 7,000 and 3,000 at SSDP-102 (41 and d2), Pomaeho
(fi and f5), and GY-1 (g and ).
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5. Bayesian Modelling of Growth Rates and Change-points

We used the nimble?!22 and nimbleCarbon?? R packages to fit the following Bayesian model:

0;~BoundedDoubleExponential(a, b, 11,73, ¢)

xj~Normal(y(9j), ;)

where 6 is the calendar date of the sample j, (8;) is the corresponding “C age based on the IntCal20
calibration curve, g; is the root of the sum of the squares of the js 14C age error and the corresponding
error in the calibration curve, and x; is the observed '#C age of j. The BoundedDoubleExponential model is
generalised bernoulli distribution where the probability of observing a sample from the calendar year (in
BP) t is given by the probability mass function:

(@4
pt:a—L - Zlaz_ob(l + T)i

where

L t>c
Ty, t<c

and with py = 0 when t > a and when t < b. Here we are interested in estimating from the

BoundedDoubleExponential the growth rates 17 and 75, and their change point ¢. To achieve this we used the
following constants and priors:

a = 7000
b = 3000
r,~Normal(u = 0,0 = 0.0004)
rp,~Norma(u = 0,0 = 0.0004)
c~TruncatedNormal(a = 3000,b = 7000, = 5000,0 = 1000)

which ensures a wide range of realistic patterns (see Fig. S9) with growth rates comparable to those

observed from other SPDs and a weakly informative prior for ¢ reducing the probability of the shift in
growth rate at the extremes of the window of analysis.
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Figure 89. Prior predictive check of the bounded double exponential growth model.

Posterior samples for the coastal, inland, and combined datasets were obtained using #inble’'s Metropolis-
Hastings adaptive random-walk sampler, with three chains of 100,000 iterations, a burn-in of 10,000 steps,
and a thinning interval of 6 iterates (see Fig. S10 for trace plots). The 90% highest posterior density interval,
Gelman-Rubin convergence diagnostic (R), and the effective sample size of the three parameters for the

three models are shown on table S5, while the fitted model and marginal posterior distributions are shown
on Fig. S11 and S12.
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Figure $10. MCMC Trace plots for the coastal, inland, and combined datasets.
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Figure S11. Fitted bounded double exponential growth model for the coastal, inland, and combined datasets.
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Figure S12. Marginal posterior distribution of the growth rates (n1 and ) and change points (¢) for the coastal, inland, and combined datasets.

Parameter Data 90% HPD ESS R
Inland 0.00136 ~ 0.00221 25047.20 1.000
7 Coastal 0.00031 ~ 0.00111 15594.01 1.001
Combined 0.00095 ~ 0.00156 16786.76 1.001
Inland -0.00174 ~ -0.00102 23394.61 1.000
7 Coastal -0.00087 ~ -0.00025 17369.63 1.000
Combined -0.00132 ~ -0.00079 16393.88 1.000
Inland 5151 ~ 4886 cal BP 17410.83 1.001
¢ Coastal 5614 ~ 4743 cal BP 11101.37 1.001
Combined 5215 ~ 4879 cal BP 11016.00 1.000

Table S5. MCMC summary statistics.
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To assess the goodness-of-fit of the growth model we carried out a posterior predictive check using the
postPredSPD() function in the nimbleCarbon R package. The function generates an envelope of SPDs
according to the fitted model and visualises time-intervals where the observed SPD showed a higher or
lower density of radiocarbon dates. We generated the fitted model envelope of the three datasets using a
95% percentile interval computed from 500 simulated SPDs using randomly drawn parameter
combinations from the joint posterior distribution (Fig. S13).
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Figure S13. Posterior predictive checks of the fitted models
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