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1. Extended Dataset Description 

We gathered a total of 894 14C dates from samples collected from Chulmun sites in South Korea. We built 
our 14C date database using the previous compilation of the Chulmun dates made available to the scholarly 
communities by Chulmun specialists1,2. 

To ensure the scientific reproducibility and validity of the data used for analysis, we further apply filters to 
the collected dates. First, we eliminated the dates, of which we could not clearly identify its published 
primary source (i.e. site excavation reports). Second, we eliminated dates, which could be deemed too early 
or late to establish a reliable cultural association to the Chulmun period. Thus we removed the dates, whose 
uncalibrated 14C age were earlier than 6,200 BP. and later than 2,800 BP. Third, we eliminated the dates 
with potential marine signatures to control for the marine reservoir effect potentially impacting the result 
of our analysis. The dates removed include those whose dated materials include shell and animal bone. 
Finally for multi-component sites spanning multiple chronological periods, we only selected the dates with 
clear contextual association with a Chulmun feature to eliminate chronological ambiguity in dates. After the 
series of filtering, the total number of 14C dates used for our analysis was 682. 

We then divide the 14C datasets into two spatial groups: inland and coastal. We deemed a date to be coastal, 
if it was recovered from a site located within 2 km of the current coastal line. Otherwise, the date was placed 
into the inland group. To account for the sea-level change that occurred since the Chumun period, an 
exception was made if an inland site is known to have been located on the coast during the Chulmun 
occupations. The sites applicable to this exception were Bibongri, Sugari, Gadong, and Jukrimdong shell 
mounds sites in the Southeastern region of Korea3,4,5,6. These now-inland sites yielded artifacts and ecofacts 
of clear marine origins such as marine mammals, fish, and shells, thus the dates recovered from these sites 
are regarded as coastal. 
 
2. Data Preparation for Summed Probability Distribution and Bayesian 
Analysis 
 
We generated summed probability distributions of calibrated radiocarbon dates (hereafter SPD) of the 
coastal and inland regions between 7,000 and 3,000 cal. BP, using the rcarbon package7 (v.1.4.1) of the R 
statistical computing language8. To account for potential biases arising from idiosyncratic definitions of 
archaeological sites (which often do not necessarily equate to past settlements) and inter-site variations in 
the sampling intensity of radiocarbon dates, we first grouped sites into spatial clusters using the DBSCAN 
algorithm9, using a distance threshold ε equal to 1km and setting the minimum number of points per cluster 
to 1, and subsequently generated temporal bins10 using the binPrep function in rcarbon and setting a temporal 
distance (h) to 100 years. We thus define each spatio-temporal bin to be a group of radiocarbon dates that 
are close to each other in space and time. Both the visual display of the regional SPDs (Fig. 1, main text) 
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and the mark-permutation test for assessing the difference in their shapes (Fig. S1, see below) were carried 
out by using as a basic unit of analyses these spatio-temporal bins. In both cases, radiocarbon dates from 
the same bin were calibrated using the IntCal20 calibration curve11, and their resulting vector of probabilities 
summed and divided to the number of dates in the same bin (i.e. normalised to sum to unity).  
 
The Bayesian model fitting procedure had a slightly different workflow. Firstly, to account for potential 
edge effects we excluded from our sample all dates with a calibrated cumulative probability within the time 
range of analyses (i.e. 7,000 - 3,000 cal. BP) below 0.5. Then we selected from each spatio-temporal bin the 
radiocarbon date with the smallest 14C error (randomly selecting one in case multiple dates had the same 
14C error). Table S1 shows the number radiocarbon dates, bins, site clusters, and the sample used for 
Bayesian analyses for each region. 

 

 Number of 
14C Dates 

Number of 
Sites 

Number of 
DBSCAN clusters 

Number of 
temporal bins 

Sample size for 
Bayesian Analysis 

Coastal 363 51 42 201 197 

Inland 319 85 76 183 179 

Total 682 136 118 384 376 

Table S1. Sample size for coastal and inland regions. 

 
2. Mark Permutation Tests 
 
3.1 Coastal vs Inland Site Dates  
 
Temporal density of 14C dates associated with coastal and inland sites were compared using mark 
permutation test12 with 1,000 Monte-Carlo iterations to compute the local and global P-values. Results 
(Fig. S1) show significant departures from the null hypothesis of the two SPDs being samples from the 
same statistical population, with a Global P-value < 0.001. 
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Figure S1 Mark permutation test between coastal and inland site. 

 
 
3.2 Millet Dates 
 
To assess the relationship between foxtail (Setaria Italica) and broomcorn millet (Panicum miliaceum) 
cultivation on the one hand and demography on the other, we extracted all radiocarbon dates associated 
with either crops from both regions (Fig. S2), generated an SPD (Fig. S3) and compared its shape to an 
SPD based on all radiocarbon dates via a mark permutation test12 as implemented in the rcarbon R package7. 
The technique consists of comparing the observed SPD (in this case of millet dates, Fig. S1) against an 
envelope of simulated SPDs generated by randomly shuffling the marks associated with each date (in this 
case millet vs non-millet dates). Thus in practice, in this case the procedure is equivalent to generating SPDs 
by randomly sampling 45 radiocarbon dates from the pool of all radiocarbon dates available in the window 
of analysis. The null hypothesis is that there is no difference in the shape of the SPD based on millets vs 
the SPD based on all dates, which is equivalent to a stationary proportion of dates associated with the crop. 
SPD in this case were generated without spatio-temporal binning and the global P-value obtained via 1,000 
permutations. The results (Fig. 4, main text) yielded a p-value of 0.69, suggesting that we cannot determine 
whether the rise and fall in the millet SPD is different from the overall fluctuations in the density of 
radiocarbon dates, and hence possibly human population dynamics.  
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Figure S2 Calibrates dates associated with foxtail and broomcorn millets from coastal and inland sites (n=45). 
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Figure S3 SPD of radiocarbon dates associated with either foxtail or broomcorn millet from coastal and inland regions. Vertical bars represent 

the median calibrated date of each specimen. 

 
 
4. Age-Depth Modelling 
 
We used a compound Poisson-Gamma model as implemented in the Bchron R package13 to re-fit an age-
depth model for the SSDP-10214 (Fig. S4), GY-115 (Fig. S5), and Pomaeho16 (Fig.S6) sediment cores using 
the recently published IntCal20 and Marine20 calibration curves11,17. For each dataset we used 50,000 MCMC 
iterations with 10,000 burn-in steps to infer the posterior dates of each layer of the sediments and iteratively 
removed dates with an outlier probability above 0.1 (see Tables S2-S4 for the final dates used). We applied 
different Delta R corrections for marine dates depending on the location of the core. For the Pomaeho 
core we estimated a local Delta R of -213±52 using Reimar and Reimar18 formula on two dates (KGM-
OWd150387 and BETA-449188) recovered from the same sediment layer at 1,184 cm (see table S2). For 
the SSDP-102 sediment core we used a Delta R of -134±100 which is the the weighted mean between four 
published Delta R values from the southern coast (-94±22 and -71± 2419, -296±35 and -253±4520) adjusted 
for the Marine20 calibration curve.  
 
 

LabCode C14 Age Depth (in cm) Material Included 

KIA 19445 682±60 47 Bulk benthic foraminifera Yes 

KIA 19446 2090±25 305 Bulk benthic foraminifera Yes 

KIA 14913 1885±35 412 Bulk benthic foraminifera Yes 

KIA 19447 2630±20 509 Bulk benthic foraminifera Yes 

KIA 19448 4830±50 1050 Bulk benthic foraminifera Yes 
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KIA 19449 4990±30 1125 Bulk benthic foraminifera Yes 

NZA10040 5715±81 1405 Lenticulina calcar (Linne) Yes 

NZA10041 7610±55 1623 Bulk benthic foraminifera Yes 

NZA10042 10858±80 2293 Bulk benthic foraminifera Yes 

NZA10757 11474±60 2310 Peaty Sediment Yes 

Table S2. Radiocarbon dates for the SSDP-102 sediments. 

 
 

LabCode C14 Age Depth (in cm) Material Included 

KGM-OCa150061 370±30 487 Shell (Potamocorbula sp.) No 

BETA-447816 1160±30 584 Shell (Potamocorbula sp.) Yes 

BETA-447818 1980±30 684 Bulk sediments Yes 

BETA-447819 2640±30 750 Bulk sediments No 

KGM-OCa150062 1990±30 831 Shell (Lacuna sp.) Yes 

BETA-447817 1910±30 871 Shell (Lacuna sp.) No 

BETA-457776 2750±30 891 Bulk sediments Yes 

BETA-457777 3700±30 931 Bulk sediments Yes 

BETA-447820 3600±30 970 Bulk sediments Yes 

BETA-457779 2760±30 1051 Bulk sediments No 

BETA-447821 6440±30 1105 Bulk sediments No 

BETA-457778 5040±30 1111 Bulk sediments Yes 

KGM-OWd150387 5880±40 1184 Wood fragments Yes 

BETA-449188 6230±30 1184 Bulk sediments Yes 

Table S3. Radiocarbon dates for the Pomaeho sediments. 

 

LabCode C14 Age Depth (in cm) Material Included 

KGM-IWd170355 1800±30 363 Plant fragments Yes 

KGM-IWd170356 2810±30 739 Plant fragments Yes 

KGM-IWd170357 4150±30 889 Plant fragments Yes 

KGM-IWd170358 6100±40 917 Plant fragments Yes 

KGM-IWd170359 7210±40 1416 Plant fragments Yes 

KGM-IWd170360 7900±40 1839 Plant fragments Yes 

KGM-IWd170361 7960±40 2060 Plant fragments Yes 

KGM-IWd170362 8030±40 2351 Plant fragments Yes 
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KGM-IWd170363 8870±40 2892 Plant fragments Yes1 

Table S4. Radiocarbon dates for the GY-1 sediments. 

 
 

 
Figure S4. Age-depth model of the SSDP-102 sediment core. 

 
Figure S5. Age-depth model of the Pomaeho site core. 
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Figure S6. Age-depth model of the GY-1 sediment core. 

 
For each dataset we have identified the start and end point of the largest cooling event within the temporal 
window of analysis (Fig. S7), namely between layer 1050cm and 1035cm in SSDP-102 (d1 and d2), between 
1020 and 1017cm at Pomaeho (f1 and f2), and between 890 and 887 cm at GY-1 (g1 and g2), and extracted 
posterior samples (Fig. S8) to determine their chronology. 
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Figure S7. Climatic proxies and cooling events: alkenone-derived sea surface temperature reconstruction from the SSDP-102 sediment core 
(top)14,  ratio of arboreal pollen to total pollen from Pomaeho site (middle)16, ratio of arboreal pollen to total pollen from the GY-1 sediment core 
(bottom)15 
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Figure S8. Posterior distribution of the start and end point of abrupt cooling events between 7,000 and 3,000 at SSDP-102 (d1 and d2), Pomaeho 
(f1 and f2), and GY-1 (g1 and g2). 
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5. Bayesian Modelling of Growth Rates and Change-points  
 
We used the nimble21,22 and nimbleCarbon23 R packages to fit the following Bayesian model: 

 
𝜃!~𝐵𝑜𝑢𝑛𝑑𝑒𝑑𝐷𝑜𝑢𝑏𝑙𝑒𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(𝑎, 𝑏, 𝑟", 𝑟#, 𝑐) 

𝑥!~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇:𝜃!;, 𝜎!) 
 

where 𝜃!  is the calendar date of the sample 𝑗, 𝜇(𝜃!) is the corresponding 14C age based on the IntCal20 
calibration curve, 𝜎!  is the root of the sum of the squares of the 𝑗’s 14C age error and the corresponding 
error in the calibration curve, and 𝑥!  is the observed 14C age of 𝑗. The BoundedDoubleExponential model is 
generalised bernoulli distribution where the probability of observing a sample from the calendar year (in 
BP) 𝑡 is given by the probability mass function: 
 

𝑝$%&'( =
(1 + 𝑟)(

∑ (1 + 𝑟)(&')
(%*

 

 
 

where 

𝑟 = C𝑟", 𝑡 > 𝑐
𝑟#, 𝑡 ≤ 𝑐 

 
and with 𝑝$ = 0 when 𝑡 > 𝑎 and when 𝑡 < 𝑏.  Here we are interested in estimating from the 
BoundedDoubleExponential the growth rates 𝑟" and 𝑟#, and their change point 𝑐. To achieve this we used the 
following constants and priors: 
 

𝑎	 = 	7000	
𝑏	 = 	3000	

𝑟"~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇 = 0, 𝜎 = 0.0004) 
𝑟#~𝑁𝑜𝑟𝑚𝑎(𝜇 = 0, 𝜎 = 0.0004) 

𝑐~𝑇𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑𝑁𝑜𝑟𝑚𝑎𝑙(𝑎 = 3000, 𝑏 = 7000, 𝜇 = 5000, 𝜎 = 1000) 
 

which ensures a wide range of realistic patterns (see Fig. S9) with growth rates comparable to those 
observed from other SPDs and a weakly informative prior for 𝑐 reducing the probability of the shift in 
growth rate at the extremes of the window of analysis.  
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Figure S9. Prior predictive check of the bounded double exponential growth model. 

 
Posterior samples for the coastal, inland, and combined datasets were obtained using nimble’s Metropolis-
Hastings adaptive random-walk sampler, with three chains of 100,000 iterations, a burn-in of 10,000 steps, 
and a thinning interval of 6 iterates (see Fig. S10 for trace plots). The 90% highest posterior density interval, 
Gelman-Rubin convergence diagnostic (𝑅O), and the effective sample size of the three parameters for the 
three models are shown on table S5, while the fitted model and marginal posterior distributions are shown 
on Fig. S11 and S12. 
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Figure S10. MCMC Trace plots for the coastal, inland, and combined datasets. 

 
Figure S11. Fitted bounded double exponential growth model for the coastal, inland, and combined datasets. 
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Figure S12. Marginal posterior distribution of the growth rates (r1 and r2) and change points (c) for the coastal, inland, and combined datasets. 

 

Parameter Data 90% HPD ESS Ȓ 

r1 

Inland 0.00136 ~ 0.00221 25047.20 1.000 

Coastal 0.00031 ~ 0.00111 15594.01 1.001 

Combined 0.00095 ~ 0.00156 16786.76 1.001 

r2 

Inland -0.00174 ~ -0.00102 23394.61 1.000 

Coastal -0.00087 ~ -0.00025 17369.63 1.000 

Combined -0.00132 ~ -0.00079 16393.88 1.000 

c 

Inland 5151 ~ 4886 cal BP 17410.83 1.001 

Coastal 5614 ~ 4743 cal BP 11101.37 1.001 

Combined 5215 ~ 4879 cal BP 11016.00 1.000 

Table S5. MCMC summary statistics. 

 



 15 

To assess the goodness-of-fit of the growth model we carried out a posterior predictive check using the 
postPredSPD() function in the nimbleCarbon R package. The function generates an envelope of SPDs 
according to the fitted model and visualises time-intervals where the observed SPD showed a higher or 
lower density of radiocarbon dates. We generated the fitted model envelope of the three datasets using a 
95% percentile interval computed from 500 simulated SPDs using randomly drawn parameter 
combinations from the joint posterior distribution (Fig. S13). 
 

 
Figure S13. Posterior predictive checks of the fitted models 
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