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Supplementary Note1091

Estimation of gene-specific technical noise variance of gene expression1092

We estimate the technical variance similar to previous works1, 2. Specifically, we first compute the mean expression and1093

expression variance for each gene in the original non-log-transformed space. Next, we fit a non-linear tread to the log10-scale1094

variance/mean relationship using local polynomial regression (span=0.3, degree=2). The estimated trend models the expected1095

technical variance based on the mean expression; observed variance values above this expected trend reflect biological variance.1096

Given this trend, the proportion of technical variance is computed as the ratio of predicted technical variance to observed1097

variance (in the original non-log-transformed space). Note that it is possible for this ratio to be greater than 1 if the observed1098

variance is less than the expected variance. Finally, the technical variance of the log-transformed data s2
tech,g is computed as1099

the product of the variance of the gene (computed using the log-transformed data) and the proportion of technical variance as1100

estimated above.1101

Distribution of raw disease scores and raw control scores1102

Here we characterize the distribution of the raw disease scores and raw control scores under a simplified model. Assume the
expression levels {Xc 2 Rngene}ncell

c=1 are independently and identically distributed (i.i.d.) across cells with mean µµµ 2 Rngene and
covariance S 2 Rngene⇥ngene ,

Xc
i.i.d.⇠ (µµµ,S). (1)

Without loss of generality, also assume the gene weights are the same. Then the raw disease score and raw control scores (for a
given control gene set Gctrl

b ) can be written as

sc =
1
|G| Â

g2G
Xcg, sctrl

cb =
1

|Gctrl
b | Â

g2Gctrl
b

Xcg, (2)

where |G|= |Gctrl
b |. We next compare the distributions of sc and sctrl

cb . Since the control genes match the mean expression and
expression variance of the disease genes, we have

Â
g2G

µg = Â
g2Gctrl

b

µg, Â
g2G

Sgg = Â
g2Gctrl

b

Sgg. (3)

The first equation gives that E[sc] = E[sctrl
cb ].1103

For covariance, since the disease genes are more positively correlated due to co-expression in the associated cell population,
the covariance matrix of the disease genes has larger off-diagonal elements than that of the control genes. Since the sum of the
diagonal elements are equal between the two matrices due to the second part of Eq. (3), we have

Â
g,g02G

Sg,g0 > Â
g,g02Gctrl

b

Sg,g0 (4)

Since the variances of the raw disease score and raw control score can be written as

Var[sc] =
1

|G|2 Â
g,g02G

Sg,g0 , Var[sctrl
cb ] =

1
|Gctrl

b |2 Â
g,g02Gctrl

b

Sg,g0 , (5)

we have Var[sc]> Var[sctrl
cb ]. In summary,

E[sc] = E[sctrl
cb ], Var[sc]> Var[sctrl

cb ]. (6)

Since the raw disease scores have the same mean and a higher variance than the raw control scores, the top values of the raw1104

disease scores are larger than all raw control scores. These top values correspond to the disease-associated cells, which have1105

higher expression of the disease genes. Therefore, the disease-associated cells have larger raw disease scores than all raw1106

control scores.1107

Normalization of disease scores and control scores1108

First gene set alignment. This step aims to correct for the mismatch that the control genes do not have exactly the same1109

mean expression and expression variance as the disease genes. The variance level is estimated based on a heuristic that assumes1110

the genes in the given gene set are independent. Specifically, if Y = Ân
i=1 wiXi for weights w1, · · · ,wn 2 R and independent1111

random variables X1, · · · ,Xn, then Var[Y ] = Ân
i=1 w2

i Var[Xi].1112
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Cell-wise standardization. Consider the conditional distribution of the raw control score sctrl
cb given the expression matrix X,

where the randomness only comes from MC sampling of the control gene set Gctrl
b but not from the data generation process of

X. Again without loss of generality, assume all genes have the same mean and variance, and the gene weights are the same.
Then the raw control score can be written as

sctrl
cb =

1
|Gctrl

b | Â
g2Gctrl

b

Xcg. (7)

Since all genes have the same mean and variance, Gctrl
b corresponds to randomly and uniformly sampling |G| genes from the set

of all genes {1, · · · ,ngene} without replacement. When |G|⌧ ngene, sampling without replacement can be well approximated
by sampling with replacement (|G|< 20%ngene is usually a good heurestic3). In other words,

sctrl
cb

d⇡ 1
|G|

|G|

Â
g=1

Ycg, (8)

where Ycg’s are i.i.d. random variables uniformly sampled from {Xc1, · · · ,Xcngene} (meaning sampling with replacement) and1113

d⇡ means approximately equal in distribution. Furthermore, when |G| is large (e.g., >50), by the central limit theorem, being1114

an average of |G| i.i.d. random variables, sctrl
cb is close to a normal distribution, which depends only on its first two moments.1115

Therefore, it is sufficient to only match the mean and variance of the control score distributions of different cells.1116

As a remark, the raw control score distribution considered here is defined with respect to randomly sampling control gene1117

sets for a given cell, where the expression matrix X is fixed. It is different from the distribution of scores computed from a1118

given gene set S (disease gene set or control gene set) across cells, where the randomness can be viewed as coming from the1119

data generation process of the expression matrix X. In this latter case, since the gene expression levels are correlated, the score1120

of a given cell s = 1
|S| Âg2S Xcg can not be viewed as an average of i.i.d. random variables (because Xcg’s may be dependant)1121

and can be very different from the normal distribution especially when the gene set size |S| is small.1122

Second gene set alignment. This step aims to correct for the differences of the mean values of scores from different gene1123

sets introduced by cell-wise standardization. The differences are relatively small (Supp. Fig. 1F). Hence, this step is less1124

important. For this reason and also because it is hard to find a good heuristic for estimating the variance levels of scores from1125

different gene sets without down-weighting the disease scores due to the higher correlation between disease genes, we do not1126

correct for the difference of the variance of scores from different gene sets.1127

Related works1128

Previous methods for identifying disease-critical tissues and cell types. Many types of data that assay gene regulation1129

have been integrated with GWAS data to identify disease-relevant tissues and cell types, including chromatin and histone1130

modifications4–13 and gene expression measurements14–23. Studies using gene expression data have generally either used1131

tissue-level data derived from DNA microarrays / bulk RNA-Seq14–17, 20, or focused on predefined cell types (usually classical1132

cell types based on known marker genes) in scRNA-seq data by aggregating cells from the same cell type18, 21, 22; these cell type1133

annotations may be hard to obtain especially for less well-studied cell populations or subtle cell states within a cell type. One1134

exception is Jagadeesh and Dey et al.23, who associated intra- and inter-cell type cellular processes identified in scRNA-seq1135

data to disease.1136

Previous methods for scoring individual cells. Previous works analyzing scRNA-seq data alone have used individual1137

cell-level scores to characterize cellular heterogeneity and subtle cell states within classically defined cell types2, 24–29, where the1138

cell scores were computed based on the expression of a predefined set of genes such as cell cycle signature genes or biological1139

pathways. These works did not integrate GWAS data. In addition, they generally did not provide individual cell-level p-values1140

for associating individual cells to the gene set (VAM2 is the only exception, but we show that VAM suffers severely inflated type1141

I error; Fig. 2A). We further note that two studies have associated individual cells in scATAC-seq data to disease12, 13. However,1142

scATAC-seq and scRNA-seq data have different data structures and require different treatments (e.g., matching nucleotide GC1143

content and fragment accessibility for scATAC-seq data12 vs. matching gene expression mean and variance in our paper). To1144

our knowledge, no previous study has associated individual cells in scRNA-seq data to disease.1145
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Supplementary Tables1305

See Supplementary Excel file

Supplementary Table 1. GWAS diseases and complex trait data sets. We report the name, identifier, code, category,
reference, sample size, number of variants, estimated heritability using LD Score regression (LDSC)30–32 for the 74
diseases/traits analyzed in the paper. We also report polygenicity for a subset of 21 diseases/traits (Me for common SNPs; Table
1 in O’Connor et al.33). The disease called “Auto Immune Traits” (in UK Biobank) is based on the following codes and disease
names that characterize autoimmune physiopathogenic etiology: 1222 (t1d; type 1 diabetes); 1256 (guillainBarre); 1260
(myasthenia); 1261 (ms); 1372 (vasculitis); 1378 (Wegener’s); 1381 (sle); 1382 (Sjogren); 1384 (sysSclerosis); 1437
(myasthenia); 1456 (celiac); 1464 (ra); 1522 (grave); 1661 (vitiligo)34, 35.

Data set Species Ncell Ntissue Ncell type Description
TMS FACS36 Mus musculus 110,096 23 120 Mouse cell atlas (FACS + Smart-seq2)
TMS droplet36 Mus musculus 245,389 16 123 Mouse cell atlas (10x microfluidic droplets)
TS FACS37 Homo sapiens 26,813 24 134 Human cell atlas (FACS + Smart-seq2)
Cano-Gamez & Soskic et
al.38

Homo sapiens 43,112 1 22 Subtypes of naive, memory, and activated
CD4+ T cells from the blood

Nathan et al.39 Homo sapiens 500,089 1 30 T cells from the blood
Zeisel & Muñoz-
Manchado et al.40

Mus musculus 3,005 1 9 Cortex and hippocampus; 827 CA1 pyramidal
cells

Zeisel et al.41 Mus musculus 160,797 1 265 Whole nervous system; 304 CA1 pyramidal
cells

Habib & Li et al.42 Mus musculus 1,367 1 7 Hippocampal regions from adult mice; 155
CA1 pyramidal cells; snRNA-seq

Habib, Avraham-Davidi,
& Basu et al.43

Homo sapiens 14,963 1 21 Archived brain sample; 421 CA1 pyramidal
cells; snRNA-seq

Ayhan et al.44 Homo sapiens 129,908 1 24 Surgically resected anterior and posterior hip-
pocampus from epilepsy patients; 5,454 CA1
pyramidal cells; snRNA-seq

Yao et al.45 Mus musculus 74,974 1 388 Cortex and hippocampus; 1,701 CA1 pyrami-
dal cells using SMART-Seq v4 technology

Zhong et al.46 Homo sapiens 30,416 1 11 Hippocampus at gestational weeks 16–27;
5,972 CA1 pyramidal cells

Aizarani et al.47 Homo sapiens 10,372 1 11 Hepatocytes, endothelial cells, and other com-
mon cell types from the liver

Halpern & Shenhav et
al.48

Mus musculus 1,415 1 1 Hepatocytes

Richter & Deligiannis et
al.49

Mus musculus 1,649 1 1 Sorted 2n and 4n hepatocytes (Hoechst dye +
FACS); snRNA-seq

Taychameekiatchai et
al.50

Mus musculus 19,254 1 15 Hepatocytes, endothelial cells, and other com-
mon cell types from the liver

Supplementary Table 2. ScRNA-seq and snRNA-seq data sets. We report the reference, species, number of cells,
number of tissues, number of cell types, and a short description for each scRNA-seq/snRNA-seq data set analyzed in the paper.
Data sets without “snRNA-seq” in the description are scRNA-seq data sets. The 16 data sets contain more than 1.3 million cells
from 31 tissues and organs, including aorta, brown adipose tissue (BAT), bladder, blood, bone marrow, brain myeloid, brain
non-myeloid, diaphragm, eye, gonadal adipose tissue (GAT), heart, kidney, large intestine, limb muscle, liver, lung, lymph
node, mesenteric adipose tissue (MAT), mammary gland, pancreas, prostate, subcutaneous adipose tissue (SCAT), salivary
gland, skin, small intestine, spleen, thymus, tongue, trachea, uterus, vasculature. For clarification, Zeisel & Muñoz-Manchado
et al. refers to the data from Zeisel & Muñoz-Manchado et al. 2015 Science40 and Zeisel et al. refers to the data from Zeisel et
al. 2018 Cell41.
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See Supplementary Excel file

Supplementary Table 3. Cell types in the TMS FACS data. We report 120 cell types in the TMS FACS data, the
corresponding number of cells, and the corresponding tissue composition (for tissues consisting >1% of cells from the cell
type).

See Supplementary Excel file

Supplementary Table 4. Cell types in the TMS droplet data. We report 123 cell types in the TMS droplet data, the
corresponding number of cells, and the corresponding tissue composition (for tissues consisting >1% of cells from the cell
type).

See Supplementary Excel file

Supplementary Table 5. Cell types in the TS FACS data. We report 132 cell types in the TS FACS data, the
corresponding number of cells, and the corresponding tissue composition (for tissues consisting >1% of cells from the cell
type).

See Supplementary Excel file

Supplementary Table 6. MAGMA gene sets. We report MAGMA gene sets for the 74 diseases and traits.

See Supplementary Excel file

Supplementary Table 7. MSigDB terms for curating signature gene sets. We report the MSigDB terms used to curate
the signature gene sets in the paper.

See Supplementary Excel file

Supplementary Table 8. Signature gene sets. We report the signature gene sets used in the paper.

See Supplementary Excel file

Supplementary Table 9. Numerical results for null simulations in Fig. 2A. We report the mean and SE of p-value
quantiles for different cell-scoring methods over 100 repetitions.

Nominal FDR level 0.05 0.1 0.2
Actual FDR level 0.00±0.00 0.02±0.03 0.18±0.08

Supplementary Table 10. Results for null simulations for testing cell type-disease association. We assessed
calibration of the MC test for cell type-disease association based on the output of scDRS. We used the same subsampled data
(10,000 cells from TMS FACS) and 1,000 randomly-selected disease genes. We report the actual FDR for multiple testing
across all 118 cell types in the subsampled data at various nominal FDR levels. 95% confidence intervals are provided based on
the 100 repetitions.

See Supplementary Excel file

Supplementary Table 11. Numerical results for causal simulations in Fig. 2B. We report the mean and SE of power at
various effect sizes for different cell-scoring methods over 100 repetitions.

See Supplementary Excel file

Supplementary Table 12. Numerical results for cell type-level analyses for the TMS FACS data in Fig. 3. For each
pair of cell type and disease/trait, we report the proportion of significantly associated cells (FDR<0.1), FDR for cell
type-disease association, and FDR for within-cell type disease association heterogeneity.

See Supplementary Excel file

Supplementary Table 13. Numerical results for cell type-level analyses for the TMS droplet data. For each pair of
cell type and disease/trait, we report the proportion of significantly associated cells (FDR<0.1), FDR for cell type-disease
association, and FDR for within-cell type disease association heterogeneity.
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See Supplementary Excel file

Supplementary Table 14. Numerical results for cell type-level analyses for the TS FACS data. For each pair of cell
type and disease/trait, we report the proportion of significantly associated cells (FDR<0.1), FDR for cell type-disease
association, and FDR for within-cell type disease association heterogeneity.

Trait Positive control Negative control
Schizophrenia Neuron T cell
Major depressive disorder Neuron T cell
Atrial fibrillation Atrial & ventricular myocyte Neuron
Rheumatoid arthritis T cell Hepatocyte
LDLdirect Hepatocyte Neuron

Supplementary Table 15. Traits and control cell types for evaluating parameters when constructing putative
disease gene sets. We report the 5 traits and the corresponding positive and negative control cell types in the TMS FACS data
for evaluating the performance of scDRS under different parameter settings. “Neuron” refers to all sub-types of neurons,
including MSNs and interneurons; “T cell” refers to all sub-types of T cells.

Window size 10kb 0kb 50kb
Number of genes 100 500 1000 2000 1000
Schizophrenia 30.0 47.8 54.3 60.4 56.7 52.8
Major depressive disorder 40.5 47.4 52.4 53.1 52.0 51.9
Atrial fibrillation 33.5 24.7 25.3 21.7 24.2 23.4
Rheumatoid arthritis 124.4 120.8 133.1 117.2 108.3 137.8
LDLdirect 61.4 91.7 71.0 76.8 71.7 78.2

Supplementary Table 16. Evaluating parameters for constructing putative disease gene sets. We report t-statistics for
comparing the normalized disease scores from the positive control and negative control cell types for each trait and each
configuration. For each trait, the top two configurations yielding the highest t-statistics are highlighted in bold font.

Trait CD4.P CD4.Var CD4.P.joint CD8.P CD8.Var CD8.P.joint
IBD 0.001 0.310 0.002 0.009 0.113 0.010
CD 0.001 0.222 0.002 0.019 0.096 0.003
UC 0.001 0.192 0.032 0.378 0.000 0.489
RA 0.343 0.002 0.468 0.370 0.001 0.716
MS 0.339 0.002 0.390 0.202 0.009 0.492
AIT 0.001 0.177 0.004 0.060 0.049 0.208
HT 0.011 0.100 0.053 0.165 0.014 0.384

Eczema 0.020 0.066 0.298 0.804 0.012 0.870
ASM 0.023 0.062 0.294 0.263 0.004 0.532

RR-ENT 0.021 0.081 0.100 0.180 0.014 0.196
Height 0.291 0.004 0.747 0.828 0.010 0.635

Supplementary Table 17. Numerical results for correlations between scDRS disease scores and T cell effectorness
gradients in Fig. 4C. We first regressed the scDRS disease score against the CD4 (resp., CD8) effectorness gradient for each
of the 10 autoimmune diseases and the negative control trait height. We report p-values for significant positive correlation
between the scDRS disease score and the effectorness gradients (“CD4.P”/“CD8.P”; MC test) and variance explained
(“CD4.Var”/“CD8.Var”). We then jointly regressed the scDRS disease score against the CD4 (resp., CD8) effectorness
gradient and the cluster labels (encoded as dummy variables). We report p-values for significant positive correlation between
the scDRS disease score and the effectorness gradients (“CD4.P.joint”/“CD8.P.joint”; MC test). P-values smaller than 0.005
were highlighted in bold font.
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See Supplementary Excel file

Supplementary Table 18. Gold standard gene sets. We report matched Experimental Factor Ontology (EFO),
corresponding EFO label, corresponding putative drug target gene set, number of putative drug target genes, matched
Mendelian disorder, corresponding Mendelian disease gene set, and number of Mendelian disease genes for 27 diseases with
putative drug target gene sets (from Open Targets) and 45 diseases/traits with Mendelian gene sets (from Freund et al.51); a
disease/trait may have both drug target and Mendelian disease gene set. Specifically, for the 10 autoimmune diseases in Fig.
4D, the immune dysregulation Medelian disease gene set was used for HT and RR-ENT while the corresponding drug target
gene sets were used for the other 8 autoimmune diseases.

See Supplementary Excel file

Supplementary Table 19. Numerical results for comparison to gold standard gene sets in Fig. 4D. We report excess
overlap and � log10 p-value for comparison to drug target and Mendelian disease gene sets respectively for each disease gene
prioritization method (scDRS/MAGMA) and each of the 27 GWAS diseases with drug target gene sets and 45 diseases/traits
with Mendelian disease gene sets.

IBD CD UC RA MS AIT HT Eczema ASM RR-ENT Height
Cano-Gamez et al.

TCM1 (Th17/iTreg) .05 .05 ns ns ns .04 ns .04 ns ns ns
TCM2 (Th0) ns .05 ns ns ns ns ns ns ns ns ns

TEM (Th17/iTreg) .01 .05 ns ns ns .04 .02 ns ns ns ns
TN (Th17/iTreg) .01 .03 .01 ns ns ns .04 .01 ns .02 ns

nTreg (Th0) .01 .02 .01 .02 .02 .02 .04 .01 ns .03 ns
Nathan et al.

CD4+ CCR4+ ns ns ns ns ns ns ns <.01 ns ns ns
CD4+ CCR4+ICOS+ central ns ns .05 ns ns ns ns .02 ns ns ns
CD4+ CD38+ICOS+ central ns ns ns <.01 ns ns ns ns ns ns ns

CD4+ CD161+ Th2 <.01 ns <.01 ns ns ns ns <.01 .03 <.01 ns
CD4+ HLA-DR+ ns ns <.01 ns ns ns ns ns ns ns ns

CD4+ RORC+ Treg <.01 <.01 <.01 <.01 .01 <.01 <.01 <.01 <.01 <.01 ns
CD4+ Th2 <.01 ns <.01 ns ns ns ns <.01 .04 .03 ns

CD4+ Th17 <.01 ns .01 ns ns ns <.01 <.01 <.01 <.01 ns
CD4+ Th17/1 <.01 <.01 .03 ns ns ns ns <.01 <.01 <.01 ns

CD4+ Treg ns ns <.01 <.01 ns <.01 <.01 ns ns ns ns
CD4+ activated <.01 ns <.01 <.01 ns ns <.01 .02 <.01 <.01 ns
CD4+ central ns ns ns ns ns <.01 <.01 ns ns ns ns

CD4+ lncRNA ns ns ns <.01 ns ns <.01 ns ns <.01 ns
CD8+ central ns ns ns ns ns ns ns .02 ns ns ns

Vd1 ns ns ns <.01 ns ns ns ns ns ns ns

Supplementary Table 20. Cell type-disease associations for T cell subtypes in Cano-Gamez & Soskic et al. and
Nathan et al. data sets. We report FDR for significant cell type-disease associations (FDR<0.05) in the Cano-Gamez &
Soskic et al. and Nathan et al. data sets (Supp. Table 2). We performed cell type-disease associations between each cell type in
the two data sets and each of the 10 autoimmune diseases (and height, a negative control trait) using scDRS-based MC test.
The Nathan et al. data has 500,089 cells, which we randomly divided into 4 batches and processed them using
scDRS separately, followed by combining the MC p-values across batches for each cell type-disease pair using Fisher’s
combined probability test. We applied FDR control for each data set and each disease separately across all cell types in the data
set (22 cell types in Cano-Gamez & Soskic et al. and 29 cell types in Nathan et al.).

See Supplementary Excel file

Supplementary Table 21. Results for cell type-level analyses for the Zeisel & Muñoz-Manchado et al. data. For each
pair of cell type and disease/trait, we report the proportion of significantly associated cells (FDR<0.1), FDR for cell
type-disease association, and FDR for within-cell type disease association heterogeneity.
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Trait Dorsal.P Dorsal.Var Ventral.P Ventral.Var Proximal.P Proximal.Var Distal.P Distal.Var Deep.P Deep.Var Superficial.P Superficial.Var
MDD 0.001 0.245 0.75 0.006 0.002 0.151 0.25 0.003 0.001 0.189 0.82 0.004
SCZ 0.001 0.178 0.67 0.002 0.001 0.194 0.81 0.004 0.001 0.114 0.83 0.004
NRT 0.002 0.130 0.28 0.004 0.001 0.205 0.65 0.001 0.001 0.146 0.55 0.000

Smoking 0.009 0.099 0.13 0.017 0.001 0.176 0.61 0.001 0.001 0.139 0.27 0.002
ECOL 0.001 0.165 0.42 0.000 0.001 0.216 0.41 0.000 0.001 0.168 0.69 0.001
BMI 0.021 0.060 0.071 0.026 0.001 0.287 0.61 0.000 0.001 0.142 0.44 0.000

Height 0.37 0.002 0.55 0.000 0.008 0.063 0.68 0.001 0.21 0.007 0.98 0.018

Supplementary Table 22. Numerical results for correlations between scDRS disease scores and inferred spatial
coordinates in Fig. 5B. We separately regressed the scDRS scores of each of the 6 brain traits (and height, a negative control
trait) against each of the 6 inferred spatial coordinates across the 827 CA1 pyramidal neurons. We report p-values for
significant positive correlation between the scDRS disease score and the inferred spatial coordinates (MC test) and variance
explained. P-values smaller than 0.005 were highlighted in bold font.

Polyploidy.P Pericentral.P Periportal.P Variance explained
TG 0.001 0.722 0.012 0.556

HDL 0.003 0.612 0.036 0.443
LDL 0.010 0.476 0.010 0.415
TC 0.003 0.432 0.008 0.457

TST 0.001 0.755 0.007 0.584
ALT 0.001 0.540 0.004 0.632
ALP 0.001 0.539 0.001 0.573

SHBG 0.001 0.643 0.018 0.597
TBIL 0.001 0.804 0.186 0.482

Height 0.622 0.940 0.239 0.114

Supplementary Table 23. Numerical results for correlations between scDRS disease scores and inferred ploidy and
zonation scores in Fig. 5D. We jointly regressed the scDRS scores of each of the 9 metabolic traits (and height, a negative
control trait) on the polyploidy score, pericentral score, and periportal score. We report p-values for significant positive
correlation between the scDRS disease score and the polyploidy score, pericentral score, and periportal score (MC test) and
variance explained. P-values smaller than 0.005 were highlighted in bold font.

TMS FACS TMS Droplet Aizarani Halpern Richter Taychameekiatchai
4n hepatocyte (vs. 2n) 0.001 0.001 0.001 0.001 0.001 0.001
polyploid (Cdk1 ko) 0.001 0.001 0.001 0.038 0.001 0.001

large hepatocyte (vs. small) 0.001 0.001 0.001 0.001 0.001 0.001
2n hepatocyte (vs. 4n) 0.470 0.009 0.542 0.003 0.001 0.014

diploid (Cdk1 ko) 0.001 0.001 0.321 0.028 0.001 0.148
diploid (PH) 0.001 0.001 0.156 0.001 0.002 0.001

Supplementary Table 24. Correlation between scDRS scores and different ploidy signatures. We correlated our
polyploidy score (based on DEGs for PH vs. pre-PH) with other ployploidy and diploidy signatures for the 6 data sets. We
report p-values for significant positive correlation for the polyploidy signatures (first three rows) and significant negative
correlation for the diploidy signatures (last three rows). P-values smaller than 0.005 were highlighted in bold font.
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Raw scores Scores after 1st gene set alignment Scores after cell-wise standardization

Figure 1 supplement

A B C

D E F

G H I

Supplementary Figure 1. Details of scDRS method. Results are based 10,000 cells subsampled from TMS FACS and 3
sets of putative disease genes: IBD, SCZ, and R1K (1,000 random genes). (A-C) Variance of raw disease scores (dashed line)
and raw control scores (histogram) computed across cells for different gene sets. Informative disease gene sets (IBD and SCZ)
have higher disease score variances while the uninformative gene set (R1K) has comparable values for the disease score
variance and control score variances. We considered raw scores after the first gene set alignment to remove potential mismatch
of expression mean and variance across gene sets. (D) Comparison between raw disease scores and raw control scores (before
Box 1, step 3a). The upper panel shows the distribution of disease scores and the lower panel shows the histogram of the mean
of control scores (computed for each control gene set across cells). There is a moderate level of mismatch of mean expression
across control gene sets (ratio between the SD of mean control scores across control gene sets and SD of disease scores across
cells is 6.8%); this mismatch is corrected by the first gene set alignment (Box 1, step 3a). (E) Comparison between disease
scores and control scores after the first gene set alignment (before Box 1, step 3b). The upper panel shows the distribution of
disease scores and the middle (resp. lower) panel shows the histogram of the per-cell mean (resp. SD) of control scores
(computed for each cell across control gene sets). There is a high level of mismatch of the control score distribution (mean and
SD) across cells; this mismatch is corrected by the cell-wise standardization (Box 1, step 3b). (F) Comparison between disease
scores and control scores after cell-wise standardization (before Box 1, step 3c). The upper panel shows the distribution of
disease scores and the lower panel shows the histogram of the mean of control scores (computed for each control gene set
across cells). There is a mild level of mismatch of mean expression across control gene sets (ratio between the SD of mean
control scores across control gene sets and SD of disease scores across cells is 1%); this mismatch is corrected by the second
gene set alignment (Box 1, step 3c). Panels D-F are based on the IBD results. (G-I) Comparison between MC p-values with
B =20,000 and scDRS p-values with B =1,000 for IBD, SCZ, and R1K. Each dot denotes a cell and the pMC limit 1/(1+B) is
the smallest MC p-value that an MC test with B MC samples can achieve. The scDRS p-values are highly correlated with the
MC p-values obtained with B =20,000, both across all cells and across cells with pMC <0.001 (pMC limit at B = 1,000;
corresponding to cells whose ideal MC p-values (with B = •) are small and require scDRS to extrapolate beyond the pMC

limit at the given number of MC samples), suggesting that scDRS can reliably approximate the ideal p-values obtained with an
infinite number of MC samples. The dots on the vertical dashed line correspond to those whose ideal MC p-values are smaller
than the pMC limit at B =20,000; it is not surprising that the scDRS p-values, approximating the ideal MC p-values, are on
average smaller than the MC p-values for these cells.
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Figure 2 supplement additional null simulation

A B C

D E F

G

J K L

IH

Supplementary Figure 2. Additional null simulations We performed null simulations for various numbers of putative
disease genes (100, 500, 1,000 for the three columns respectively) and various types of genes to randomly sample from: all
genes (first row), and top 25% genes with high expression (second row), top 25% genes with high expression variance (third
row), top 25% overdispersed genes (fourth row). In each panel, the x-axis denotes theoretical � log10 p-value quantiles and the
y-axis denotes actual � log10 p-value quantiles for different methods. scDRS produced well-calibrated p-values in most
settings and suffered slightly inflated type I error in panel L, possibly because it is hard to match a large number of
overdispersed putative disease genes using the remaining set of genes. In comparison, all other methods are less well-calibrated
and are particularly problematic when the numbers of putative disease genes are small. All experiments were repeated 100
times and 95% confidence intervals were provided.
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Figure 2 supplement causal simulation varying effect size and overlap 

A B C

D E F

G H I

Supplementary Figure 3. Additional causal simulations. We performed three sets of causal simulations: (1) varying
effect size from 5% to 50% while fixing 25% overlap (first column), (2) varying level of overlap from 5% to 50% while fixing
25% effect size (second column), (3) assigning the 528 B cells in the subsampled data to be causal (instead of the 500 randomly
selected cells; varying effect size while fixing 25% overlap; third column). We report the power (first row), FDR (second row),
and AUC for classifying causal from non-causal cells based on the p-values (third row). scDRS outperformed other methods
under all metrics. All experiments were repeated 100 times and 95% confidence intervals were provided.
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Supplementary Figure 4. Complete results for disease associations at the cell type level for 74 diseases/traits and
120 cell types in the TMS FACS data in Fig. 3. Each row represents a disease/trait and each column represents a cell type
(with number of cells indicated in parentheses). Heatmap colors for each cell type-disease pair denote the proportion of
significantly associated cells (FDR<0.1 across all cells for a given disease). Squares denote significant cell type-disease
associations (FDR<0.05 across all pairs of the 120 cell types and 74 diseases/traits; 577 significant pairs; p-values via MC test;
Methods). Cross symbols denote significant heterogeneity in association with disease across individual cells within a given cell
type (FDR<0.05 across all pairs; 247 significant pairs; p-values via MC test; Methods). Heatmap colors and cross symbols are
omitted for cell type-disease pairs with non-significant cell type-disease associations. Within the blood/immune block (40 cell
types and 21 diseases/traits), 120 of 249 cell type-disease pairs with significant association also had significant heterogeneity.
Within the brain block (11 cell types and 21 diseases/traits), 56 of 130 cell type-disease pairs with significant association also
had significant heterogeneity. Within the other block (69 cell types and 32 diseases/traits), 51 of 143 cell type-disease pairs
with significant association also had significant heterogeneity. Numerical results are reported in Supp. Table 12.
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A B

Supplementary Figure 5. Heterogeneous subpopulations of proerythroblasts associated with red blood cell
distribution width (RDW). (A) Significant heterogeneity (FDR=0.026) of proerythroblasts (in the spleen) in association with
RDW. (B) Expression levels of proerythroblast marker genes are significantly positively correlated with the scDRS disease
score. The x-axis denotes marker gene expression quintile bins and the y-axis denotes average scDRS disease score for each
bin. * denotes P <0.05 and ** denotes P <0.005. The heterogeneous association levels of proerythroblasts with RDW may
correspond to the different differentiation stages of proerythroblasts52. Of note, the scDRS disease score was not correlated
with age (P =0.13) or sex (P =0.39).

A B

Supplementary Figure 6. Heterogeneous subpopulations of oligodendrocyte precursor cells associated with
schizophrenia (SCZ). (A) Significant heterogeneity (FDR=0.039) of oligodendrocyte precursor cells (in the brain
non-myeloid) in association with SCZ. (B) Expression levels of oligodendrocyte precursor cell marker genes are significantly
positively correlated with the scDRS disease score. The x-axis denotes marker gene expression quintile bins and the y-axis
denotes average scDRS disease score for each bin. * denotes P <0.05 and ** denotes P <0.005. The heterogeneous
association levels of oligodendrocyte precursor cells with SCZ may correspond to the different developmental stages of
oligodendrocyte precursor cells53. Of note, the scDRS disease score was slightly higher in male than female (P =0.012), and
was not correlated with age (P =0.083).
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A B

Supplementary Figure 7. Heterogeneous subpopulations of pancreatic beta cells associated with glucose. (A)
Significant heterogeneity (FDR=0.039) of pancreatic beta cells (in the pancreas) in association with glucose. (B) Expression
levels of pancreatic beta cell marker genes are significantly positively correlated with the scDRS disease score. The x-axis
denotes marker gene expression quintile bins and the y-axis denotes average scDRS disease score for each bin. * denotes
P <0.05 and ** denotes P <0.005. The heterogeneous association levels of pancreatic beta cells with glucose level may
correspond to different states of pancreatic beta cells with varying insulin production levels54. Of note, the scDRS disease
score was higher in female than male (P =0.003) and was negatively correlated with age (P =0.002).
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Supplementary Figure 8. Comparison of cell type-level disease association results between TMS FACS and TMS
droplet (different technology), TS FACS (different species). (A-C) Results for disease association at the cell type-level for
TMS FACS, TMS droplet, and TS FACS for diseases and cell types in the blood/immune block (upper left) and the other cell
types/diseases block (lower right) in Fig. 3 (TMS droplet and TS FACS do not contain brain data). The plotting style is same as
Fig. 3. Heatmap colors for each cell type-disease pair denote the proportion of significantly associated cells (FDR<0.1);
squares denote significant cell type-disease associations (FDR<0.05); and cross symbols denote significant heterogeneity in
association with disease across individual cells within a given cell type (FDR<0.05). Heatmap colors (>10% of cells
associated) and cross symbols are omitted for cell type-disease pairs with non-significant cell type-disease associations via MC
test. We matched each TMS FACS cell type using the closest cell type in the TMS droplet and TS FACS data; unmatched cell
types were colored in grey. (D) Overlap of significant cell type-disease associations between TMS FACS and TMS droplet
(P =1.7⇥10�26, Fisher’s exact test). (E) Correlation of � log10 p-values for cell type-disease associations between TMS
FACS and TMS droplet. (F) Overlap of significant cell type-disease associations between TMS FACS and TS FACS
(P = 7.5⇥10�7, Fisher’s exact test). (G) Correlation of � log10 p-values for cell type-disease associations between TMS
FACS and TS FACS. We determined that the results are highly consistent between TMS FACS and TMS droplet, and are
reasonably consistent between TMS FACS and TS FACS. Our method is underpowered in the TS FACS data, possibly due to
the smaller sample size (27K cells in TS FACS vs. 110K cells in TMS FACS). The current TS FACS data corresponds to the
initial data release and there will likely be more cells in future releases37.
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Consistency of results to LDSC-SEG

A B

Supplementary Figure 9. Comparison of cell type-disease associations to LDSC-SEG. We used LDSC-SEG to analyze
the same 120 TMS FACS cell types and 74 diseases and compared the cell type-disease associations identified by the two
methods. We considered two versions of scDRS cell type-disease association discoveries: (1) cell type-disease pairs with more
than 10% of individual cells associated to disease (non-white color in Supp. Fig. 4), (2) cell type-disease pairs with FDR<0.05
for cell type-disease association via MC test (squares in Supp. Fig. 4). For LDSC-SEG, we performed one-versus-rest
differential expression analysis (“rank_genes_groups” with option “t-test_overestim_var” in scanpy55) to identify
specifically-expressed genes for each of the 120 cell types (top 1,000 genes to be consistent with scDRS). We used 100-kb
windows around the gene body to map genes to variants (default setting in LDSC-SEG) and applied LDSC-SEG20 conditional
on the 52 baseline annotations (baseline v1.2) to identify disease-relevant cell types. We computed FDR across all pairs of cell
types and diseases/traits and used a significance threshold of 0.05. (A) Venn diagram between the scDRS discoveries (based
on scDRS individual cell-level associations) and LDSC-SEG discoveries (P =1.4⇥10�162, Fisher’s exact test). (B) Venn
diagram between the scDRS discoveries (based on scDRS cell type-level associations via MC test) and LDSC-SEG
discoveries (P =8.7⇥10�295, Fisher’s exact test).

Figure 1 supplement

A B

Supplementary Figure 10. Comparison of scDRS to alternative cell-level scores. We considered other cell-level scores,
including the unweighted average and the overdispersion score, which tests for both overexpression and underexpression of the
disease genes in the relevant cell population (Methods). Each dot corresponds to one of the 74 diseases, the x-axis denotes the
number of associated cells (FDR<0.1) using the default weighted average score (used in scDRS) and the y-axis denotes results
using the alternative cell-level scores. For each of these comparisons, we also computed the Pearson’s correlation of the � log10
p-values across cells for each trait, and report the average correlation across traits (along with SD). We determined that the
default weighted average score attained higher power while being consistent with the alternative cell-level scores.
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Robustness & consistency of scTRS to parameter choices (number of genes, window size)
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Supplementary Figure 11. Comparison of scDRS results for different parameter settings. (A-F) scDRS disease
associations at the cell type level for the 120 cell types in TMS FACS data and 74 diseases/traits using different numbers of
putative disease genes (100, 500, 1,000, 2,000 while fixing the 10-kb MAGMA window) and using different MAGMA window
sizes (0 kb, 10 kb, 50 kb while fixing the 1,000 putative disease genes). For each heatmap, each row represents a disease/trait
and each column represents a cell type. Heatmap colors for each cell type-disease pair denote the proportion of significantly
associated cells (FDR<0.1 across all cells for a given disease). Diseases/traits and cell types are in the same order as in Supp.
Fig. 4. (G) Pearson’s correlation of the scDRS normalized disease scores across cells between the default parameter setting
(1,000 genes, 10-kb window, panel C) and other parameter settings. Each boxplot represents the distribution of the Pearson’s
correlations across 74 diseases/traits.
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Optimal parameters depends on trait, correlate with 
polygenicity and heritability

A B

Supplementary Figure 12. Relationship between optimal size of disease gene set with heritability and polygenicity
across diseases/traits. (A) Heritability. (B) Polygenicity as measured by log10 Me in O’Connor et al.33 for common SNPs.
Each dot corresponds to a trait, the x-axis denotes the optimal size of putative disease genes for the trait and the y-axis denotes
heritability/polygenicity. Pearson’s correlation and the corresponding p-value are based on correlating the optimal size of
disease gene set with heritability/polygenicity across diseases/traits.
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Figure 4 covariates

B C

Supplementary Figure 13. Covariate composition for clusters in Fig. 4A and the corresponding UMAP
visualization. (A) Tissue. (B) Sex. (C) Age.

A

Figure 4 association for other traits
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Supplementary Figure 14. Subpopulations of TMS FACS T cells associated with the other 9 autoimmune diseases
(besides IBD reported in Fig. 4B) and height, a negative control trait. Significantly associated cells (FDR<0.1) were
colored in red with shades of red representing the scDRS disease score; non-significant cells were colored in grey.
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A
Figure 4 additional results for IBD-associated cells

B

C

D

Supplementary Figure 15. Additional results on subpopulations of T cells associated with IBD. (A) Expression of
marker genes in subpopulations of T cells associated with IBD, including general T cell markers (CD3D, CD4, CD8A), Treg
markers (FOXP3, CTLA4, LAG3, IKZF2 (Helios), NRP1 (Neuropilin-1), FLOR4, TNFRSF4 (OX40), TNFRSF18 (GITR)),
signatures of a KLRG1+ AREG+ effector-like Treg program56 (IL1RL1 (ST2), KLRG1, AREG1, GATA3), Th17 markers (IL1R1,
IL23R, RORC, IL17A, IL17F), and effector CD8+ T cell signatures (IFNG, PRF1, GZMB, GZMK, FASL). (B) Overlap between
T cell signatures and the top 300 specifically expressed genes for each IBD-associated T cell subpopulation (Supp. Table 8;
Methods). The color and number in each cell represent the � log10 enrichment p-values (Fisher’s exact test). (C) Overlap
between Treg programs56 (KA Treg: KLRG1+ AREG+ effector-like Treg program; Tr17: Th17-like Treg program; Supp. Table
8) and the top 300 specifically expressed genes of each IBD-associated T cell subpopulation. The color and number in each cell
represent the � log10 enrichment p-values (Fisher’s exact test). (D) Pathways enriched in the top 300 specifically expressed
genes of the IBD-associated cells and non-associated cells in cluster 3 respectively. The color and number in each cell represent
the � log10 enrichment p-values (based on Enrichr implemented in GSEAPY57, 58).
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A

Figure 4 supplement Cd4 and Cd8 effector gradients

C

B D

Supplementary Figure 16. Results for CD4 and CD8 effectorness gradients. (A) UMAP visualization of CD4
effectorness gradient across CD4+ T cells. The effectorness gradient was represented in the red color and non-CD4+ T cells
were colored in grey. (B) UMAP visualization of CD8 effectorness gradient across CD8+ T cells. The effectorness gradient
was represented in the red color and non-CD8+ T cells were colored in grey. (C) Correlation across CD4+ T cells between
CD4 effectorness gradient and signatures for naive, memory, and effector CD4+ T cells (scDRS disease scores for applying
these signature gene sets to the TMS FACS data). The x-axis denotes CD4 effectorness gradient quintile bins and the y-axis
denotes average scDRS disease score for each bin and each signature gene set. * denotes P <0.05 and ** denotes P <0.005.
(D) Correlation across CD8+ T cells between CD8 effectorness gradient and signatures for naive, memory, and effector CD8+
T cells. The x-axis denotes CD8 effectorness gradient quintile bins and the y-axis denotes average scDRS disease score for
each bin and each signature gene set. * denotes P <0.05 and ** denotes P <0.005.
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Figure 4 supplement LDSC-SEG analysis

A

B C

Supplementary Figure 17. Comparison of individual cell level T cell results to cluster-level analyses. We reclustered
the set of T cells with different cluster resolutions (0.2, 0.7, 2, 5; 0.7 corresponds to Fig. 4A), followed by performing
LDSC-SEG analysis on specifically expressed genes (SEGs) for each cluster and each of the 10 autoimmune diseases; we
considered two ways for computing SEGs for a given cluster: by comparing to other T cells (vs. T cells) or to all other cells in
the TMS FACS data (vs. all cells). We considered a third baseline that obtains � log10 p-values for a given cluster by averaging
the scDRS log10 p-values of cells within the cluster (cluster-level scDRS). We note that the gap between scDRS and
cluster-level scDRS is due to finite clustering resolution, while the gap between cluster-level scDRS and LDSC-SEG is due to
the difference between scDRS and LDSC-SEG for capturing cluster-level disease heritability enrichment. (A) T cells clustered
at different resolutions. (B) Correlation of � log10 p-value across clusters between scDRS and the 3 comparison methods. For
scDRS, the cluster-level � log10 p-values were obtained by averaging the � log10 p-value of cells within the same cluster
(identical to cluster-level scDRS). The three methods were highly correlated with scDRS at cluster level, suggesting
LDSC-SEG and scDRS produced similar results. (C) Correlation of � log10 p-value across cells between scDRS and the 3
comparison methods. For the 3 comparison methods, cell-level � log10 p-values were obtained by assigning the same
cluster-level � log10 p-value to all cells within the cluster. The 3 methods were less correlated with scDRS at individual cell
level, suggesting cluster-level analyses were not able to capture the individual cell-disease associations detected in the
scDRS individual cell-level analysis.
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Figure 4 supplement scTRS correlated genes

A C D EB

F H IG J

K L M N

Supplementary Figure 18. Additional results on disease gene prioritization. (A-J) Comparison to alternative disease
gene prioritization methods for the 10 autoimmune diseases. The first row shows levels of excess overlap between the
prioritized disease genes and the gold standard gene sets while the second row shows the corresponding � log10 p-values for
excess overlap. Each dot corresponds to a disease, the y-axis shows results for the proposed prioritization method (correlating
gene expression levels with the scDRS disease score across all TMS FACS cells), and the x-axis shows results from
comparison methods, including (from left to right) top 1,000 MAGMA genes, top 1,000 genes specifically expressed in T cells
(vs. the rest of cells in TMS FACS), prioritization based on correlation across T cells (instead of all TMS FACS cells),
prioritization based on correlation across CD4+ T cells (instead of all TMS FACS cells), and prioritization based on correlation
across CD8+ T cells (instead of all TMS FACS cells). (K-L) Overlap with drug target genes for 27 diseases. (M-N) Overlap
with Mendelian disease genes for 45 diseases. The median ratio of � log10 p-values and (excess overlap � 1) between the y-
and x-values (median of ratios) was provided in the figure title.
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Supp figure: tms analysis

\method{} analyses in TMS dataset. (A) Heterogeneity can be partially explained by sampling 
sub-tissues. (B) Significant heterogeneity within sub-tissue still exist after stratification of sub-
tissues.
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Supplementary Figure 19. Associations of TMS FACS neurons with brain-related diseases/traits. (A) Violin plots of
the scDRS disease score for TMS FACS brain neurons (undetermined neurons, excluding interneurons and MSNs) in different
brain subtissues and for different diseases/traits. Height was included as a negative control. (B) Within-subtissue heterogeneity
of neurons in association with different diseases/traits. Heatmap colors represent the heterogeneity z-score (MC z-score) and
cross symbols represent significant within-subtissue disease association heterogeneity (⇥ denotes P <0.05 and ⇥⇥ denotes
P <0.005, MC test).
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Supplementary Figure 20. Additional results for the Zeisel & Muñoz-Manchado et al. data on associations to
brain-related diseases/traits. (A) Disease associations at the cell type level. Each row represents a disease/trait and each
column represents a cell type. Heatmap colors for each cell type-disease pair denote the proportion of significantly associated
cells (FDR<0.1 across all cells for a given disease). Squares denote significant cell type-disease associations (FDR<0.05
across all pairs of 7 cell types and 7 diseases/traits). Cross symbols denote significant heterogeneity in association with disease
across individual cells within a given cell type (FDR<0.05 across all pairs). Heatmap colors and cross symbols are omitted for
cell type-disease pairs with non-significant cell type-disease associations; the plotting style is the same as in Fig. 3. (B) UMAP
visualization of the CA1 pyramidal neurons in the Zeisel & Muñoz-Manchado et al. data with color representing the
scDRS disease score (extending results in Fig. 5A). Height was included as a negative control trait. (C) UMAP visualization
of the CA1 pyramidal neurons with color representing the inferred spatial coordinates. (D) Pairwise correlations across cells for
the 6 inferred spatial coordinates in the Zeisel & Muñoz-Manchado et al. data set.
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Supp figure: verification of the spatial scores.
A B

Test with control 
scores and assign 
significance?

Verification of spatial scores. (A) Dorsal score and ventral score versus 
the annotations from Habib et al. 2016. The annotation are sorted 
based on their spatial locations in Habib et al. 2016. (B) Dorsal score 
and ventral score versus the annotations from Ayhan et al. 2021.

Supplementary Figure 21. Validation of inferred spatial coordinates of CA1 pyramidal neurons using data sets
with annotated spatial annotations. Violin plots of the inferred cell-level spatial coordinates (y-axis) against the provided
spatial annotations (x-axis). (A) Habib & Li et al. data. The x-axis labels were ordered from dorsal to ventral neurons
according to the provided spatial annotation (Fig. 2B in Habib & Li et al.42). Both the dorsal and ventral scores are
significantly associated with the provided spatial annotation (P<0.001, MC test based on Pearson’s correlation between the
provided spatial annotation (ordinal ranks of the 7 categories) and the inferred spatial score). (B) Ayhan et al. data. Anterior
corresponds to the ventral region while posterior corresponds to the dorsal region. Both the dorsal and ventral scores are
significantly associated with the spatial annotation (P<0.01, MC test based on Pearson’s correlation between provided spatial
annotation (ordinal ranks of the 2 categories) and the inferred spatial score).

30



B

A

Supp. Fig: replication of spatial 
enrichment

C
Location Mouse Human

Dorsal ✓ ✓
Ventral ✓
Proximal ✓ ✓
Distal

Deep ✓ ✓
Superficial ✓

Dors
Dl

Ven
trD

l

Pro
xim

Dl

Dist
Dl

Dee
p

Su
pe

rfi
ciD

l

0DD

S&Z

15T

Smoking

(&2L

B0,

Height

** ** **

** ** **

** ** **

* ** **

** ** **

* ** **

*

Zeisel & 0uñoz-0DnchDdo et Dl. (0ouse)

Dors
Dl

Ven
trD

l

Pro
xim

Dl

Dist
Dl

Dee
p

Su
pe

rfi
ciD

l

0DD

S&Z

15T

Smoking

(&2L

B0,

Height

* *

*

*

*

HDbib & Li et Dl. (0ouse)

Dors
Dl

Ven
trD

l

Pro
xim

Dl

Dist
Dl

Dee
p

Su
pe

rfi
ciD

l

0DD

S&Z

15T

Smoking

(&2L

B0,

Height

**

**

*

* *

**

Zeisel et Dl. (0ouse)

Dors
Dl

Ven
trD

l

Pro
xim

Dl

Dist
Dl

Dee
p

Su
pe

rfi
ciD

l

0DD

S&Z

15T

Smoking

(&2L

B0,

Height

*

YDo et Dl. (0ouse)

Dors
Dl

Ven
trD

l

Pro
xim

Dl

Dist
Dl

Dee
p

Su
pe

rfi
ciD

l

0DD

S&Z

15T

Smoking

(&2L

B0,

Height

* * *

** ** *

** * **

* *

** ** *

* *

HDbib, AvrDhDm-DDvidi, & BDsu et Dl. (HumDn)

Dors
Dl

Ven
trD

l

Pro
xim

Dl

Dist
Dl

Dee
p

Su
pe

rfi
ciD

l

0DD

S&Z

15T

Smoking

(&2L

B0,

Height

* ** ** ** *

** ** ** * *

** ** ** ** **

** ** ** **

** ** ** **

* ** ** **

Zhong et Dl. (HumDn fetDl brDin)

Dors
Dl

Ven
trD

l

Pro
xim

Dl

Dist
Dl

Dee
p

Su
pe

rfi
ciD

l

0DD

S&Z

15T

Smoking

(&2L

B0,

Height

** ** **

** ** **

* ** ** **

** ** **

* ** * ** **

** * ** **

AyhDn et Dl. (HumDn Ddult brDin with epilepsy)

0

5

10

15

−2

0

2

−5.0

−2.5

0.0

2.5

5.0

−10

0

10

20

0

2

4

0

5

10

−10

0

10

20

ZHLs
Hl 

& 0
uñ

oz
-0

Dn
ch

Dd
o H

t D
l. 

HDb
Lb 

& LL
 Ht

 Dl
. 

ZHLs
Hl 

Ht 
Dl.

 

YD
o H

t D
l. 

HDb
Lb,

 AvrD
hD

P-D
Dv

LdL
, &

 BDs
u H

t D
l. 

Zho
ng

 Ht
 Dl

. 

Ayh
Dn

 Ht
 Dl

. 

DorsDl

VHntrDl

ProxLPDl

DLstDl

DHHp

SupHrfLcLDl

** * ** * ** ** **

** ** **

** ** ** ** *

** ** ** ** **

** **

MousH Human

0

10

20

Supplementary Figure 22. Complete results of correlations between scDRS disease scores and inferred spatial
coordinates across CA1 pyramidal neurons in 7 single-cell data sets (extending results in Fig. 5B). (A) Results for
regressing the scDRS disease scores against the inferred spatial coordinates for each disease/trait and each inferred spatial
coordinate. Color represents the t-statistics and stars represent significant associations (* denotes P <0.05 and ** indicates
P <0.005, MC test; Methods). For clarification, Zeisel & Muñoz-Manchado et al. refers to the data from Zeisel &
Muñoz-Manchado et al. 2015 Science40 and Zeisel et al. refers to the data from Zeisel et al. 2018 Cell41. (B) Summary of
results in panel A. Heatmap color represent the average t-statistics across the 6 brain-related diseases/traits (excluding height)
for each data set and stars represent significant associations by combining p-values across datasets using Fisher’s combined
probability test. (C) Summary of the association between brain-related diseases and the inferred spatial coordinates for the
mouse and human data sets in panel B.
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Supplementary Figure 23. Subpopulations of TMS FACS hepatocytes associated with the other 8 metabolic
diseases (besides TG reported in Fig. 5C) and height. Significantly associated cells (FDR<0.1) were colored in red with
shades of red representing the scDRS disease score; non-significant cells were colored in grey. The color bar was removed for
traits without a significant cell.
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Supplementary Figure 24. Signature scores for hepatocyte ploidy level and zonation. (A-D) scDRS score for
polyploid hepatocyte signatures: partial hepatectomy (PH) vs. pre-PH, Cdk1 knockout vs. control, 4n vs. 2n hepatocytes, large
vs. small hepatocytes. (E-G) scDRS score for diploid hepatocyte signatures: pre-PH vs. PH, control vs. Cdk1 knockout, 2n vs.
4n hepatocytes. (H) Expression of Xist in female hepatocytes (expected to have high expression in high-ploidy female
hepatocytes). (I) Number of genes (expected to be high in high-ploidy hepatocytes). (J) scDRS score for pericentral
hepatocyte signatures. (K) scDRS score for periportal hepatocyte signatures.
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Supplementary Figure 25. Complete results of joint regression analysis for GWAS metabolic traits and putative
zonated metablic processes across the 6 data sets (extending results in Fig. 5D). (A-B) Results for the 9 metabolic traits
and height, a negative control triat. The polyploidy score (panel A) and both the pericentral and periportal score (panel B) were
consistently associated with the 9 metabolic traits across the data sets. The strong association (P <0.005) between the
pericentral score and height in the Aizarani et al. data may be because that we inferred the pericentral score using mouse gene
signatures, which are less conserved in human (as also mentioned in the original paper47). (C-D) Results for the 8 metabolic
pathways. Overall, as shown in panel D, the pericentral score was associated with pericentral-specific pathways (first 4 rows)
while the periportal score was associated with periportal-specific pathways (last 4 rows). * denotes P <0.05 and ** denotes
P <0.005.
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