

1088

scDRS

1089

Zhang & Hou et al.

1090

Supplementary Information

1091 Supplementary Note

1092 Estimation of gene-specific technical noise variance of gene expression

1093 We estimate the technical variance similar to previous works^{1,2}. Specifically, we first compute the mean expression and
 1094 expression variance for each gene in the original non-log-transformed space. Next, we fit a non-linear trend to the log10-scale
 1095 variance/mean relationship using local polynomial regression (span=0.3, degree=2). The estimated trend models the expected
 1096 technical variance based on the mean expression; observed variance values above this expected trend reflect biological variance.
 1097 Given this trend, the proportion of technical variance is computed as the ratio of predicted technical variance to observed
 1098 variance (in the original non-log-transformed space). Note that it is possible for this ratio to be greater than 1 if the observed
 1099 variance is less than the expected variance. Finally, the technical variance of the log-transformed data $\sigma_{\text{tech},g}^2$ is computed as
 1100 the product of the variance of the gene (computed using the log-transformed data) and the proportion of technical variance as
 1101 estimated above.

1102 Distribution of raw disease scores and raw control scores

1103 Here we characterize the distribution of the raw disease scores and raw control scores under a simplified model. Assume the
 expression levels $\{\mathbf{X}_c \in \mathbb{R}^{n_{\text{gene}}}\}_{c=1}^{n_{\text{cell}}}$ are independently and identically distributed (i.i.d.) across cells with mean $\boldsymbol{\mu} \in \mathbb{R}^{n_{\text{gene}}}$ and
 covariance $\Sigma \in \mathbb{R}^{n_{\text{gene}} \times n_{\text{gene}}}$,

$$\mathbf{X}_c \stackrel{\text{i.i.d.}}{\sim} (\boldsymbol{\mu}, \Sigma). \quad (1)$$

1104 Without loss of generality, also assume the gene weights are the same. Then the raw disease score and raw control scores (for a
 given control gene set G_b^{ctrl}) can be written as

$$s_c = \frac{1}{|G|} \sum_{g \in G} X_{cg}, \quad s_{cb}^{\text{ctrl}} = \frac{1}{|G_b^{\text{ctrl}}|} \sum_{g \in G_b^{\text{ctrl}}} X_{cg}, \quad (2)$$

1105 where $|G| = |G_b^{\text{ctrl}}|$. We next compare the distributions of s_c and s_{cb}^{ctrl} . Since the control genes match the mean expression and
 expression variance of the disease genes, we have

$$\sum_{g \in G} \mu_g = \sum_{g \in G_b^{\text{ctrl}}} \mu_g, \quad \sum_{g \in G} \Sigma_{gg} = \sum_{g \in G_b^{\text{ctrl}}} \Sigma_{gg}. \quad (3)$$

1106 The first equation gives that $\mathbb{E}[s_c] = \mathbb{E}[s_{cb}^{\text{ctrl}}]$.

1107 For covariance, since the disease genes are more positively correlated due to co-expression in the associated cell population,
 the covariance matrix of the disease genes has larger off-diagonal elements than that of the control genes. Since the sum of the
 diagonal elements are equal between the two matrices due to the second part of Eq. (3), we have

$$\sum_{g, g' \in G} \Sigma_{g, g'} > \sum_{g, g' \in G_b^{\text{ctrl}}} \Sigma_{g, g'} \quad (4)$$

1108 Since the variances of the raw disease score and raw control score can be written as

$$\text{Var}[s_c] = \frac{1}{|G|^2} \sum_{g, g' \in G} \Sigma_{g, g'}, \quad \text{Var}[s_{cb}^{\text{ctrl}}] = \frac{1}{|G_b^{\text{ctrl}}|^2} \sum_{g, g' \in G_b^{\text{ctrl}}} \Sigma_{g, g'}, \quad (5)$$

1109 we have $\text{Var}[s_c] > \text{Var}[s_{cb}^{\text{ctrl}}]$. In summary,

$$\mathbb{E}[s_c] = \mathbb{E}[s_{cb}^{\text{ctrl}}], \quad \text{Var}[s_c] > \text{Var}[s_{cb}^{\text{ctrl}}]. \quad (6)$$

1110 Since the raw disease scores have the same mean and a higher variance than the raw control scores, the top values of the raw
 1111 disease scores are larger than all raw control scores. These top values correspond to the disease-associated cells, which have
 1112 higher expression of the disease genes. Therefore, the disease-associated cells have larger raw disease scores than all raw
 1113 control scores.

1114 Normalization of disease scores and control scores

1115 **First gene set alignment.** This step aims to correct for the mismatch that the control genes do not have exactly the same
 1116 mean expression and expression variance as the disease genes. The variance level is estimated based on a heuristic that assumes
 1117 the genes in the given gene set are independent. Specifically, if $Y = \sum_{i=1}^n w_i X_i$ for weights $w_1, \dots, w_n \in \mathbb{R}$ and independent
 1118 random variables X_1, \dots, X_n , then $\text{Var}[Y] = \sum_{i=1}^n w_i^2 \text{Var}[X_i]$.

Cell-wise standardization. Consider the conditional distribution of the raw control score s_{cb}^{ctrl} given the expression matrix \mathbf{X} , where the randomness only comes from MC sampling of the control gene set G_b^{ctrl} but not from the data generation process of \mathbf{X} . Again without loss of generality, assume all genes have the same mean and variance, and the gene weights are the same. Then the raw control score can be written as

$$s_{cb}^{\text{ctrl}} = \frac{1}{|G_b^{\text{ctrl}}|} \sum_{g \in G_b^{\text{ctrl}}} X_{cg}. \quad (7)$$

Since all genes have the same mean and variance, G_b^{ctrl} corresponds to randomly and uniformly sampling $|G|$ genes from the set of all genes $\{1, \dots, n_{\text{gene}}\}$ without replacement. When $|G| \ll n_{\text{gene}}$, sampling without replacement can be well approximated by sampling with replacement ($|G| < 20\%n_{\text{gene}}$ is usually a good heuristic³). In other words,

$$s_{cb}^{\text{ctrl}} \stackrel{d}{\approx} \frac{1}{|G|} \sum_{g=1}^{|G|} Y_{cg}, \quad (8)$$

where Y_{cg} 's are i.i.d. random variables uniformly sampled from $\{X_{c1}, \dots, X_{cn_{\text{gene}}}\}$ (meaning sampling with replacement) and $\stackrel{d}{\approx}$ means approximately equal in distribution. Furthermore, when $|G|$ is large (e.g., >50), by the central limit theorem, being an average of $|G|$ i.i.d. random variables, s_{cb}^{ctrl} is close to a normal distribution, which depends only on its first two moments. Therefore, it is sufficient to only match the mean and variance of the control score distributions of different cells.

As a remark, the raw control score distribution considered here is defined with respect to randomly sampling control gene sets for a given cell, where the expression matrix \mathbf{X} is fixed. It is different from the distribution of scores computed from a given gene set S (disease gene set or control gene set) across cells, where the randomness can be viewed as coming from the data generation process of the expression matrix \mathbf{X} . In this latter case, since the gene expression levels are correlated, the score of a given cell $s = \frac{1}{|S|} \sum_{g \in S} X_{cg}$ can not be viewed as an average of i.i.d. random variables (because X_{cg} 's may be dependant) and can be very different from the normal distribution especially when the gene set size $|S|$ is small.

Second gene set alignment. This step aims to correct for the differences of the mean values of scores from different gene sets introduced by cell-wise standardization. The differences are relatively small (Supp. Fig. 1F). Hence, this step is less important. For this reason and also because it is hard to find a good heuristic for estimating the variance levels of scores from different gene sets without down-weighting the disease scores due to the higher correlation between disease genes, we do not correct for the difference of the variance of scores from different gene sets.

Related works

Previous methods for identifying disease-critical tissues and cell types. Many types of data that assay gene regulation have been integrated with GWAS data to identify disease-relevant tissues and cell types, including chromatin and histone modifications^{4–13} and gene expression measurements^{14–23}. Studies using gene expression data have generally either used tissue-level data derived from DNA microarrays / bulk RNA-Seq^{14–17,20}, or focused on predefined cell types (usually classical cell types based on known marker genes) in scRNA-seq data by aggregating cells from the same cell type^{18,21,22}; these cell type annotations may be hard to obtain especially for less well-studied cell populations or subtle cell states within a cell type. One exception is Jagadeesh and Dey et al.²³, who associated intra- and inter-cell type cellular processes identified in scRNA-seq data to disease.

Previous methods for scoring individual cells. Previous works analyzing scRNA-seq data alone have used individual cell-level scores to characterize cellular heterogeneity and subtle cell states within classically defined cell types^{2,24–29}, where the cell scores were computed based on the expression of a predefined set of genes such as cell cycle signature genes or biological pathways. These works did not integrate GWAS data. In addition, they generally did not provide individual cell-level p-values for associating individual cells to the gene set (VAM² is the only exception, but we show that VAM suffers severely inflated type I error; Fig. 2A). We further note that two studies have associated individual cells in scATAC-seq data to disease^{12,13}. However, scATAC-seq and scRNA-seq data have different data structures and require different treatments (e.g., matching nucleotide GC content and fragment accessibility for scATAC-seq data¹² vs. matching gene expression mean and variance in our paper). To our knowledge, no previous study has associated individual cells in scRNA-seq data to disease.

1146 References

- 1147 1. Tim Stuart, Andrew Butler, Paul Hoffman, Christoph Hafemeister, Efthymia Papalex, William M Mauck III, Yuhan Hao, Marlon Stoeckius, Peter Smibert, and Rahul Satija. Comprehensive integration of single-cell data. *Cell*, 177(7):1888–1902, 2019.
- 1150 2. Hildreth Robert Frost. Variance-adjusted mahalanobis (vam): a fast and accurate method for cell-specific gene set scoring. *Nucleic acids research*, 48(16):e94–e94, 2020.
- 1151 3. Rémi Bardenet and Odalric-Ambrym Maillard. Concentration inequalities for sampling without replacement. *Bernoulli*, 21(3):1361–1385, 2015.
- 1154 4. Jason Ernst, Pouya Kheradpour, Tarjei S Mikkelsen, Noam Shores, Lucas D Ward, Charles B Epstein, Xiaolan Zhang, Li Wang, Robbyn Issner, Michael Coyne, et al. Mapping and analysis of chromatin state dynamics in nine human cell types. *Nature*, 473(7345):43–49, 2011.
- 1157 5. Matthew T Maurano, Richard Humbert, Eric Rynes, Robert E Thurman, Eric Haugen, Hao Wang, Alex P Reynolds, Richard Sandstrom, Hongzhu Qu, Jennifer Brody, et al. Systematic localization of common disease-associated variation in regulatory dna. *Science*, 337(6099):1190–1195, 2012.
- 1160 6. Gosia Trynka, Cynthia Sandor, Buhm Han, Han Xu, Barbara E Stranger, X Shirley Liu, and Soumya Raychaudhuri. Chromatin marks identify critical cell types for fine mapping complex trait variants. *Nature genetics*, 45(2):124–130, 2013.
- 1162 7. Joseph K Pickrell. Joint analysis of functional genomic data and genome-wide association studies of 18 human traits. *The American Journal of Human Genetics*, 94(4):559–573, 2014.
- 1164 8. Gleb Kichaev, Wen-Yun Yang, Sara Lindstrom, Farhad Hormozdiari, Eleazar Eskin, Alkes L Price, Peter Kraft, and Bogdan Pasaniuc. Integrating functional data to prioritize causal variants in statistical fine-mapping studies. *PLoS genetics*, 10(10):e1004722, 2014.
- 1167 9. Alexander Gusev, S Hong Lee, Gosia Trynka, Hilary Finucane, Bjarni J Vilhjálmsson, Han Xu, Chongzhi Zang, Stephan Ripke, Brendan Bulik-Sullivan, Eli Stahl, et al. Partitioning heritability of regulatory and cell-type-specific variants across 11 common diseases. *The American Journal of Human Genetics*, 95(5):535–552, 2014.
- 1170 10. Kyle Kai-How Farh, Alexander Marson, Jiang Zhu, Markus Kleinewietfeld, William J Housley, Samantha Beik, Noam Shores, Holly Whitton, Russell JH Ryan, Alexander A Shishkin, et al. Genetic and epigenetic fine mapping of causal autoimmune disease variants. *Nature*, 518(7539):337–343, 2015.
- 1173 11. Yue Li and Manolis Kellis. Joint bayesian inference of risk variants and tissue-specific epigenomic enrichments across multiple complex human diseases. *Nucleic acids research*, 44(18):e144–e144, 2016.
- 1175 12. Jacob C Ulirsch, Caleb A Lareau, Erik L Bao, Leif S Ludwig, Michael H Guo, Christian Benner, Ansuman T Satpathy, Vinay K Kartha, Rany M Salem, Joel N Hirschhorn, et al. Interrogation of human hematopoiesis at single-cell and single-variant resolution. *Nature genetics*, 51(4):683–693, 2019.
- 1178 13. Joshua Chiou, Chun Zeng, Zhang Cheng, Jee Yun Han, Michael Schlichting, Michael Miller, Robert Mendez, Serina Huang, Jinzhao Wang, Yinghui Sui, et al. Single-cell chromatin accessibility identifies pancreatic islet cell type-and state-specific regulatory programs of diabetes risk. *Nature Genetics*, 53(4):455–466, 2021.
- 1181 14. Xinli Hu, Hyun Kim, Eli Stahl, Robert Plenge, Mark Daly, and Soumya Raychaudhuri. Integrating autoimmune risk loci with gene-expression data identifies specific pathogenic immune cell subsets. *The American Journal of Human Genetics*, 89(4):496–506, 2011.
- 1184 15. Kamil Slowikowski, Xinli Hu, and Soumya Raychaudhuri. Snpsea: an algorithm to identify cell types, tissues and pathways affected by risk loci. *Bioinformatics*, 30(17):2496–2497, 2014.
- 1186 16. Tune H Pers, Juha M Karjalainen, Yinglong Chan, Harm-Jan Westra, Andrew R Wood, Jian Yang, Julian C Lui, Sailaja Vedantam, Stefan Gustafsson, Tönu Esko, et al. Biological interpretation of genome-wide association studies using predicted gene functions. *Nature communications*, 6(1):1–9, 2015.
- 1189 17. Padhraig Gormley, Verner Anttila, Bendik S Winsvold, Priit Palta, Tönu Esko, Tune H Pers, Kai-How Farh, Ester Cuenca-Leon, Mikko Muona, Nicholas A Furlotte, et al. Meta-analysis of 375,000 individuals identifies 38 susceptibility loci for migraine. *Nature genetics*, 48(8):856–866, 2016.
- 1192 18. Diego Calderon, Anand Bhaskar, David A Knowles, David Golan, Towfique Raj, Audrey Q Fu, and Jonathan K Pritchard. Inferring relevant cell types for complex traits by using single-cell gene expression. *The American Journal of Human Genetics*, 101(5):686–699, 2017.

1195 19. Halit Ongen, Andrew A Brown, Olivier Delaneau, Nikolaos I Panousis, Alexandra C Nica, and Emmanouil T Dermitzakis.
1196 Estimating the causal tissues for complex traits and diseases. *Nature genetics*, 49(12):1676–1683, 2017.

1197 20. Hilary K Finucane, Yakir A Reshef, Verner Anttila, Kamil Slowikowski, Alexander Gusev, Andrea Byrnes, Steven
1198 Gazal, Po-Ru Loh, Caleb Lareau, Noam Shores, et al. Heritability enrichment of specifically expressed genes identifies
1199 disease-relevant tissues and cell types. *Nature genetics*, 50(4):621–629, 2018.

1200 21. Kyoko Watanabe, Maša Umićević Mirkov, Christiaan A de Leeuw, Martijn P van den Heuvel, and Danielle Posthuma.
1201 Genetic mapping of cell type specificity for complex traits. *Nature communications*, 10(1):1–13, 2019.

1202 22. Julien Bryois, Nathan G Skene, Thomas Folkmann Hansen, Lisette JA Kogelman, Hunna J Watson, Zijing Liu, Leo
1203 Brueggeman, Jerome Breen, Cynthia M Bulik, Ernest Arenas, et al. Genetic identification of cell types underlying brain
1204 complex traits yields insights into the etiology of parkinson’s disease. *Nature genetics*, 52(5):482–493, 2020.

1205 23. Karthik A Jagadeesh, Kushal K Dey, Daniel T Montoro, Steven Gazal, Jesse M Engreitz, Ramnik J Xavier, Alkes L Price,
1206 and Aviv Regev. Identifying disease-critical cell types and cellular processes across the human body by integration of
1207 single-cell profiles and human genetics. *bioRxiv*, 2021.

1208 24. Meromit Singer, Chao Wang, Le Cong, Nemanja D Marjanovic, Monika S Kowalczyk, Huiyuan Zhang, Jackson Nyman,
1209 Kaori Sakuishi, Sema Kurtulus, David Gennert, et al. A distinct gene module for dysfunction uncoupled from activation in
1210 tumor-infiltrating t cells. *Cell*, 166(6):1500–1511, 2016.

1211 25. Jean Fan, Neeraj Salathia, Rui Liu, Gwendolyn E Kaeser, Yun C Yung, Joseph L Herman, Fiona Kaper, Jian-Bing Fan,
1212 Kun Zhang, Jerold Chun, et al. Characterizing transcriptional heterogeneity through pathway and gene set overdispersion
1213 analysis. *Nature methods*, 13(3):241–244, 2016.

1214 26. Sara Aibar, Carmen Bravo González-Blas, Thomas Moerman, Hana Imrichova, Gert Hulselmans, Florian Rambow,
1215 Jean-Christophe Marine, Pierre Geurts, Jan Aerts, Joost van den Oord, et al. Scenic: single-cell regulatory network
1216 inference and clustering. *Nature methods*, 14(11):1083–1086, 2017.

1217 27. Sidharth V Puram, Itay Tirosh, Anuraag S Parikh, Anoop P Patel, Keren Yizhak, Shawn Gillespie, Christopher Rodman,
1218 Christina L Luo, Edmund A Mroz, Kevin S Emerick, et al. Single-cell transcriptomic analysis of primary and metastatic
1219 tumor ecosystems in head and neck cancer. *Cell*, 171(7):1611–1624, 2017.

1220 28. Andrew Butler, Paul Hoffman, Peter Smibert, Efthymia Papalexi, and Rahul Satija. Integrating single-cell transcriptomic
1221 data across different conditions, technologies, and species. *Nature biotechnology*, 36(5):411–420, 2018.

1222 29. David DeTomaso, Matthew G Jones, Meena Subramaniam, Tal Ashuach, J Ye Chun, and Nir Yosef. Functional interpretation
1223 of single cell similarity maps. *Nature communications*, 10(1):1–11, 2019.

1224 30. Brendan K Bulik-Sullivan, Po-Ru Loh, Hilary K Finucane, Stephan Ripke, Jian Yang, Nick Patterson, Mark J Daly,
1225 Alkes L Price, and Benjamin M Neale. Ld score regression distinguishes confounding from polygenicity in genome-wide
1226 association studies. *Nature genetics*, 47(3):291–295, 2015.

1227 31. Hilary K Finucane, Brendan Bulik-Sullivan, Alexander Gusev, Gosia Trynka, Yakir Reshef, Po-Ru Loh, Verner Anttila,
1228 Han Xu, Chongzhi Zang, Kyle Farh, et al. Partitioning heritability by functional annotation using genome-wide association
1229 summary statistics. *Nature genetics*, 47(11):1228–1235, 2015.

1230 32. Steven Gazal, Hilary K Finucane, Nicholas A Furlotte, Po-Ru Loh, Pier Francesco Palamara, Xuanyao Liu, Armin Schoech,
1231 Brendan Bulik-Sullivan, Benjamin M Neale, Alexander Gusev, et al. Linkage disequilibrium-dependent architecture of
1232 human complex traits shows action of negative selection. *Nature genetics*, 49(10):1421–1427, 2017.

1233 33. Luke J O’Connor, Armin P Schoech, Farhad Hormozdiari, Steven Gazal, Nick Patterson, and Alkes L Price. Extreme
1234 polygenicity of complex traits is explained by negative selection. *The American Journal of Human Genetics*, 105(3):456–
1235 476, 2019.

1236 34. Farhad Hormozdiari, Steven Gazal, Bryce Van De Geijn, Hilary K Finucane, Chelsea J-T Ju, Po-Ru Loh, Armin Schoech,
1237 Yakir Reshef, Xuanyao Liu, Luke O’Connor, et al. Leveraging molecular quantitative trait loci to understand the genetic
1238 architecture of diseases and complex traits. *Nature genetics*, 50(7):1041–1047, 2018.

1239 35. Steven Gazal, Po-Ru Loh, Hilary K Finucane, Andrea Ganna, Armin Schoech, Shamil Sunyaev, and Alkes L Price.
1240 Functional architecture of low-frequency variants highlights strength of negative selection across coding and non-coding
1241 annotations. *Nature genetics*, 50(11):1600–1607, 2018.

1242 36. The Tabula Muris Consortium. A single-cell transcriptomic atlas characterizes ageing tissues in the mouse. *Nature*,
1243 583(7817):590–595, 2020.

1244 37. Stephen R Quake, Tabula Sapiens Consortium, et al. The tabula sapiens: a single cell transcriptomic atlas of multiple
1245 organs from individual human donors. *bioRxiv*, 2021.

1246 38. Eddie Cano-Gamez, Blagoje Soskic, Theodoros I Roumeliotis, Ernest So, Deborah J Smyth, Marta Baldrihi, David
1247 Willé, Nikolina Nakic, Jorge Esparza-Gordillo, Christopher GC Larminie, et al. Single-cell transcriptomics identifies an
1248 effectorness gradient shaping the response of cd4+ t cells to cytokines. *Nature communications*, 11(1):1–15, 2020.

1249 39. Aparna Nathan, Jessica I Beynor, Yuriy Baglaenko, Sara Suliman, Kazuyoshi Ishigaki, Samira Asgari, Chuan-Chin Huang,
1250 Yang Luo, Zibiao Zhang, Katty Lopez, et al. Multimodally profiling memory t cells from a tuberculosis cohort identifies
1251 cell state associations with demographics, environment and disease. *Nature Immunology*, 22(6):781–793, 2021.

1252 40. Amit Zeisel, Ana B Muñoz-Manchado, Simone Codeluppi, Peter Lönnerberg, Gioele La Manno, Anna Juréus, Sueli
1253 Marques, Hermany Munguba, Liquan He, Christer Betsholtz, et al. Cell types in the mouse cortex and hippocampus revealed
1254 by single-cell rna-seq. *Science*, 347(6226):1138–1142, 2015.

1255 41. Amit Zeisel, Hannah Hochgerner, Peter Lönnerberg, Anna Johnsson, Fatima Memic, Job Van Der Zwan, Martin Häring,
1256 Emelie Braun, Lars E Borm, Gioele La Manno, et al. Molecular architecture of the mouse nervous system. *Cell*,
1257 174(4):999–1014, 2018.

1258 42. Naomi Habib, Yingqin Li, Matthias Heidenreich, Lukasz Swiech, Inbal Avraham-David, John J Trombetta, Cynthia
1259 Hession, Feng Zhang, and Aviv Regev. Div-seq: Single-nucleus rna-seq reveals dynamics of rare adult newborn neurons.
1260 *Science*, 353(6302):925–928, 2016.

1261 43. Naomi Habib, Inbal Avraham-David, Anindita Basu, Tyler Burks, Karthik Shekhar, Matan Hofree, Sourav R Choudhury,
1262 François Aguet, Ellen Gelfand, Kristin Ardlie, et al. Massively parallel single-nucleus rna-seq with dronc-seq. *Nature
1263 methods*, 14(10):955–958, 2017.

1264 44. Fatma Ayhan, Ashwinikumar Kulkarni, Stefano Berto, Karthigayini Sivaprakasam, Connor Douglas, Bradley C Lega,
1265 and Genevieve Konopka. Resolving cellular and molecular diversity along the hippocampal anterior-to-posterior axis in
1266 humans. *Neuron*, 2021.

1267 45. Zizhen Yao, Cindy TJ van Velthoven, Thuc Nghi Nguyen, Jeff Goldy, Adriana E Sedeno-Cortes, Fahimeh Baftizadeh,
1268 Darren Bertagnolli, Tamara Casper, Megan Chiang, Kirsten Crichton, et al. A taxonomy of transcriptomic cell types across
1269 the isocortex and hippocampal formation. *Cell*, 184(12):3222–3241, 2021.

1270 46. Suijuan Zhong, Wenyu Ding, Le Sun, Yufeng Lu, Hao Dong, Xiaoying Fan, Zeyuan Liu, Ruigu Chen, Shu Zhang, Qiang
1271 Ma, et al. Decoding the development of the human hippocampus. *Nature*, 577(7791):531–536, 2020.

1272 47. Nadim Aizarani, Antonio Saviano, Laurent Mailly, Sarah Durand, Josip S Herman, Patrick Pessaix, Thomas F Baumert,
1273 Dominic Grün, et al. A human liver cell atlas reveals heterogeneity and epithelial progenitors. *Nature*, 572(7768):199–204,
1274 2019.

1275 48. Keren Bahar Halpern, Rom Shenhav, Orit Matcovitch-Natan, Beáta Tóth, Doron Lemze, Matan Golan, Efi E Massasa,
1276 Shaked Baydatch, Shanie Landen, Andreas E Moor, et al. Single-cell spatial reconstruction reveals global division of
1277 labour in the mammalian liver. *Nature*, 542(7641):352–356, 2017.

1278 49. ML Richter, JK Deligiannis, K Yin, A Danese, E Lleshi, P Coupland, Catalina A Vallejos, KP Matchett, NC Henderson,
1279 M Colome-Tatche, et al. Single-nucleus rna-seq2 reveals functional crosstalk between liver zonation and ploidy. *Nature
1280 communications*, 12(1):1–16, 2021.

1281 50. Aris Taychameekiatchai and Bruce Wang. Tentative title. *Manuscript in preparation*, 2021.

1282 51. Malika Kumar Freund, Kathryn S Burch, Huwenbo Shi, Nicholas Mancuso, Gleb Kichaev, Kristina M Garske, David Z
1283 Pan, Zong Miao, Karen L Mohlke, Markku Laakso, et al. Phenotype-specific enrichment of mendelian disorder genes near
1284 gwas regions across 62 complex traits. *The American Journal of Human Genetics*, 103(4):535–552, 2018.

1285 52. Peng Huang, Yongzhong Zhao, Jianmei Zhong, Xinhua Zhang, Qifa Liu, Xiaoxia Qiu, Shaoke Chen, Hongxia Yan,
1286 Christopher Hillyer, Narla Mohandas, et al. Putative regulators for the continuum of erythroid differentiation revealed by
1287 single-cell transcriptome of human bm and ucb cells. *Proceedings of the National Academy of Sciences*, 117(23):12868–
1288 12876, 2020.

1289 53. Sonia Olivia Spitzer, Sergey Sitnikov, Yasmine Kamen, Kimberley Anne Evans, Deborah Kronenberg-Versteeg, Sabine
1290 Dietmann, Omar de Faria Jr, Sylvia Agathou, and Ragnhildur Thóra Káradóttir. Oligodendrocyte progenitor cells become
1291 regionally diverse and heterogeneous with age. *Neuron*, 101(3):459–471, 2019.

1292 54. Giselle Dominguez Gutierrez, Jesper Gromada, and Lori Sussel. Heterogeneity of the pancreatic beta cell. *Frontiers in
1293 genetics*, 8:22, 2017.

1294 55. F Alexander Wolf, Philipp Angerer, and Fabian J Theis. Scanpy: large-scale single-cell gene expression data analysis.
1295 *Genome biology*, 19(1):1–5, 2018.

1296 56. Amy Li, Rebecca H Herbst, David Canner, Jason M Schenkel, Olivia C Smith, Jonathan Y Kim, Michelle Hillman, Arjun
1297 Bhutkar, Michael S Cuoco, C Garrett Rappazzo, et al. Il-33 signaling alters regulatory t cell diversity in support of tumor
1298 development. *Cell reports*, 29(10):2998–3008, 2019.

1299 57. Maxim V Kuleshov, Matthew R Jones, Andrew D Rouillard, Nicolas F Fernandez, Qiaonan Duan, Zichen Wang, Simon
1300 Koplev, Sherry L Jenkins, Kathleen M Jagodnik, Alexander Lachmann, et al. Enrichr: a comprehensive gene set enrichment
1301 analysis web server 2016 update. *Nucleic acids research*, 44(W1):W90–W97, 2016.

1302 58. Zhuorui Xie, Allison Bailey, Maxim V Kuleshov, Daniel JB Clarke, John E Evangelista, Sherry L Jenkins, Alexander
1303 Lachmann, Megan L Wojciechowicz, Eryk Kropiwnicki, Kathleen M Jagodnik, et al. Gene set knowledge discovery with
1304 enrichr. *Current protocols*, 1(3):e90, 2021.

1305 **Supplementary Tables**

See Supplementary Excel file

Supplementary Table 1. GWAS diseases and complex trait data sets. We report the name, identifier, code, category, reference, sample size, number of variants, estimated heritability using LD Score regression (LDSC)^{30–32} for the 74 diseases/traits analyzed in the paper. We also report polygenicity for a subset of 21 diseases/traits (M_e for common SNPs; Table 1 in O'Connor et al.³³). The disease called “Auto Immune Traits” (in UK Biobank) is based on the following codes and disease names that characterize autoimmune physiopathogenic etiology: 1222 (t1d; type 1 diabetes); 1256 (guillainBarre); 1260 (myasthenia); 1261 (ms); 1372 (vasculitis); 1378 (Wegener’s); 1381 (sle); 1382 (Sjogren); 1384 (sysSclerosis); 1437 (myasthenia); 1456 (celiac); 1464 (ra); 1522 (grave); 1661 (vitiligo)^{34,35}.

Data set	Species	N_{cell}	N_{tissue}	$N_{\text{cell type}}$	Description
TMS FACS ³⁶	Mus musculus	110,096	23	120	Mouse cell atlas (FACS + Smart-seq2)
TMS droplet ³⁶	Mus musculus	245,389	16	123	Mouse cell atlas (10x microfluidic droplets)
TS FACS ³⁷	Homo sapiens	26,813	24	134	Human cell atlas (FACS + Smart-seq2)
Cano-Gamez & Soskic et al. ³⁸	Homo sapiens	43,112	1	22	Subtypes of naive, memory, and activated CD4 ⁺ T cells from the blood
Nathan et al. ³⁹	Homo sapiens	500,089	1	30	T cells from the blood
Zeisel & Muñoz-Manchado et al. ⁴⁰	Mus musculus	3,005	1	9	Cortex and hippocampus; 827 CA1 pyramidal cells
Zeisel et al. ⁴¹	Mus musculus	160,797	1	265	Whole nervous system; 304 CA1 pyramidal cells
Habib & Li et al. ⁴²	Mus musculus	1,367	1	7	Hippocampal regions from adult mice; 155 CA1 pyramidal cells; snRNA-seq
Habib, Avraham-David, & Basu et al. ⁴³	Homo sapiens	14,963	1	21	Archived brain sample; 421 CA1 pyramidal cells; snRNA-seq
Ayhan et al. ⁴⁴	Homo sapiens	129,908	1	24	Surgically resected anterior and posterior hippocampus from epilepsy patients; 5,454 CA1 pyramidal cells; snRNA-seq
Yao et al. ⁴⁵	Mus musculus	74,974	1	388	Cortex and hippocampus; 1,701 CA1 pyramidal cells using SMART-Seq v4 technology
Zhong et al. ⁴⁶	Homo sapiens	30,416	1	11	Hippocampus at gestational weeks 16–27; 5,972 CA1 pyramidal cells
Aizarani et al. ⁴⁷	Homo sapiens	10,372	1	11	Hepatocytes, endothelial cells, and other common cell types from the liver
Halpern & Shenhav et al. ⁴⁸	Mus musculus	1,415	1	1	Hepatocytes
Richter & Deligiannis et al. ⁴⁹	Mus musculus	1,649	1	1	Sorted 2n and 4n hepatocytes (Hoechst dye + FACS); snRNA-seq
Taychameekiatchai et al. ⁵⁰	Mus musculus	19,254	1	15	Hepatocytes, endothelial cells, and other common cell types from the liver

Supplementary Table 2. scRNA-seq and snRNA-seq data sets. We report the reference, species, number of cells, number of tissues, number of cell types, and a short description for each scRNA-seq/snRNA-seq data set analyzed in the paper. Data sets without “snRNA-seq” in the description are scRNA-seq data sets. The 16 data sets contain more than 1.3 million cells from 31 tissues and organs, including aorta, brown adipose tissue (BAT), bladder, blood, bone marrow, brain myeloid, brain non-myeloid, diaphragm, eye, gonadal adipose tissue (GAT), heart, kidney, large intestine, limb muscle, liver, lung, lymph node, mesenteric adipose tissue (MAT), mammary gland, pancreas, prostate, subcutaneous adipose tissue (SCAT), salivary gland, skin, small intestine, spleen, thymus, tongue, trachea, uterus, vasculature. For clarification, Zeisel & Muñoz-Manchado et al. refers to the data from Zeisel & Muñoz-Manchado et al. 2015 *Science*⁴⁰ and Zeisel et al. refers to the data from Zeisel et al. 2018 *Cell*⁴¹.

See Supplementary Excel file

Supplementary Table 3. Cell types in the TMS FACS data. We report 120 cell types in the TMS FACS data, the corresponding number of cells, and the corresponding tissue composition (for tissues consisting $>1\%$ of cells from the cell type).

See Supplementary Excel file

Supplementary Table 4. Cell types in the TMS droplet data. We report 123 cell types in the TMS droplet data, the corresponding number of cells, and the corresponding tissue composition (for tissues consisting $>1\%$ of cells from the cell type).

See Supplementary Excel file

Supplementary Table 5. Cell types in the TS FACS data. We report 132 cell types in the TS FACS data, the corresponding number of cells, and the corresponding tissue composition (for tissues consisting $>1\%$ of cells from the cell type).

See Supplementary Excel file

Supplementary Table 6. MAGMA gene sets. We report MAGMA gene sets for the 74 diseases and traits.

See Supplementary Excel file

Supplementary Table 7. MSigDB terms for curating signature gene sets. We report the MSigDB terms used to curate the signature gene sets in the paper.

See Supplementary Excel file

Supplementary Table 8. Signature gene sets. We report the signature gene sets used in the paper.

See Supplementary Excel file

Supplementary Table 9. Numerical results for null simulations in Fig. 2A. We report the mean and SE of p-value quantiles for different cell-scoring methods over 100 repetitions.

Nominal FDR level	0.05	0.1	0.2
Actual FDR level	0.00 ± 0.00	0.02 ± 0.03	0.18 ± 0.08

Supplementary Table 10. Results for null simulations for testing cell type-disease association. We assessed calibration of the MC test for cell type-disease association based on the output of scDRS. We used the same subsampled data (10,000 cells from TMS FACS) and 1,000 randomly-selected disease genes. We report the actual FDR for multiple testing across all 118 cell types in the subsampled data at various nominal FDR levels. 95% confidence intervals are provided based on the 100 repetitions.

See Supplementary Excel file

Supplementary Table 11. Numerical results for causal simulations in Fig. 2B. We report the mean and SE of power at various effect sizes for different cell-scoring methods over 100 repetitions.

See Supplementary Excel file

Supplementary Table 12. Numerical results for cell type-level analyses for the TMS FACS data in Fig. 3. For each pair of cell type and disease/trait, we report the proportion of significantly associated cells ($FDR < 0.1$), FDR for cell type-disease association, and FDR for within-cell type disease association heterogeneity.

See Supplementary Excel file

Supplementary Table 13. Numerical results for cell type-level analyses for the TMS droplet data. For each pair of cell type and disease/trait, we report the proportion of significantly associated cells ($FDR < 0.1$), FDR for cell type-disease association, and FDR for within-cell type disease association heterogeneity.

See Supplementary Excel file

Supplementary Table 14. Numerical results for cell type-level analyses for the TS FACS data. For each pair of cell type and disease/trait, we report the proportion of significantly associated cells (FDR<0.1), FDR for cell type-disease association, and FDR for within-cell type disease association heterogeneity.

Trait	Positive control	Negative control
Schizophrenia	Neuron	T cell
Major depressive disorder	Neuron	T cell
Atrial fibrillation	Atrial & ventricular myocyte	Neuron
Rheumatoid arthritis	T cell	Hepatocyte
LDLdirect	Hepatocyte	Neuron

Supplementary Table 15. Traits and control cell types for evaluating parameters when constructing putative disease gene sets. We report the 5 traits and the corresponding positive and negative control cell types in the TMS FACS data for evaluating the performance of scDRS under different parameter settings. “Neuron” refers to all sub-types of neurons, including MSNs and interneurons; “T cell” refers to all sub-types of T cells.

Window size	10kb				0kb	50kb
	100	500	1000	2000	1000	
Schizophrenia	30.0	47.8	54.3	60.4	56.7	52.8
Major depressive disorder	40.5	47.4	52.4	53.1	52.0	51.9
Atrial fibrillation	33.5	24.7	25.3	21.7	24.2	23.4
Rheumatoid arthritis	124.4	120.8	133.1	117.2	108.3	137.8
LDLdirect	61.4	91.7	71.0	76.8	71.7	78.2

Supplementary Table 16. Evaluating parameters for constructing putative disease gene sets. We report *t*-statistics for comparing the normalized disease scores from the positive control and negative control cell types for each trait and each configuration. For each trait, the top two configurations yielding the highest *t*-statistics are highlighted in bold font.

Trait	CD4.P	CD4.Var	CD4.P.joint	CD8.P	CD8.Var	CD8.P.joint
IBD	0.001	0.310	0.002	0.009	0.113	0.010
CD	0.001	0.222	0.002	0.019	0.096	0.003
UC	0.001	0.192	0.032	0.378	0.000	0.489
RA	0.343	0.002	0.468	0.370	0.001	0.716
MS	0.339	0.002	0.390	0.202	0.009	0.492
AIT	0.001	0.177	0.004	0.060	0.049	0.208
HT	0.011	0.100	0.053	0.165	0.014	0.384
Eczema	0.020	0.066	0.298	0.804	0.012	0.870
ASM	0.023	0.062	0.294	0.263	0.004	0.532
RR-ENT	0.021	0.081	0.100	0.180	0.014	0.196
Height	0.291	0.004	0.747	0.828	0.010	0.635

Supplementary Table 17. Numerical results for correlations between scDRS disease scores and T cell effectorness gradients in Fig. 4C. We first regressed the scDRS disease score against the CD4 (resp., CD8) effectorness gradient for each of the 10 autoimmune diseases and the negative control trait height. We report p-values for significant positive correlation between the scDRS disease score and the effectorness gradients (“CD4.P”/“CD8.P”; MC test) and variance explained (“CD4.Var”/“CD8.Var”). We then jointly regressed the scDRS disease score against the CD4 (resp., CD8) effectorness gradient and the cluster labels (encoded as dummy variables). We report p-values for significant positive correlation between the scDRS disease score and the effectorness gradients (“CD4.P.joint”/“CD8.P.joint”; MC test). P-values smaller than 0.005 were highlighted in bold font.

See Supplementary Excel file

Supplementary Table 18. Gold standard gene sets. We report matched Experimental Factor Ontology (EFO), corresponding EFO label, corresponding putative drug target gene set, number of putative drug target genes, matched Mendelian disorder, corresponding Mendelian disease gene set, and number of Mendelian disease genes for 27 diseases with putative drug target gene sets (from Open Targets) and 45 diseases/traits with Mendelian gene sets (from Freund et al.⁵¹); a disease/trait may have both drug target and Mendelian disease gene set. Specifically, for the 10 autoimmune diseases in Fig. 4D, the immune dysregulation Medelian disease gene set was used for HT and RR-ENT while the corresponding drug target gene sets were used for the other 8 autoimmune diseases.

See Supplementary Excel file

Supplementary Table 19. Numerical results for comparison to gold standard gene sets in Fig. 4D. We report excess overlap and $-\log_{10}$ p-value for comparison to drug target and Mendelian disease gene sets respectively for each disease gene prioritization method (scDRS/MAGMA) and each of the 27 GWAS diseases with drug target gene sets and 45 diseases/traits with Mendelian disease gene sets.

Cano-Gamez et al.	IBD	CD	UC	RA	MS	AIT	HT	Eczema	ASM	RR-ENT	Height
TCM1 (Th17/iTreg)	.05	.05	ns	ns	ns	.04	ns	.04	ns	ns	ns
TCM2 (Th0)	ns	.05	ns	ns	ns	ns	ns	ns	ns	ns	ns
TEM (Th17/iTreg)	.01	.05	ns	ns	ns	.04	.02	ns	ns	ns	ns
TN (Th17/iTreg)	.01	.03	.01	ns	ns	ns	.04	.01	ns	.02	ns
nTreg (Th0)	.01	.02	.01	.02	.02	.02	.04	.01	ns	.03	ns
Nathan et al.											
CD4 ⁺ CCR4 ⁺	ns	ns	ns	ns	ns	ns	ns	<.01	ns	ns	ns
CD4 ⁺ CCR4 ⁺ ICOS ⁺ central	ns	ns	.05	ns	ns	ns	ns	.02	ns	ns	ns
CD4 ⁺ CD38 ⁺ ICOS ⁺ central	ns	ns	ns	<.01	ns	ns	ns	ns	ns	ns	ns
CD4 ⁺ CD161 ⁺ Th2	<.01	ns	<.01	ns	ns	ns	ns	<.01	.03	<.01	ns
CD4 ⁺ HLA-DR ⁺	ns	ns	<.01	ns	ns	ns	ns	ns	ns	ns	ns
CD4 ⁺ RORC ⁺ Treg	<.01	<.01	<.01	<.01	.01	<.01	<.01	<.01	<.01	<.01	ns
CD4 ⁺ Th2	<.01	ns	<.01	ns	ns	ns	ns	<.01	.04	.03	ns
CD4 ⁺ Th17	<.01	ns	.01	ns	ns	ns	<.01	<.01	<.01	<.01	ns
CD4 ⁺ Th17/1	<.01	<.01	.03	ns	ns	ns	ns	<.01	<.01	<.01	ns
CD4 ⁺ Treg	ns	ns	<.01	<.01	ns	<.01	<.01	ns	ns	ns	ns
CD4 ⁺ activated	<.01	ns	<.01	<.01	ns	ns	<.01	.02	<.01	<.01	ns
CD4 ⁺ central	ns	ns	ns	ns	ns	<.01	<.01	ns	ns	ns	ns
CD4 ⁺ lncRNA	ns	ns	ns	<.01	ns	ns	<.01	ns	ns	<.01	ns
CD8 ⁺ central	ns	ns	ns	ns	ns	ns	ns	.02	ns	ns	ns
Vd1	ns	ns	ns	<.01	ns	ns	ns	ns	ns	ns	ns

Supplementary Table 20. Cell type-disease associations for T cell subtypes in Cano-Gamez & Soskic et al. and Nathan et al. data sets. We report FDR for significant cell type-disease associations (FDR<0.05) in the Cano-Gamez & Soskic et al. and Nathan et al. data sets (Supp. Table 2). We performed cell type-disease associations between each cell type in the two data sets and each of the 10 autoimmune diseases (and height, a negative control trait) using scDRS-based MC test. The Nathan et al. data has 500,089 cells, which we randomly divided into 4 batches and processed them using scDRS separately, followed by combining the MC p-values across batches for each cell type-disease pair using Fisher's combined probability test. We applied FDR control for each data set and each disease separately across all cell types in the data set (22 cell types in Cano-Gamez & Soskic et al. and 29 cell types in Nathan et al.).

See Supplementary Excel file

Supplementary Table 21. Results for cell type-level analyses for the Zeisel & Muñoz-Manchado et al. data. For each pair of cell type and disease/trait, we report the proportion of significantly associated cells (FDR<0.1), FDR for cell type-disease association, and FDR for within-cell type disease association heterogeneity.

Trait	Dorsal.P	Dorsal.Var	Ventral.P	Ventral.Var	Proximal.P	Proximal.Var	Distal.P	Distal.Var	Deep.P	Deep.Var	Superficial.P	Superficial.Var
MDD	0.001	0.245	0.75	0.006	0.002	0.151	0.25	0.003	0.001	0.189	0.82	0.004
SCZ	0.001	0.178	0.67	0.002	0.001	0.194	0.81	0.004	0.001	0.114	0.83	0.004
NRT	0.002	0.130	0.28	0.004	0.001	0.205	0.65	0.001	0.001	0.146	0.55	0.000
Smoking	0.009	0.099	0.13	0.017	0.001	0.176	0.61	0.001	0.001	0.139	0.27	0.002
ECOL	0.001	0.165	0.42	0.000	0.001	0.216	0.41	0.000	0.001	0.168	0.69	0.001
BMI	0.021	0.060	0.071	0.026	0.001	0.287	0.61	0.000	0.001	0.142	0.44	0.000
Height	0.37	0.002	0.55	0.000	0.008	0.063	0.68	0.001	0.21	0.007	0.98	0.018

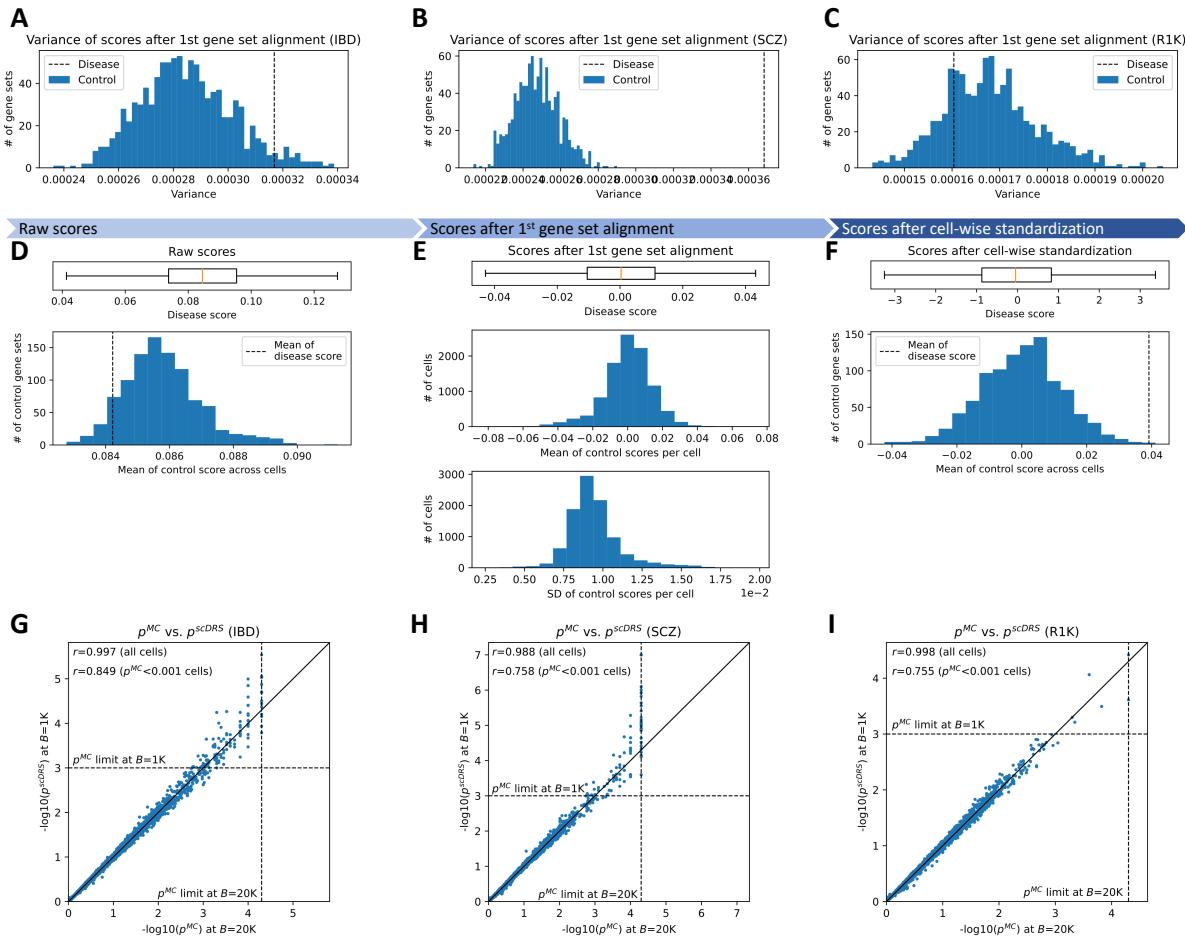
Supplementary Table 22. Numerical results for correlations between scDRS disease scores and inferred spatial coordinates in Fig. 5B. We separately regressed the scDRS scores of each of the 6 brain traits (and height, a negative control trait) against each of the 6 inferred spatial coordinates across the 827 CA1 pyramidal neurons. We report p-values for significant positive correlation between the scDRS disease score and the inferred spatial coordinates (MC test) and variance explained. P-values smaller than 0.005 were highlighted in bold font.

	Polypliody.P	Pericentral.P	Periportal.P	Variance explained
TG	0.001	0.722	0.012	0.556
HDL	0.003	0.612	0.036	0.443
LDL	0.010	0.476	0.010	0.415
TC	0.003	0.432	0.008	0.457
TST	0.001	0.755	0.007	0.584
ALT	0.001	0.540	0.004	0.632
ALP	0.001	0.539	0.001	0.573
SHBG	0.001	0.643	0.018	0.597
TBIL	0.001	0.804	0.186	0.482
Height	0.622	0.940	0.239	0.114

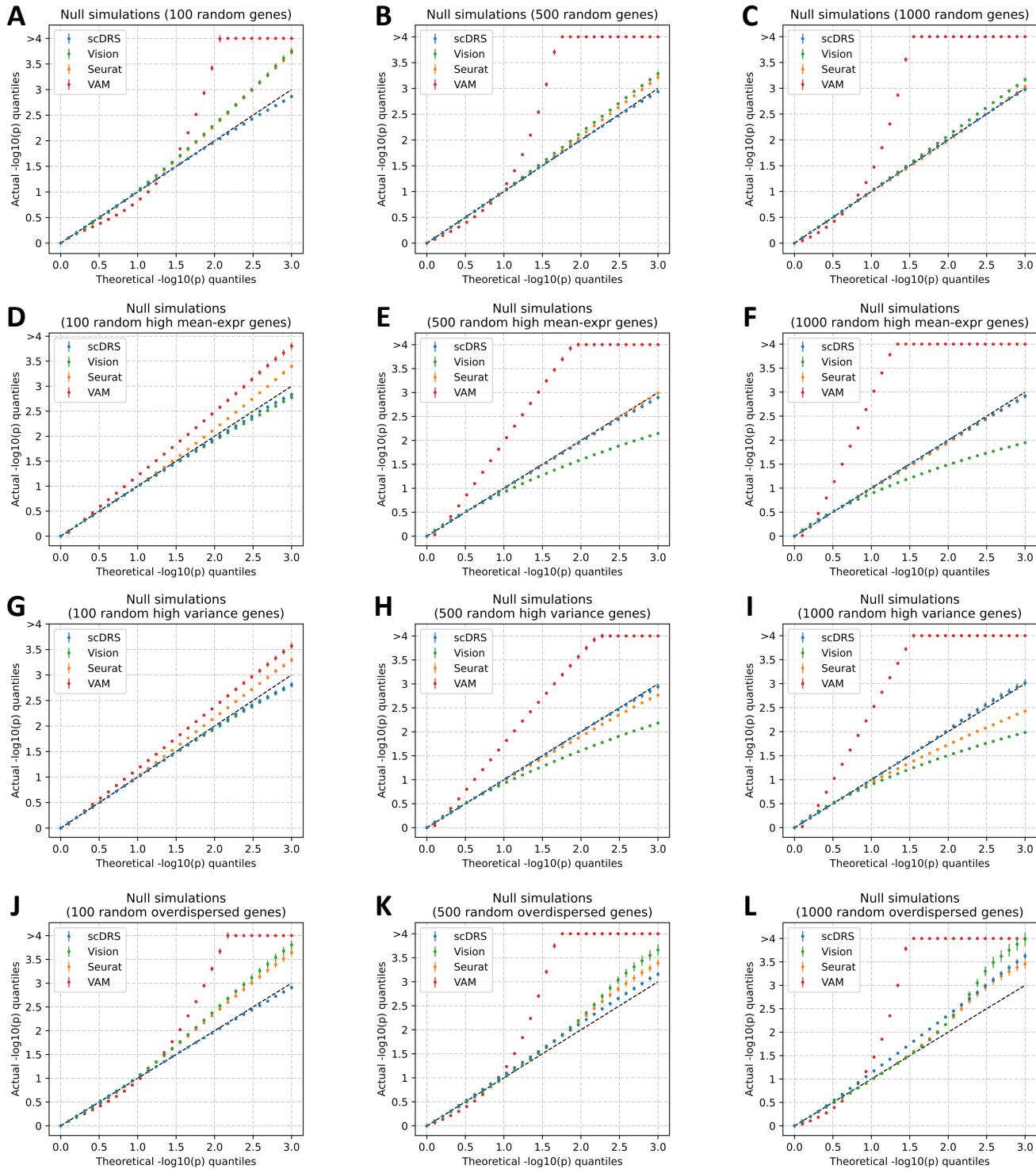
Supplementary Table 23. Numerical results for correlations between scDRS disease scores and inferred ploidy and zonation scores in Fig. 5D. We jointly regressed the scDRS scores of each of the 9 metabolic traits (and height, a negative control trait) on the polypliody score, pericentral score, and periportal score. We report p-values for significant positive correlation between the scDRS disease score and the polypliody score, pericentral score, and periportal score (MC test) and variance explained. P-values smaller than 0.005 were highlighted in bold font.

	TMS FACS	TMS Droplet	Aizarani	Halpern	Richter	Taychameekiatchai
4n hepatocyte (vs. 2n)	0.001	0.001	0.001	0.001	0.001	0.001
polypliod (Cdk1 ko)	0.001	0.001	0.001	0.038	0.001	0.001
large hepatocyte (vs. small)	0.001	0.001	0.001	0.001	0.001	0.001
2n hepatocyte (vs. 4n)	0.470	0.009	0.542	0.003	0.001	0.014
diploid (Cdk1 ko)	0.001	0.001	0.321	0.028	0.001	0.148
diploid (PH)	0.001	0.001	0.156	0.001	0.002	0.001

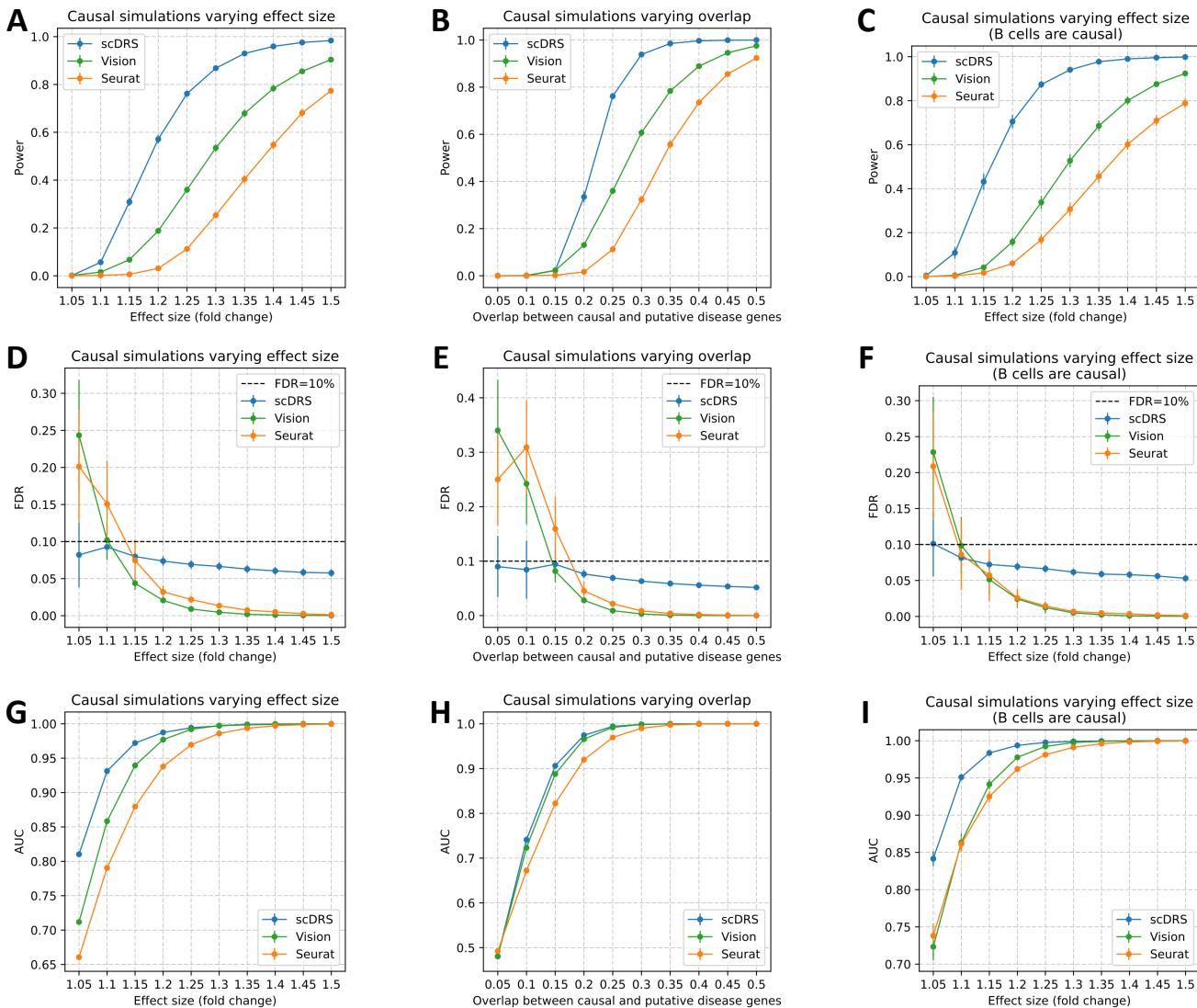
Supplementary Table 24. Correlation between scDRS scores and different ploidy signatures. We correlated our polypliody score (based on DEGs for PH vs. pre-PH) with other ploidy and diploid signatures for the 6 data sets. We report p-values for significant positive correlation for the polypliody signatures (first three rows) and significant negative correlation for the diploid signatures (last three rows). P-values smaller than 0.005 were highlighted in bold font.



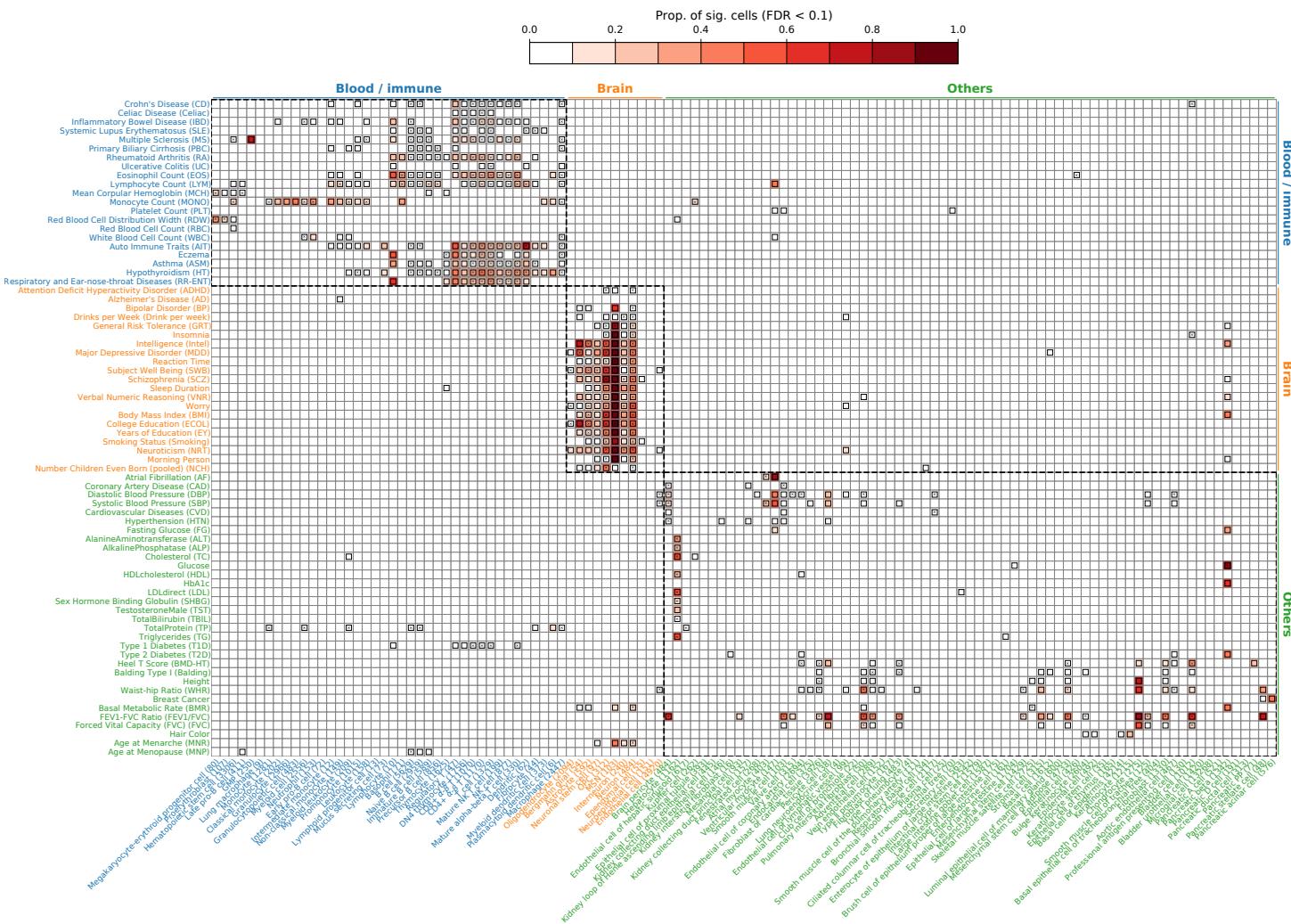
Supplementary Figure 1. Details of scDRS method. Results are based 10,000 cells subsampled from TMS FACS and 3 sets of putative disease genes: IBD, SCZ, and R1K (1,000 random genes). **(A-C)** Variance of raw disease scores (dashed line) and raw control scores (histogram) computed across cells for different gene sets. Informative disease gene sets (IBD and SCZ) have higher disease score variances while the uninformative gene set (R1K) has comparable values for the disease score variance and control score variances. We considered raw scores after the first gene set alignment to remove potential mismatch of expression mean and variance across gene sets. **(D)** Comparison between raw disease scores and raw control scores (before Box 1, step 3a). The upper panel shows the distribution of disease scores and the lower panel shows the histogram of the mean of control scores (computed for each control gene set across cells). There is a moderate level of mismatch of mean expression across control gene sets (ratio between the SD of mean control scores across control gene sets and SD of disease scores across cells is 6.8%); this mismatch is corrected by the first gene set alignment (Box 1, step 3a). **(E)** Comparison between disease scores and control scores after the first gene set alignment (before Box 1, step 3b). The upper panel shows the distribution of disease scores and the middle (resp. lower) panel shows the histogram of the per-cell mean (resp. SD) of control scores (computed for each cell across control gene sets). There is a high level of mismatch of the control score distribution (mean and SD) across cells; this mismatch is corrected by the cell-wise standardization (Box 1, step 3b). **(F)** Comparison between disease scores and control scores after cell-wise standardization (before Box 1, step 3c). The upper panel shows the distribution of disease scores and the lower panel shows the histogram of the mean of control scores (computed for each control gene set across cells). There is a mild level of mismatch of mean expression across control gene sets (ratio between the SD of mean control scores across control gene sets and SD of disease scores across cells is 1%); this mismatch is corrected by the second gene set alignment (Box 1, step 3c). Panels D-F are based on the IBD results. **(G-I)** Comparison between MC p-values with $B=20,000$ and scDRS p-values with $B=1,000$ for IBD, SCZ, and R1K. Each dot denotes a cell and the p^{MC} limit $1/(1+B)$ is the smallest MC p-value that an MC test with B MC samples can achieve. The scDRS p-values are highly correlated with the MC p-values obtained with $B=20,000$, both across all cells and across cells with $p^{MC} < 0.001$ (p^{MC} limit at $B=1,000$; corresponding to cells whose ideal MC p-values (with $B=\infty$) are small and require scDRS to extrapolate beyond the p^{MC} limit at the given number of MC samples), suggesting that scDRS can reliably approximate the ideal p-values obtained with an infinite number of MC samples. The dots on the vertical dashed line correspond to those whose ideal MC p-values are smaller than the p^{MC} limit at $B=20,000$; it is not surprising that the scDRS p-values, approximating the ideal MC p-values, are on average smaller than the MC p-values for these cells.



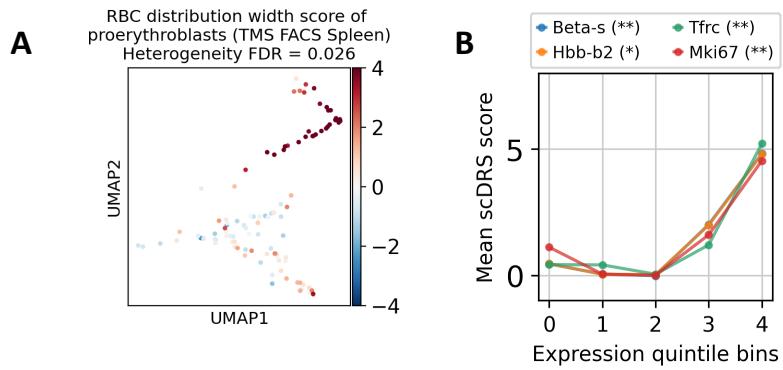
Supplementary Figure 2. Additional null simulations We performed null simulations for various numbers of putative disease genes (100, 500, 1,000 for the three columns respectively) and various types of genes to randomly sample from: all genes (first row), and top 25% genes with high expression (second row), top 25% genes with high expression variance (third row), top 25% overdispersed genes (fourth row). In each panel, the x-axis denotes theoretical $-\log_{10} p$ -value quantiles and the y-axis denotes actual $-\log_{10} p$ -value quantiles for different methods. scDRS produced well-calibrated p-values in most settings and suffered slightly inflated type I error in panel L, possibly because it is hard to match a large number of overdispersed putative disease genes using the remaining set of genes. In comparison, all other methods are less well-calibrated and are particularly problematic when the numbers of putative disease genes are small. All experiments were repeated 100 times and 95% confidence intervals were provided.



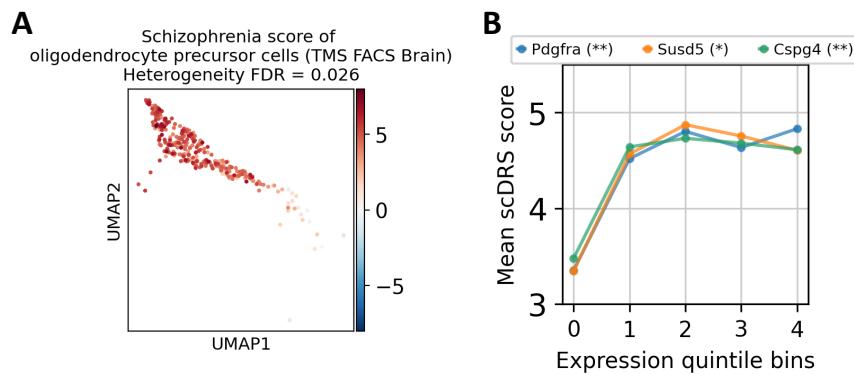
Supplementary Figure 3. Additional causal simulations. We performed three sets of causal simulations: (1) varying effect size from 5% to 50% while fixing 25% overlap (first column), (2) varying level of overlap from 5% to 50% while fixing 25% effect size (second column), (3) assigning the 528 B cells in the subsampled data to be causal (instead of the 500 randomly selected cells; varying effect size while fixing 25% overlap; third column). We report the power (first row), FDR (second row), and AUC for classifying causal from non-causal cells based on the p-values (third row). scDRS outperformed other methods under all metrics. All experiments were repeated 100 times and 95% confidence intervals were provided.



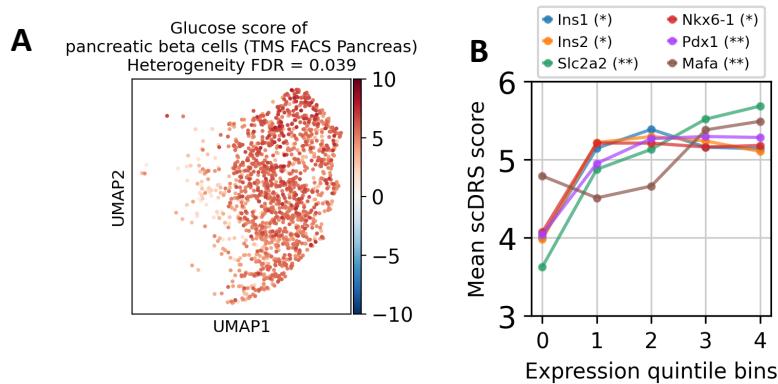
Supplementary Figure 4. Complete results for disease associations at the cell type level for 74 diseases/traits and 120 cell types in the TMS FACS data in Fig. 3. Each row represents a disease/trait and each column represents a cell type (with number of cells indicated in parentheses). Heatmap colors for each cell type-disease pair denote the proportion of significantly associated cells (FDR < 0.1 across all cells for a given disease). Squares denote significant cell type-disease associations (FDR < 0.05 across all pairs of the 120 cell types and 74 diseases/traits; 577 significant pairs; p-values via MC test; Methods). Cross symbols denote significant heterogeneity in association with disease across individual cells within a given cell type (FDR < 0.05 across all pairs; 247 significant pairs; p-values via MC test; Methods). Heatmap colors and cross symbols are omitted for cell type-disease pairs with non-significant cell type-disease associations. Within the blood/immune block (40 cell types and 21 diseases/traits), 120 of 249 cell type-disease pairs with significant association also had significant heterogeneity. Within the brain block (11 cell types and 21 diseases/traits), 56 of 130 cell type-disease pairs with significant association also had significant heterogeneity. Within the other block (69 cell types and 32 diseases/traits), 51 of 143 cell type-disease pairs with significant association also had significant heterogeneity. Numerical results are reported in Supp. Table 12.



Supplementary Figure 5. Heterogeneous subpopulations of proerythroblasts associated with red blood cell distribution width (RDW). (A) Significant heterogeneity (FDR=0.026) of proerythroblasts (in the spleen) in association with RDW. (B) Expression levels of proerythroblast marker genes are significantly positively correlated with the scDRS disease score. The x-axis denotes marker gene expression quintile bins and the y-axis denotes average scDRS disease score for each bin. * denotes $P < 0.05$ and ** denotes $P < 0.005$. The heterogeneous association levels of proerythroblasts with RDW may correspond to the different differentiation stages of proerythroblasts⁵². Of note, the scDRS disease score was not correlated with age ($P = 0.13$) or sex ($P = 0.39$).

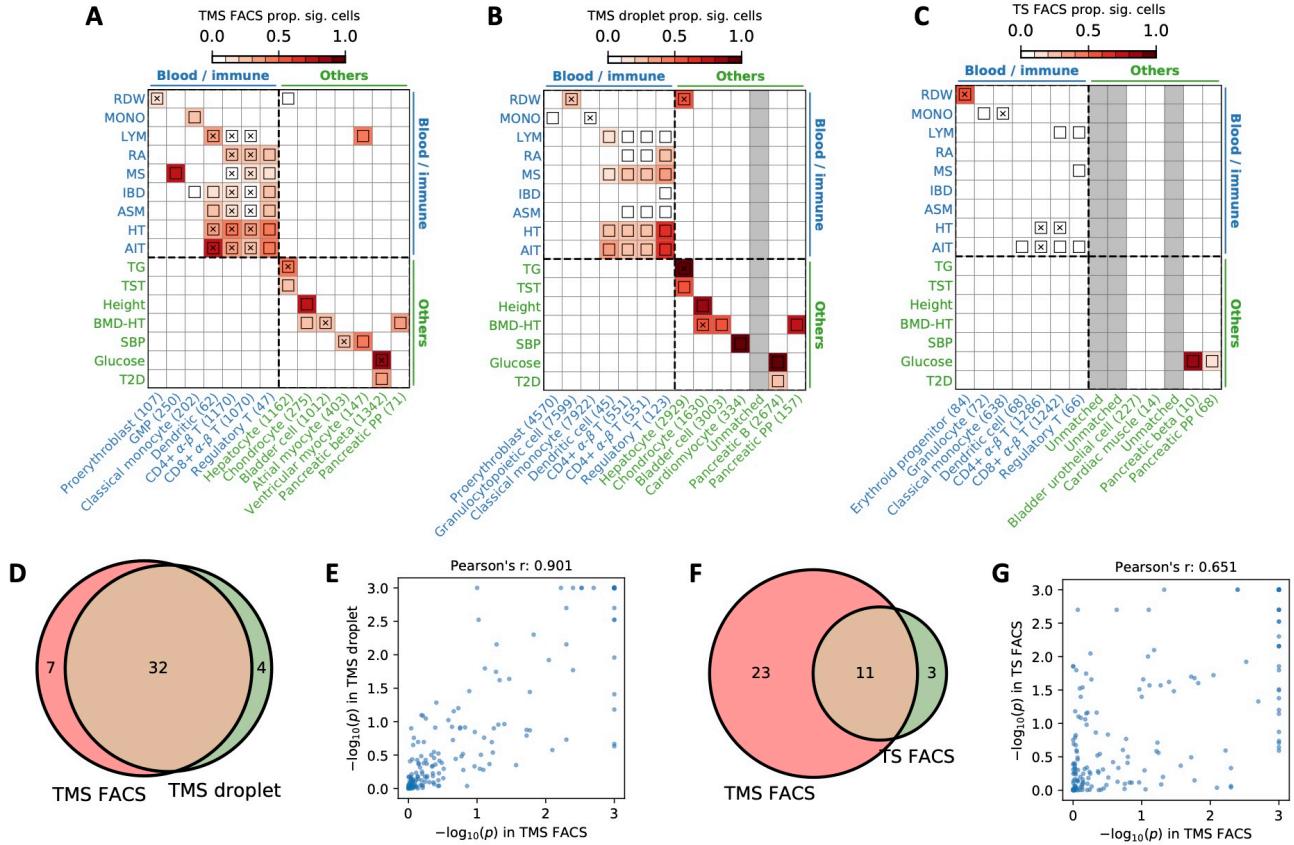


Supplementary Figure 6. Heterogeneous subpopulations of oligodendrocyte precursor cells associated with schizophrenia (SCZ). (A) Significant heterogeneity (FDR=0.039) of oligodendrocyte precursor cells (in the brain non-myeloid) in association with SCZ. (B) Expression levels of oligodendrocyte precursor cell marker genes are significantly positively correlated with the scDRS disease score. The x-axis denotes marker gene expression quintile bins and the y-axis denotes average scDRS disease score for each bin. * denotes $P < 0.05$ and ** denotes $P < 0.005$. The heterogeneous association levels of oligodendrocyte precursor cells with SCZ may correspond to the different developmental stages of oligodendrocyte precursor cells⁵³. Of note, the scDRS disease score was slightly higher in male than female ($P = 0.012$), and was not correlated with age ($P = 0.083$).

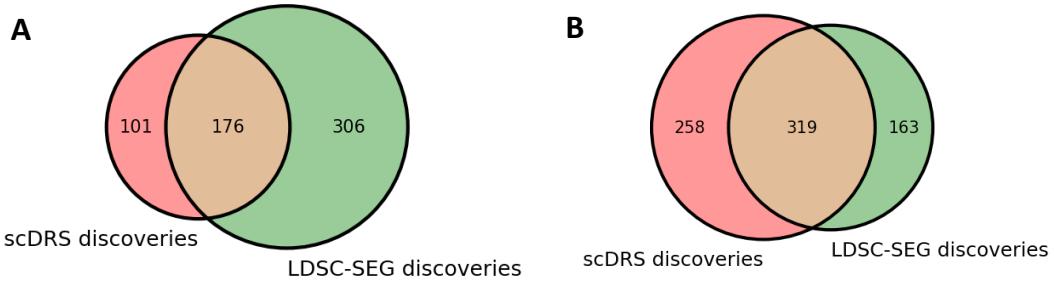


Supplementary Figure 7. Heterogeneous subpopulations of pancreatic beta cells associated with glucose. (A)

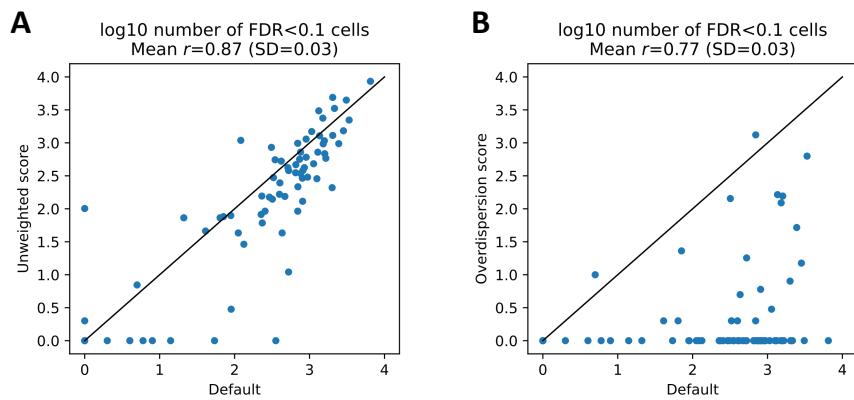
Significant heterogeneity (FDR=0.039) of pancreatic beta cells (in the pancreas) in association with glucose. **(B)** Expression levels of pancreatic beta cell marker genes are significantly positively correlated with the scDRS disease score. The x-axis denotes marker gene expression quintile bins and the y-axis denotes average scDRS disease score for each bin. * denotes $P < 0.05$ and ** denotes $P < 0.005$. The heterogeneous association levels of pancreatic beta cells with glucose level may correspond to different states of pancreatic beta cells with varying insulin production levels⁵⁴. Of note, the scDRS disease score was higher in female than male ($P = 0.003$) and was negatively correlated with age ($P = 0.002$).



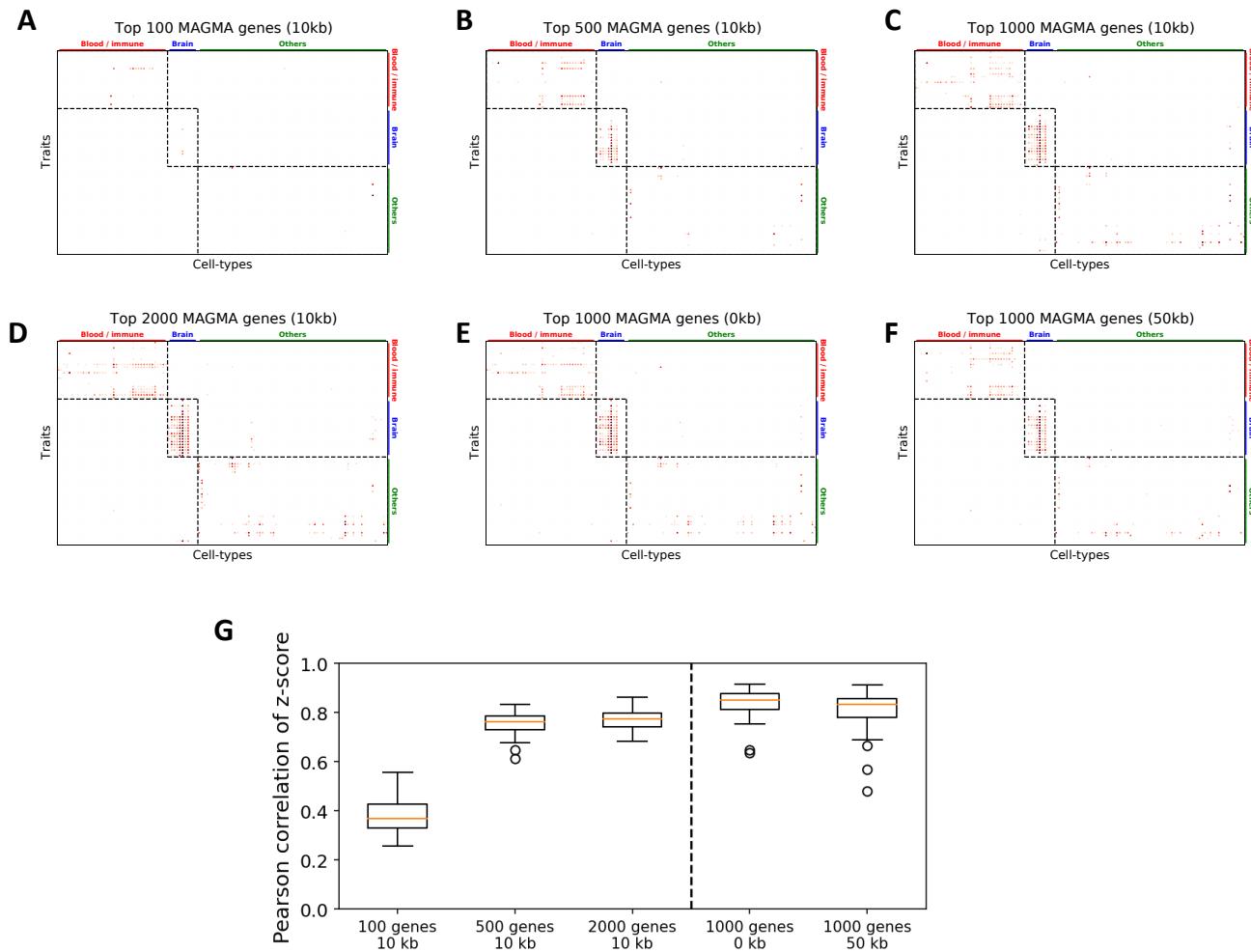
Supplementary Figure 8. Comparison of cell type-level disease association results between TMS FACS and TMS droplet (different technology), TS FACS (different species). (A-C) Results for disease association at the cell type-level for TMS FACS, TMS droplet, and TS FACS for diseases and cell types in the blood/immune block (upper left) and the other cell types/diseases block (lower right) in Fig. 3 (TMS droplet and TS FACS do not contain brain data). The plotting style is same as Fig. 3. Heatmap colors for each cell type-disease pair denote the proportion of significantly associated cells (FDR<0.1); squares denote significant cell type-disease associations (FDR<0.05); and cross symbols denote significant heterogeneity in association with disease across individual cells within a given cell type (FDR<0.05). Heatmap colors (>10% of cells associated) and cross symbols are omitted for cell type-disease pairs with non-significant cell type-disease associations via MC test. We matched each TMS FACS cell type using the closest cell type in the TMS droplet and TS FACS data; unmatched cell types were colored in grey. (D) Overlap of significant cell type-disease associations between TMS FACS and TMS droplet ($P = 1.7 \times 10^{-26}$, Fisher's exact test). (E) Correlation of $-\log_{10}(p)$ values for cell type-disease associations between TMS FACS and TMS droplet. (F) Overlap of significant cell type-disease associations between TMS FACS and TS FACS ($P = 7.5 \times 10^{-7}$, Fisher's exact test). (G) Correlation of $-\log_{10}(p)$ values for cell type-disease associations between TMS FACS and TS FACS. We determined that the results are highly consistent between TMS FACS and TMS droplet, and are reasonably consistent between TMS FACS and TS FACS. Our method is underpowered in the TS FACS data, possibly due to the smaller sample size (27K cells in TS FACS vs. 110K cells in TMS FACS). The current TS FACS data corresponds to the initial data release and there will likely be more cells in future releases³⁷.



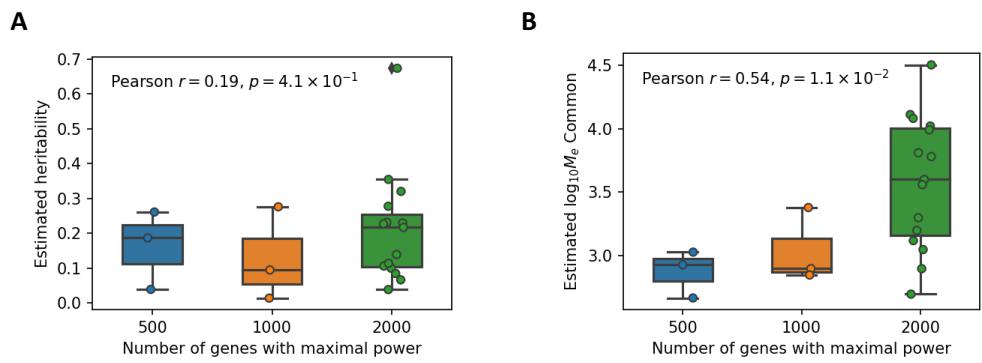
Supplementary Figure 9. Comparison of cell type-disease associations to LDSC-SEG. We used LDSC-SEG to analyze the same 120 TMS FACS cell types and 74 diseases and compared the cell type-disease associations identified by the two methods. We considered two versions of scDRS cell type-disease association discoveries: (1) cell type-disease pairs with more than 10% of individual cells associated to disease (non-white color in Supp. Fig. 4), (2) cell type-disease pairs with $FDR < 0.05$ for cell type-disease association via MC test (squares in Supp. Fig. 4). For LDSC-SEG, we performed one-versus-rest differential expression analysis (“rank_genes_groups” with option “t-test_overestim_var” in scanpy⁵⁵) to identify specifically-expressed genes for each of the 120 cell types (top 1,000 genes to be consistent with scDRS). We used 100-kb windows around the gene body to map genes to variants (default setting in LDSC-SEG) and applied LDSC-SEG²⁰ conditional on the 52 baseline annotations (baseline v1.2) to identify disease-relevant cell types. We computed FDR across all pairs of cell types and diseases/traits and used a significance threshold of 0.05. (A) Venn diagram between the scDRS discoveries (based on scDRS individual cell-level associations) and LDSC-SEG discoveries ($P = 1.4 \times 10^{-162}$, Fisher’s exact test). (B) Venn diagram between the scDRS discoveries (based on scDRS cell type-level associations via MC test) and LDSC-SEG discoveries ($P = 8.7 \times 10^{-295}$, Fisher’s exact test).



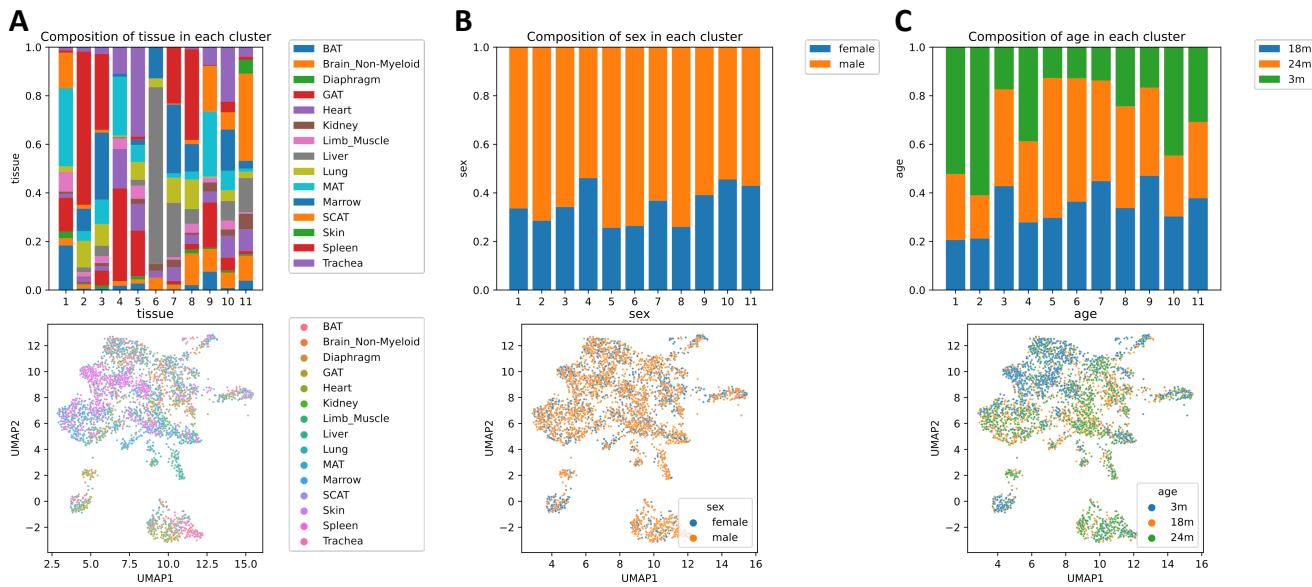
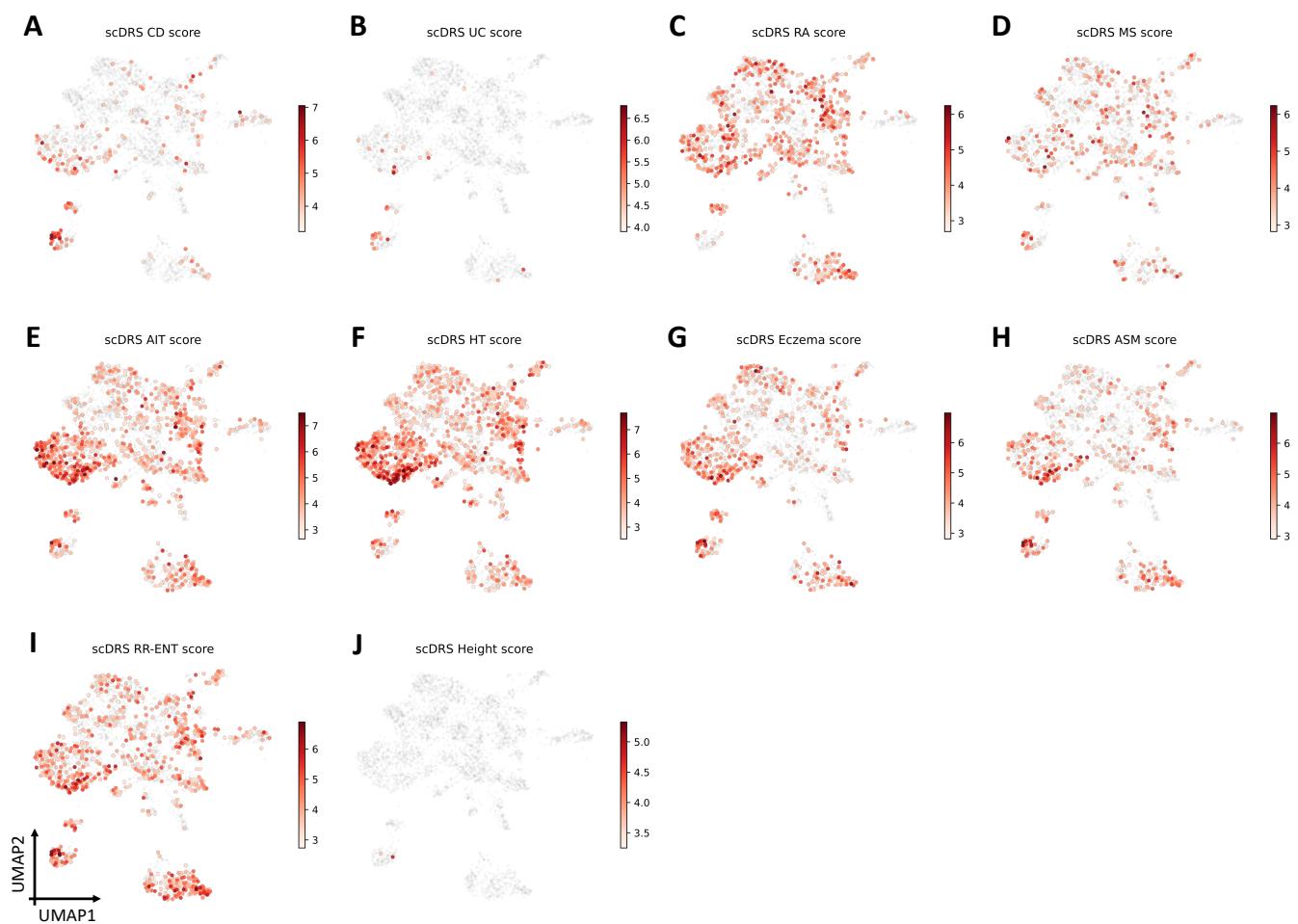
Supplementary Figure 10. Comparison of scDRS to alternative cell-level scores. We considered other cell-level scores, including the unweighted average and the overdispersion score, which tests for both overexpression and underexpression of the disease genes in the relevant cell population (Methods). Each dot corresponds to one of the 74 diseases, the x-axis denotes the number of associated cells ($FDR < 0.1$) using the default weighted average score (used in scDRS) and the y-axis denotes results using the alternative cell-level scores. For each of these comparisons, we also computed the Pearson’s correlation of the $-\log_{10}$ p-values across cells for each trait, and report the average correlation across traits (along with SD). We determined that the default weighted average score attained higher power while being consistent with the alternative cell-level scores.



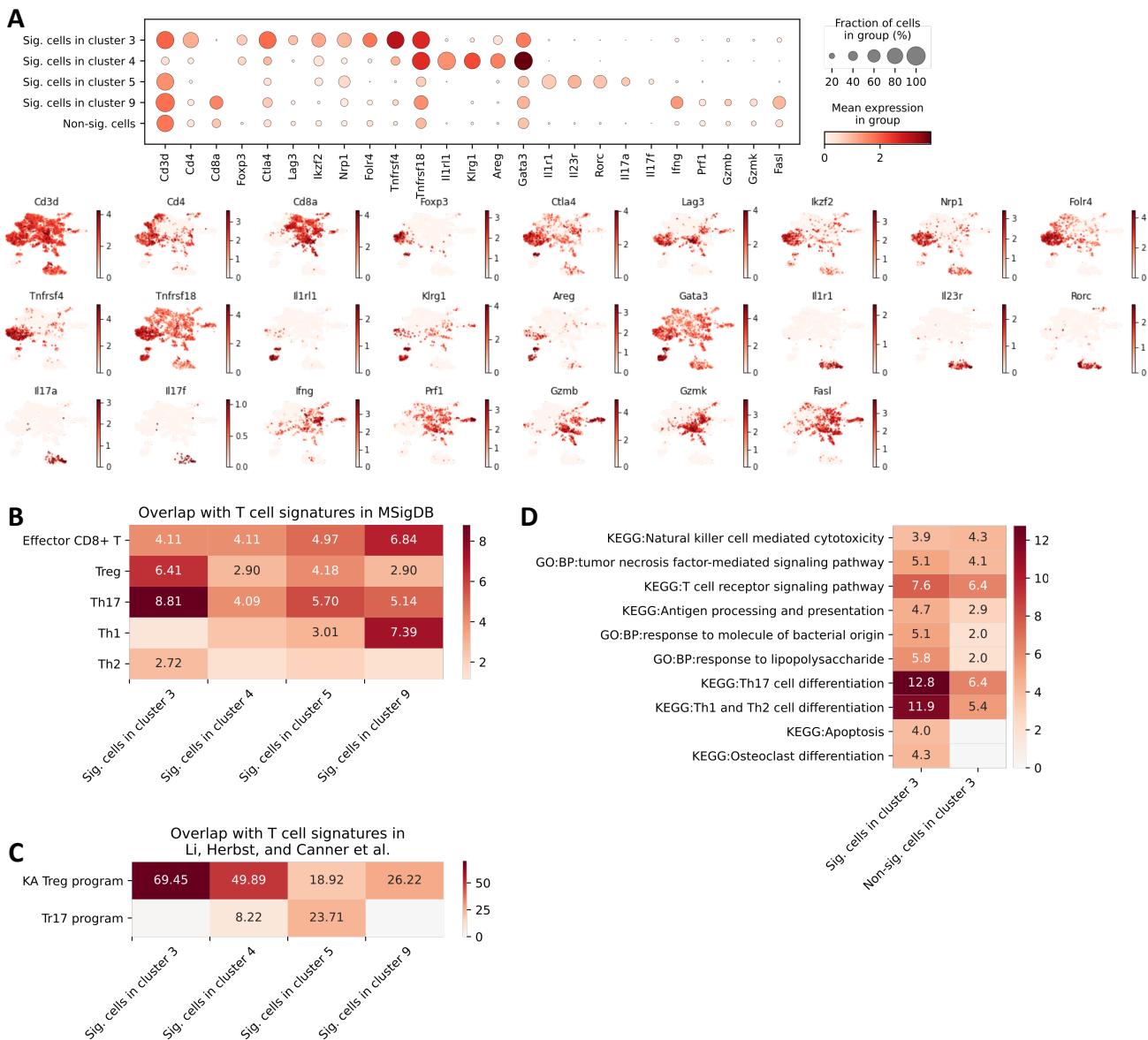
Supplementary Figure 11. Comparison of scDRS results for different parameter settings. (A-F) scDRS disease associations at the cell type level for the 120 cell types in TMS FACS data and 74 diseases/traits using different numbers of putative disease genes (100, 500, 1,000, 2,000 while fixing the 10-kb MAGMA window) and using different MAGMA window sizes (0 kb, 10 kb, 50 kb while fixing the 1,000 putative disease genes). For each heatmap, each row represents a disease/trait and each column represents a cell type. Heatmap colors for each cell type-disease pair denote the proportion of significantly associated cells (FDR<0.1 across all cells for a given disease). Diseases/traits and cell types are in the same order as in Supp. Fig. 4. (G) Pearson's correlation of the scDRS normalized disease scores across cells between the default parameter setting (1,000 genes, 10-kb window, panel C) and other parameter settings. Each boxplot represents the distribution of the Pearson's correlations across 74 diseases/traits.



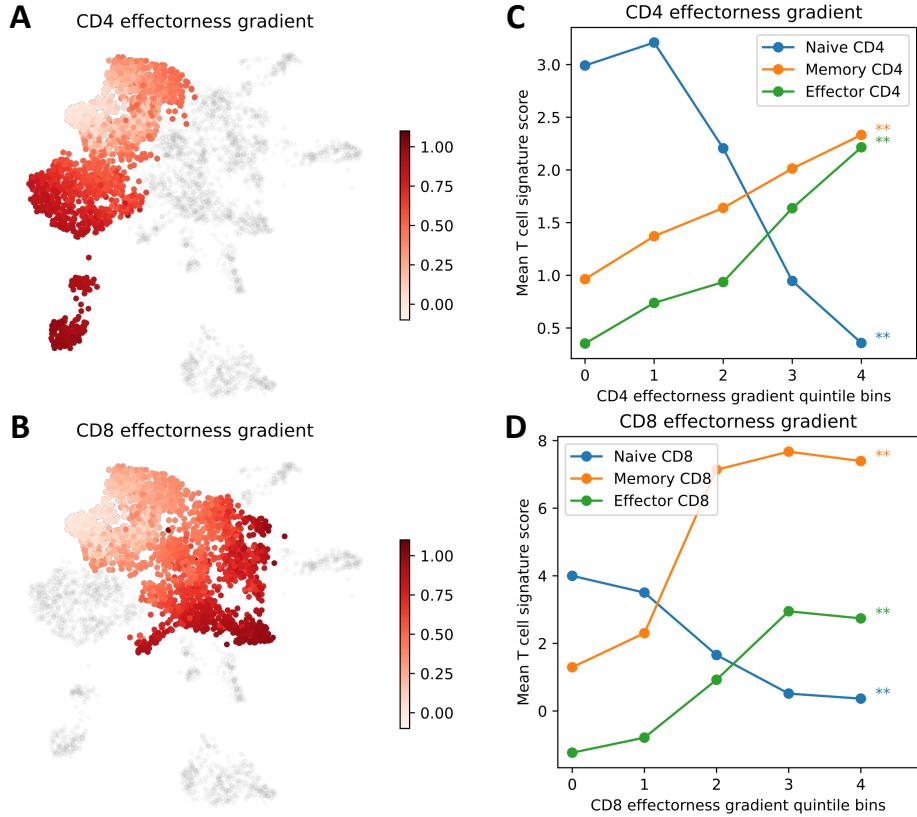
Supplementary Figure 12. Relationship between optimal size of disease gene set with heritability and polygenicity across diseases/traits. (A) Heritability. (B) Polygenicity as measured by $\log_{10}M_e$ in O'Connor et al.³³ for common SNPs. Each dot corresponds to a trait, the x-axis denotes the optimal size of putative disease genes for the trait and the y-axis denotes heritability/polygenicity. Pearson's correlation and the corresponding p-value are based on correlating the optimal size of disease gene set with heritability/polygenicity across diseases/traits.



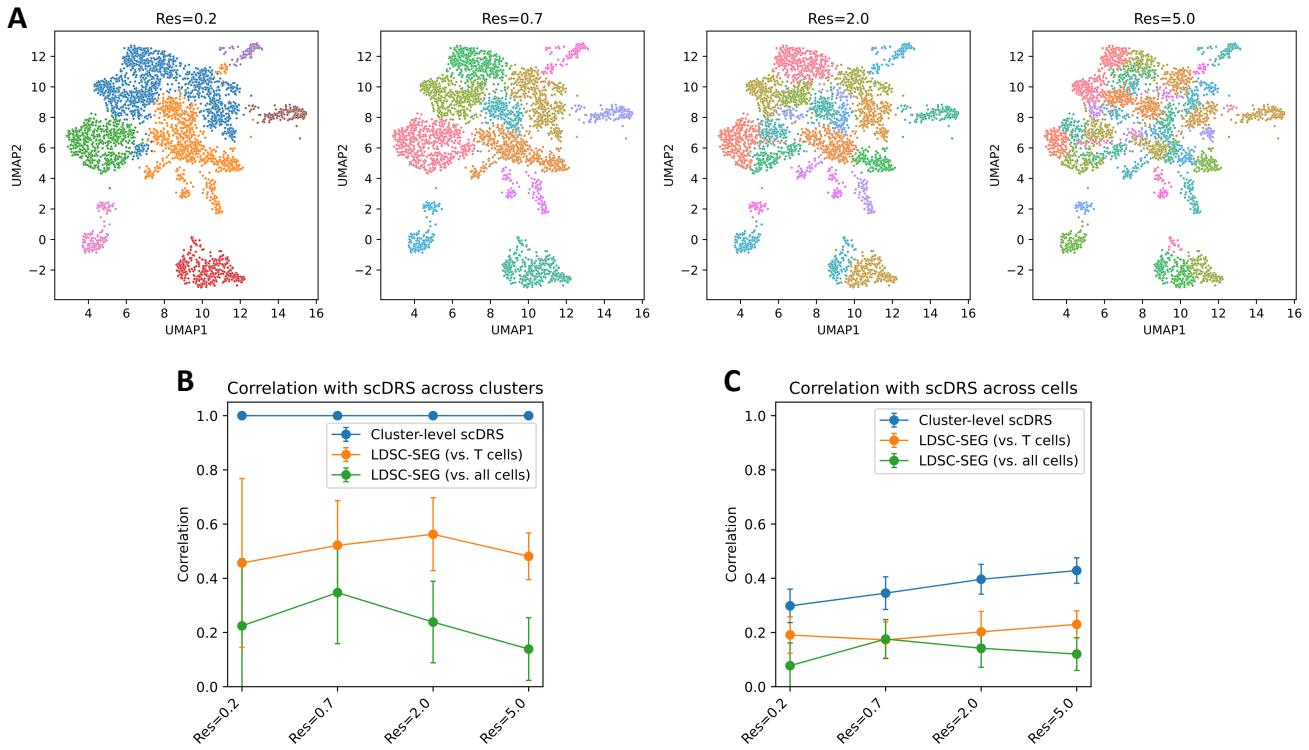
Supplementary Figure 14. Subpopulations of TMS FACS T cells associated with the other 9 autoimmune diseases (besides IBD) and height, a negative control trait. Significantly associated cells ($FDR < 0.1$) were colored in red with shades of red representing the scDRS disease score; non-significant cells were colored in grey.



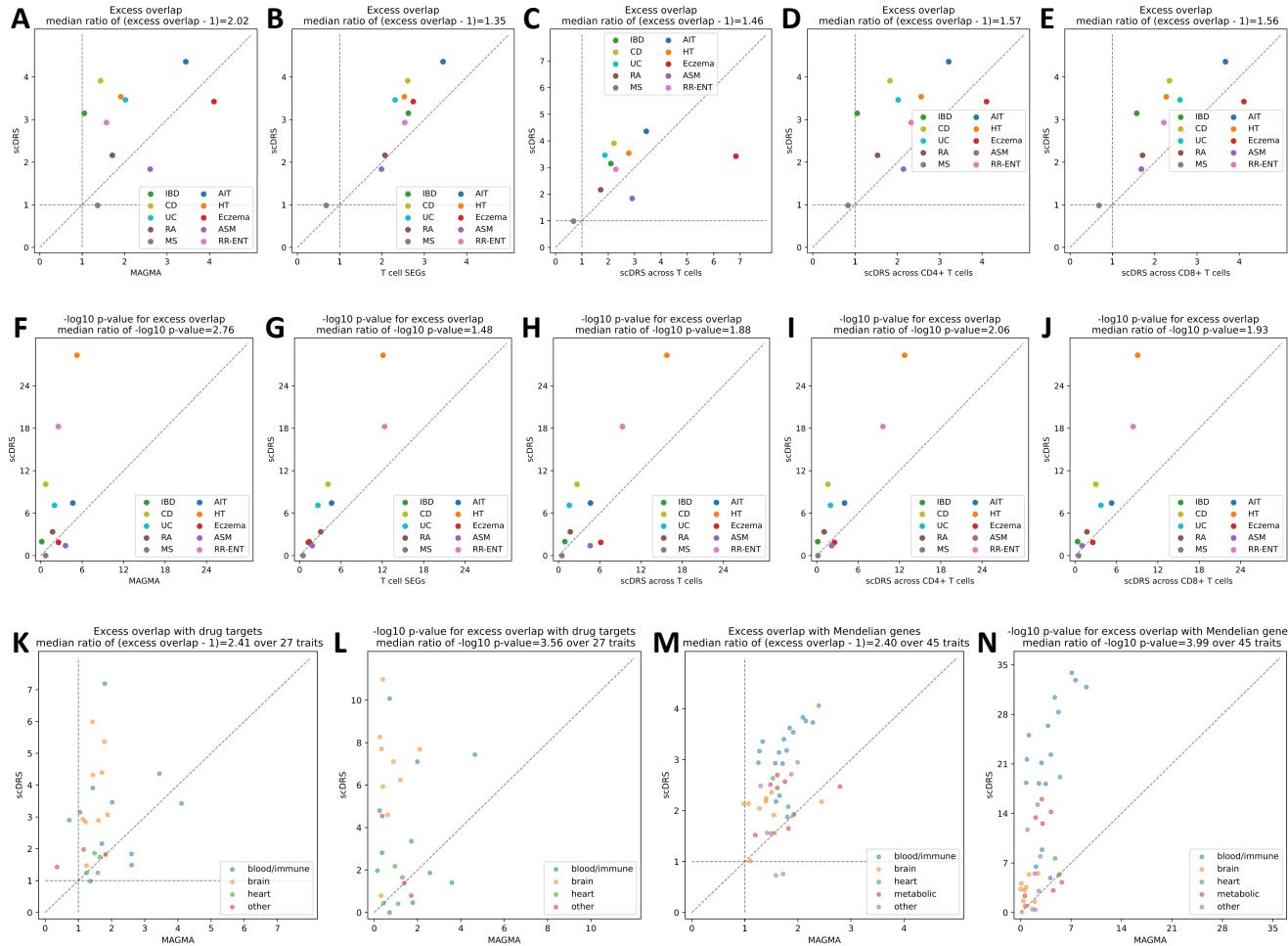
Supplementary Figure 15. Additional results on subpopulations of T cells associated with IBD. (A) Expression of marker genes in subpopulations of T cells associated with IBD, including general T cell markers (*CD3D*, *CD4*, *CD8A*), Treg markers (*FOXP3*, *CTLA4*, *LAG3*, *Iκzf2* (*Helios*), *NRP1* (*Neuropilin-1*), *FLR4*, *TNFRSF4* (*OX40*), *TNFRSF18* (*GITR*)), signatures of a *KLRG1*⁺ *AREG*⁺ effector-like Treg program⁵⁶ (*IL1RL1* (*ST2*), *KLRG1*, *AREG*, *GATA3*), Th17 markers (*IL1RL1*, *IL23R*, *RORC*, *IL17A*, *IL17F*), and effector CD8⁺ T cell signatures (*IFNG*, *PRF1*, *GZMB*, *GZMK*, *FASL*). (B) Overlap between T cell signatures and the top 300 specifically expressed genes for each IBD-associated T cell subpopulation (Supp. Table 8; Methods). The color and number in each cell represent the $-\log_{10}$ enrichment p-values (Fisher's exact test). (C) Overlap between Treg programs⁵⁶ (KA Treg: *KLRG1*⁺ *AREG*⁺ effector-like Treg program; Tr17: Th17-like Treg program; Supp. Table 8) and the top 300 specifically expressed genes of each IBD-associated T cell subpopulation. The color and number in each cell represent the $-\log_{10}$ enrichment p-values (Fisher's exact test). (D) Pathways enriched in the top 300 specifically expressed genes of the IBD-associated cells and non-associated cells in cluster 3 respectively. The color and number in each cell represent the $-\log_{10}$ enrichment p-values (based on Enrichr implemented in GSEAPY^{57,58}).



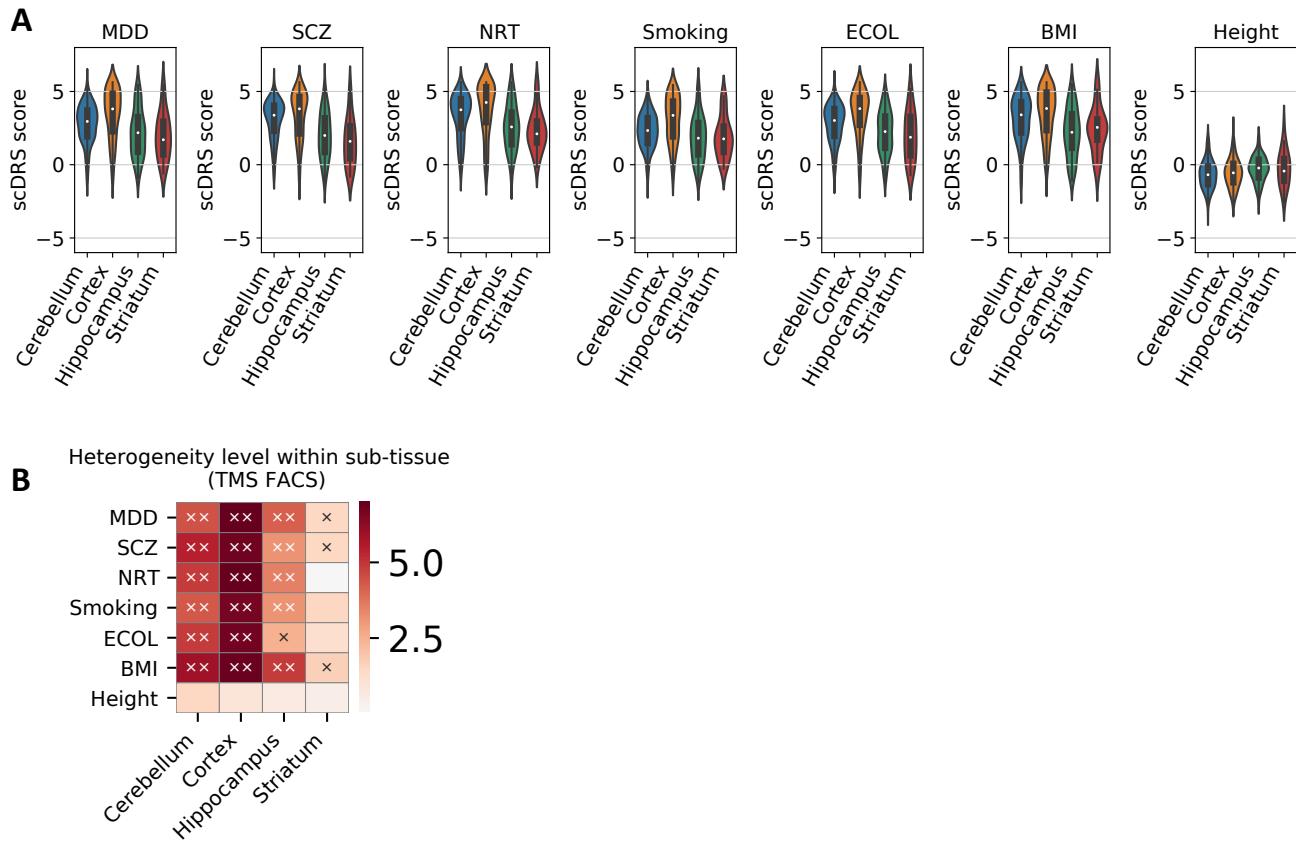
Supplementary Figure 16. Results for CD4 and CD8 effectorness gradients. (A) UMAP visualization of CD4 effectorness gradient across CD4⁺ T cells. The effectorness gradient was represented in the red color and non-CD4⁺ T cells were colored in grey. (B) UMAP visualization of CD8 effectorness gradient across CD8⁺ T cells. The effectorness gradient was represented in the red color and non-CD8⁺ T cells were colored in grey. (C) Correlation across CD4⁺ T cells between CD4 effectorness gradient and signatures for naive, memory, and effector CD4⁺ T cells (sCDRS disease scores for applying these signature gene sets to the TMS FACS data). The x-axis denotes CD4 effectorness gradient quintile bins and the y-axis denotes average sCDRS disease score for each bin and each signature gene set. * denotes $P < 0.05$ and ** denotes $P < 0.005$. (D) Correlation across CD8⁺ T cells between CD8 effectorness gradient and signatures for naive, memory, and effector CD8⁺ T cells. The x-axis denotes CD8 effectorness gradient quintile bins and the y-axis denotes average sCDRS disease score for each bin and each signature gene set. * denotes $P < 0.05$ and ** denotes $P < 0.005$.



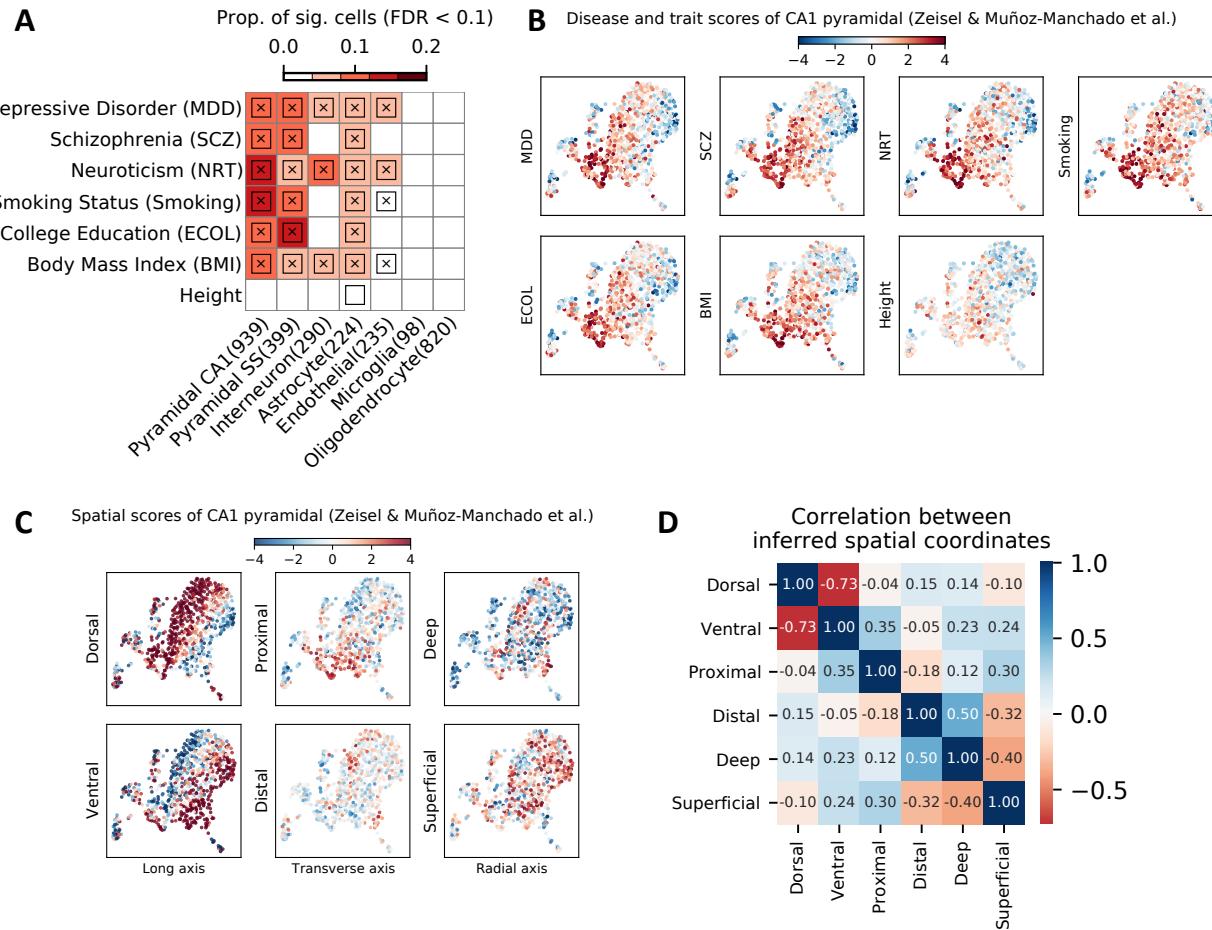
Supplementary Figure 17. Comparison of individual cell level T cell results to cluster-level analyses. We reclustered the set of T cells with different cluster resolutions (0.2, 0.7, 2, 5; 0.7 corresponds to Fig. 4A), followed by performing LDSC-SEG analysis on specifically expressed genes (SEGs) for each cluster and each of the 10 autoimmune diseases; we considered two ways for computing SEGs for a given cluster: by comparing to other T cells (vs. T cells) or to all other cells in the TMS FACS data (vs. all cells). We considered a third baseline that obtains $-\log_{10}$ p-values for a given cluster by averaging the scDRS $-\log_{10}$ p-values of cells within the cluster (cluster-level scDRS). We note that the gap between scDRS and cluster-level scDRS is due to finite clustering resolution, while the gap between cluster-level scDRS and LDSC-SEG is due to the difference between scDRS and LDSC-SEG for capturing cluster-level disease heritability enrichment. **(A)** T cells clustered at different resolutions. **(B)** Correlation of $-\log_{10}$ p-value *across clusters* between scDRS and the 3 comparison methods. For scDRS, the cluster-level $-\log_{10}$ p-values were obtained by averaging the $-\log_{10}$ p-value of cells within the same cluster (identical to cluster-level scDRS). The three methods were highly correlated with scDRS at cluster level, suggesting LDSC-SEG and scDRS produced similar results. **(C)** Correlation of $-\log_{10}$ p-value *across cells* between scDRS and the 3 comparison methods. For the 3 comparison methods, cell-level $-\log_{10}$ p-values were obtained by assigning the same cluster-level $-\log_{10}$ p-value to all cells within the cluster. The 3 methods were less correlated with scDRS at individual cell level, suggesting cluster-level analyses were not able to capture the individual cell-disease associations detected in the scDRS individual cell-level analysis.



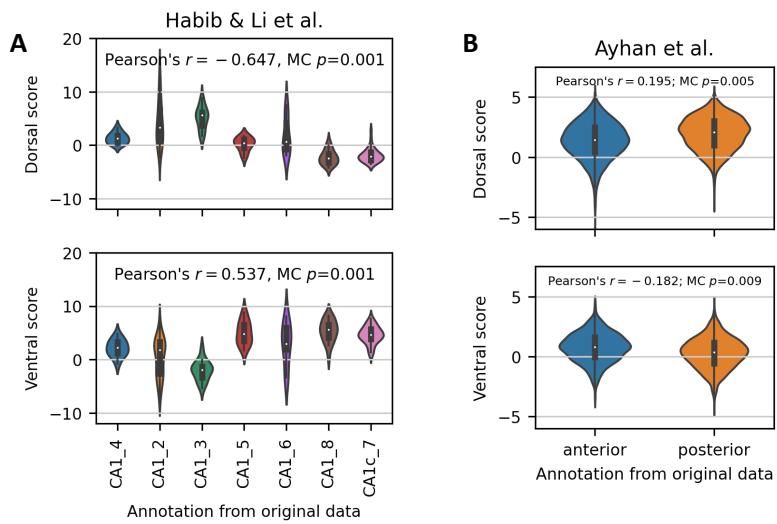
Supplementary Figure 18. Additional results on disease gene prioritization. (A-J) Comparison to alternative disease gene prioritization methods for the 10 autoimmune diseases. The first row shows levels of excess overlap between the prioritized disease genes and the gold standard gene sets while the second row shows the corresponding $-\log_{10}$ p-values for excess overlap. Each dot corresponds to a disease, the y-axis shows results for the proposed prioritization method (correlating gene expression levels with the scDRS disease score across all TMS FACS cells), and the x-axis shows results from comparison methods, including (from left to right) top 1,000 MAGMA genes, top 1,000 genes specifically expressed in T cells (vs. the rest of cells in TMS FACS), prioritization based on correlation across T cells (instead of all TMS FACS cells), prioritization based on correlation across CD4⁺ T cells (instead of all TMS FACS cells), and prioritization based on correlation across CD8⁺ T cells (instead of all TMS FACS cells). (K-L) Overlap with drug target genes for 27 diseases. (M-N) Overlap with Mendelian disease genes for 45 diseases. The median ratio of $-\log_{10}$ p-values and (excess overlap - 1) between the y- and x-values (median of ratios) was provided in the figure title.



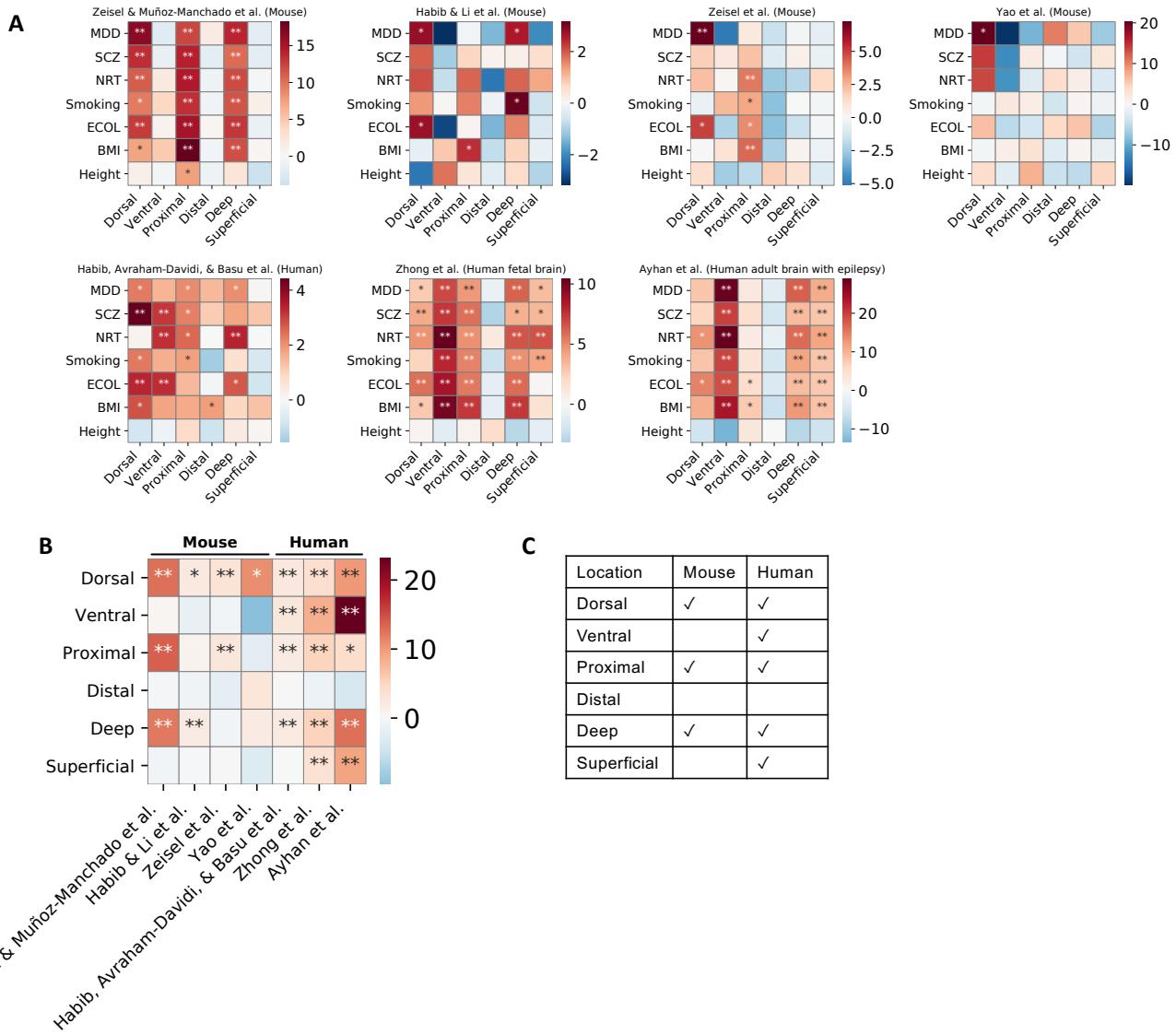
Supplementary Figure 19. Associations of TMS FACS neurons with brain-related diseases/traits. (A) Violin plots of the scDRS disease score for TMS FACS brain neurons (undetermined neurons, excluding interneurons and MSNs) in different brain subtissues and for different diseases/traits. Height was included as a negative control. (B) Within-subtissue heterogeneity of neurons in association with different diseases/traits. Heatmap colors represent the heterogeneity z-score (MC z-score) and cross symbols represent significant within-subtissue disease association heterogeneity (x denotes $P < 0.05$ and xx denotes $P < 0.005$, MC test).



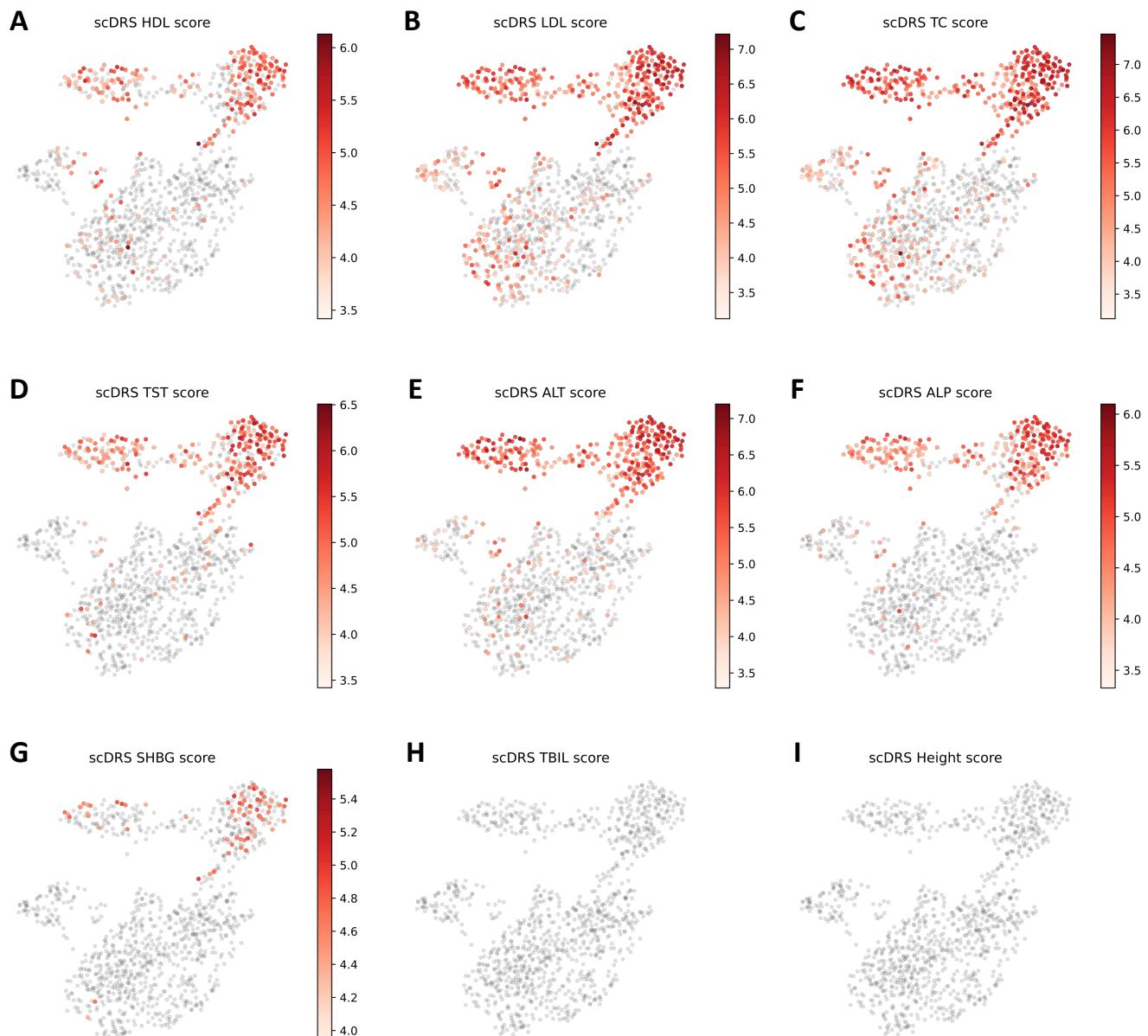
Supplementary Figure 20. Additional results for the Zeisel & Muñoz-Manchado et al. data on associations to brain-related diseases/traits. (A) Disease associations at the cell type level. Each row represents a disease/trait and each column represents a cell type. Heatmap colors for each cell type-disease pair denote the proportion of significantly associated cells (FDR<0.1 across all cells for a given disease). Squares denote significant cell type-disease associations (FDR<0.05 across all pairs of 7 cell types and 7 diseases/traits). Cross symbols denote significant heterogeneity in association with disease across individual cells within a given cell type (FDR<0.05 across all pairs). Heatmap colors and cross symbols are omitted for cell type-disease pairs with non-significant cell type-disease associations; the plotting style is the same as in Fig. 3. (B) UMAP visualization of the CA1 pyramidal neurons in the Zeisel & Muñoz-Manchado et al. data with color representing the sCDRS disease score (extending results in Fig. 5A). Height was included as a negative control trait. (C) UMAP visualization of the CA1 pyramidal neurons with color representing the inferred spatial coordinates. (D) Pairwise correlations across cells for the 6 inferred spatial coordinates in the Zeisel & Muñoz-Manchado et al. data set.



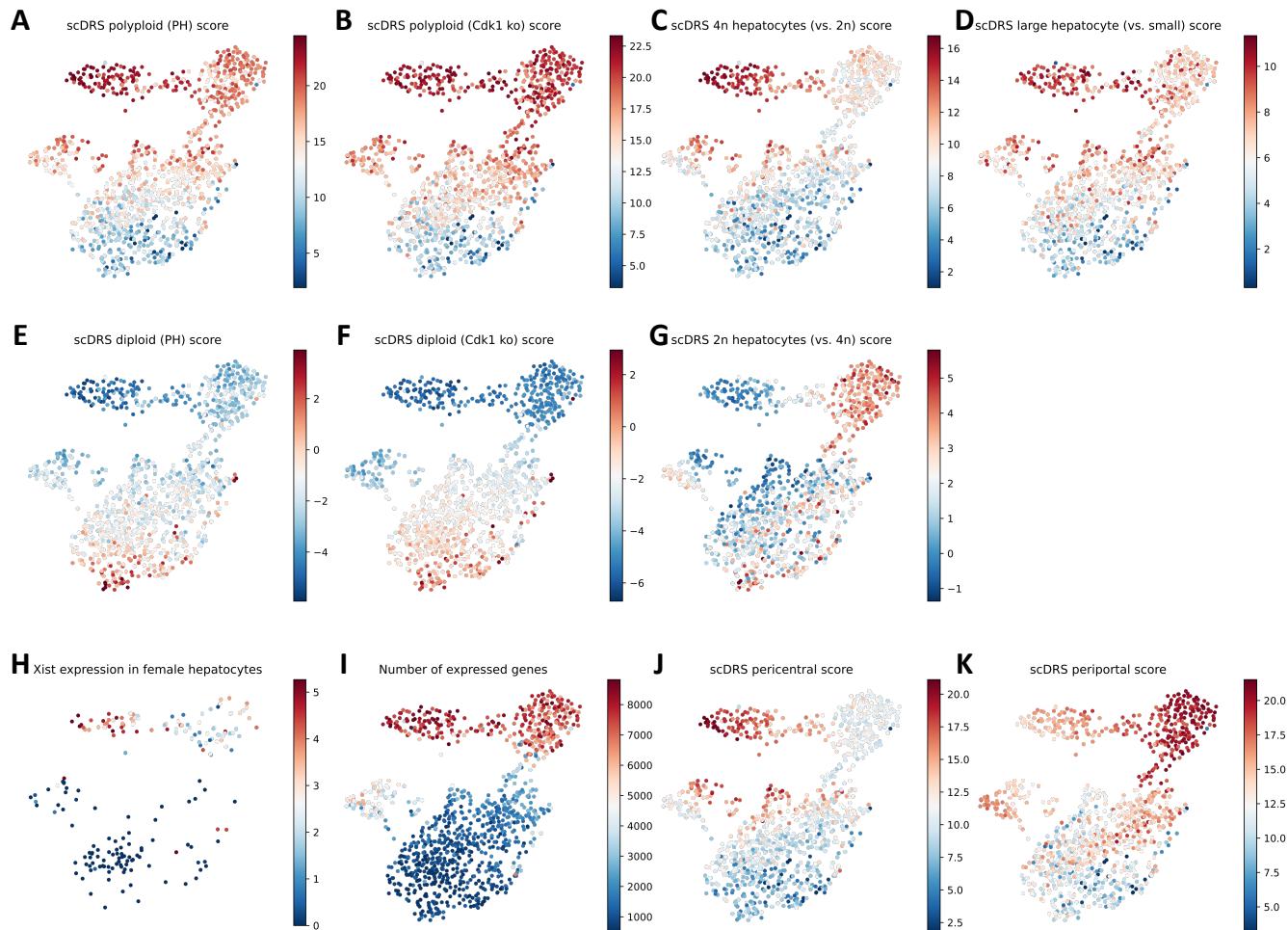
Supplementary Figure 21. Validation of inferred spatial coordinates of CA1 pyramidal neurons using data sets with annotated spatial annotations. Violin plots of the inferred cell-level spatial coordinates (y-axis) against the provided spatial annotations (x-axis). **(A)** Habib & Li et al. data. The x-axis labels were ordered from dorsal to ventral neurons according to the provided spatial annotation (Fig. 2B in Habib & Li et al.⁴²). Both the dorsal and ventral scores are significantly associated with the provided spatial annotation ($P<0.001$, MC test based on Pearson's correlation between the provided spatial annotation (ordinal ranks of the 7 categories) and the inferred spatial score). **(B)** Ayhan et al. data. Anterior corresponds to the ventral region while posterior corresponds to the dorsal region. Both the dorsal and ventral scores are significantly associated with the spatial annotation ($P<0.01$, MC test based on Pearson's correlation between provided spatial annotation (ordinal ranks of the 2 categories) and the inferred spatial score).



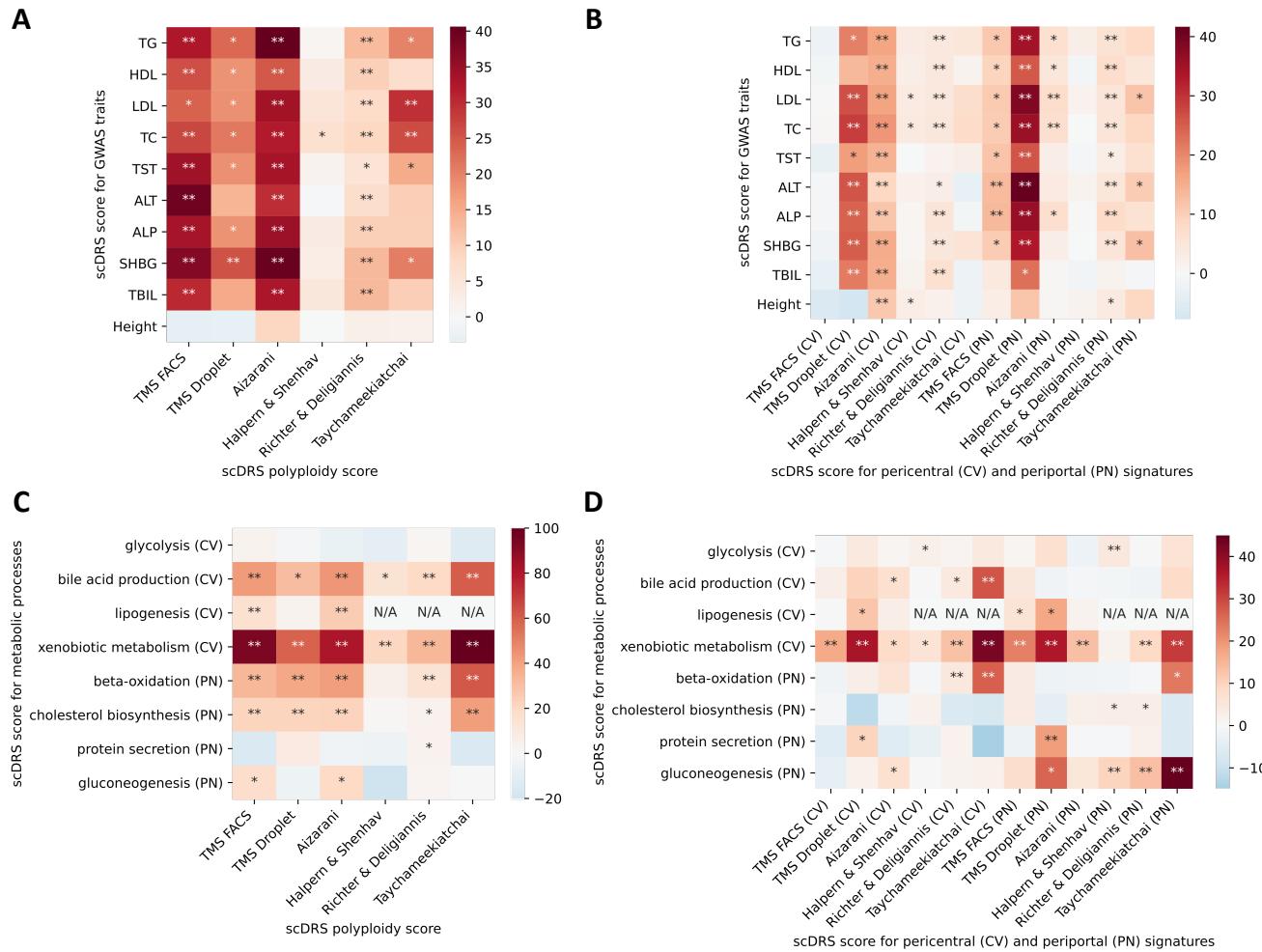
Supplementary Figure 22. Complete results of correlations between scDRS disease scores and inferred spatial coordinates across CA1 pyramidal neurons in 7 single-cell data sets (extending results in Fig. 5B). (A) Results for regressing the scDRS disease scores against the inferred spatial coordinates for each disease/trait and each inferred spatial coordinate. Color represents the t -statistics and stars represent significant associations (* denotes $P < 0.05$ and ** indicates $P < 0.005$, MC test; Methods). For clarification, Zeisel & Muñoz-Manchado et al. 2015 *Science*⁴⁰ and Zeisel et al. refers to the data from Zeisel & Muñoz-Manchado et al. 2018 *Cell*⁴¹. (B) Summary of results in panel A. Heatmap color represent the average t -statistics across the 6 brain-related diseases/trait (excluding height) for each data set and stars represent significant associations by combining p-values across datasets using Fisher's combined probability test. (C) Summary of the association between brain-related diseases and the inferred spatial coordinates for the mouse and human data sets in panel B.



Supplementary Figure 23. Subpopulations of TMS FACS hepatocytes associated with the other 8 metabolic diseases (besides TG reported in Fig. 5C) and height. Significantly associated cells ($FDR < 0.1$) were colored in red with shades of red representing the scDRS disease score; non-significant cells were colored in grey. The color bar was removed for traits without a significant cell.



Supplementary Figure 24. Signature scores for hepatocyte ploidy level and zonation. (A-D) scDRS score for polyloid hepatocyte signatures: partial hepatectomy (PH) vs. pre-PH, Cdk1 knockout vs. control, 4n vs. 2n hepatocytes, large vs. small hepatocytes. (E-G) scDRS score for diploid hepatocyte signatures: pre-PH vs. PH, control vs. Cdk1 knockout, 2n vs. 4n hepatocytes. (H) Expression of *Xist* in female hepatocytes (expected to have high expression in high-ploidy female hepatocytes). (I) Number of genes (expected to be high in high-ploidy hepatocytes). (J) scDRS score for pericentral hepatocyte signatures. (K) scDRS score for periportal hepatocyte signatures.



Supplementary Figure 25. Complete results of joint regression analysis for GWAS metabolic traits and putative zonated metabolic processes across the 6 data sets (extending results in Fig. 5D). (A-B) Results for the 9 metabolic traits and height, a negative control trait. The polyploidy score (panel A) and both the pericentral and periportal score (panel B) were consistently associated with the 9 metabolic traits across the data sets. The strong association ($P < 0.005$) between the pericentral score and height in the Aizarani et al. data may be because that we inferred the pericentral score using mouse gene signatures, which are less conserved in human (as also mentioned in the original paper⁴⁷). (C-D) Results for the 8 metabolic pathways. Overall, as shown in panel D, the pericentral score was associated with pericentral-specific pathways (first 4 rows) while the periportal score was associated with periportal-specific pathways (last 4 rows). * denotes $P < 0.05$ and ** denotes $P < 0.005$.