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1. Additional information: introduction and method

Introduction: the share of passenger vehicles and residential buildings in total final energy
consumption was determined as follows:

For passenger vehicles: Directly from IEA statistics: https://www.iea.org/data-and-
statistics?country=WORLD&fuel=Energy%20consumption&indicator=Share%200f%20total%
20final%20consumption%20(TFC)%20by%20sector queried on September 15, 2020.

“Explore energy data by category, indicator, country or region”: Energy topic: Energy
consumption. Indicator: Share of total final consumption (TFC) by sector. Region:
world. Sector: Transport: Time: 2018, Value: 29%

Share of passenger vehicles’ energy consumption in total Energy consumption by
transport sector, 2012: 61%.

https://www.eia.gov/outlooks/ieo/pdf/transportation.pdf U.S. Energy Information
Administration | International Energy Outlook 2016, Chapter 8: Transportation sector energy
consumption, p 126. Multiplying the tow value gives 17,69%, which is reported as 18% in the

paper.

For residential buildings: Directly from IEA statistics: https://www.iea.org/data-and-
statistics?country=WORLD&fuel=Energy%20consumption&indicator=Share%200f%20total%
20final%20consumption%20(TFC)%20by%20sector queried on September 15, 2020.

“Explore energy data by category, indicator, country or region”: Energy topic: Energy
consumption. Indicator: Share of total final consumption (TFC) by sector. Region:
world. Sector: Residential: Time: 2018, Value: 21%

Method: Gross domestic product (GDP) was deliberately not chosen as scenario driver nor
model input to enable a high-resolution service-level framework that can be used to depict
future low carbon lifestyles instead of aggregate demand modelling (e.g. modeling useful
energy demand as aggregated function of GDP), for which there is little evidence for
decoupling (Haberl et al. 2020).

Only in rare cases where there is a long enough time series, GDP-based extrapolations for
the building stock were used for determining future service level in the SSP2 scenario. This
approach was used for the USA and Japan.
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2. Scenario and model framework

Services are linked to material cycles via the stock-flow-service nexus (Haberl et al. 2017) (Fig.
SI1-1). The scheme starts with the energy service cascade to relate values to services to
functions to products (and their operation) (Kalt et al. 2019), stock-driven modelling to
translate product in-use stock demand into production of new and recycling of old products
(Mdller 2006), new and old products to material flows via dynamic material flow analysis
(MFA) (Brunner and Rechberger 2016), and the material flows to the energy demand and
related GHG emissions via environmental extensions as done in previous work (Milford et al.
2013; Modaresi et al. 2014).

Fig. SI1-1 (next page): Calculation scheme for the use phase (here shown as ‘product stocks’). Stock
levels are determined from historic stocks and scenarios following different storylines. The stock-
driven model then determines the age-cohort decomposition of the in-use stock as well as product
inflows and outflows and the associated material content. With the total stock broken down into
different age-cohorts by the stock-driven model, the function and energy flows of the use phase can
then be determined (cf. below) by applying the following parameters in turn: intensity of operation
and intensity of use (for service flows) and energy intensity and energy carrier split (for energy use of
the use phase). The indices are as follows (cf. RECC config table and RECC index table): t: time, c: age-
cohort, r: region, g: good/commodity/product, S: scenario (SSP, RCP, and/or RE), V: service category,
n: energy carrier, to: starting time of prospective assessment (2015).The red section of this figure is our
interpretation and implementation of the energy service cascade (Kalt et al. 2019).
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Fig. SI1-1: Implementation of the energy service cascade and the material cycle model.



2.1. ODYM-RECC model

The ODYM-RECC model (open dynamic material systems model for the resource efficiency and
climate change mitigation project) is a modular depiction of major end-use sectors and the
material cycles for the climate-relevant bulk materials (Pauliuk and Heeren 2020)
(https://github.com/YaleCIE/RECC-ODYM). Its system definition [Fig. SI1-2] comprises the use
phase of materials (in products) and the material cycle stages mining, primary production,

manufacturing, waste management and scrap recovery, and remelting/recycling as well as an
energy supply scenario.

ODYM-RECC generates a set of what-if scenarios (Borjeson et al. 2006) for the climate-relevant
end-use sectors and bulk material cycles against different socioeconomic, technology
deployment, and climate policy backgrounds. It does so by applying a mass-balanced
framework for the material cycles (Brunner and Rechberger 2016). It allows us to study the
impacts of a broad spectrum of sustainable development strategies on the material cycles and
identify trade-offs and constraints. It does not assess the likelihood of realisation of any of the
scenarios studied but checks if mass balance constraints (e.g. by long product lifetimes or
limited scrap supply) render some scenarios unfeasible from a material cycle point of view.

Major material cycles,
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Fig. SI11-2: ODYM-RECC v2.4 system definition

ODYM-RECC is a multi-layer model depicting products, materials, chemical elements, energy
flows, and emissions, with mass balance across all processes down to the individual chemical
element. ODYM-RECC has six modules that quantify the system in Fig. 0.1 by translating a
given service scenario into product stocks, inflows and outflows (module ‘use phase UP’, using
stock-driven modelling (Miller 2006), product outflows into scrap and recycled materials
(module ‘waste management and recycling WR’, using parameter equations), product inflows


https://github.com/YaleCIE/RECC-ODYM

into material demand and fabrication scrap (module ‘manufacturing MF’ using parameter
equations), material demand into primary production and related impacts (module ‘primary
production PP’, using environmental extension factors), and by determining the chemical
element composition of al stocks and flows (module ‘material-element composition ME’,
using mass balance). Finally, the energy consumption and environmental pressure and impact
indicators are calculated (module ‘energy and extensions EX’).

For the RECC project, 35 data aspects (time, age-cohort, process, material, chemical element,
waste/scrap, environmental extension, socioeconomic scenario...) were defined and each of
the 104 model parameters has a specific data model that links it to the data aspects. For
example, the parameter for the product lifetime extension potential has the three aspects
‘product’, ‘region’, and ‘scenario. The parameter for the future stock levels needed has the
four aspects ‘scenario’, ‘product’, ‘region’, and ‘time’. The resolution of each data aspect is
defined in the model configuration file, a summary is given in Table SI1-1.

Table SI1-1: ODYM-RECC model and data resolution.

Model and data aspect Resolution
Time 2016-2060 in steps of 1 year
Age-cohorts/Vintages Vehicles: 1980-2060, residential and non-residential buildings:

1900-2060, appliances: 1971-2060, industry (electricity
generation assets): 1986-2060.

Regions For passenger vehicles and residential buildings: 20 countries
and world regions, covering the entire world. For non-
residential buildings and appliances: one aggregate global
region. For industrial assets (electricity generation): 11 world
regions.

Products 6 passenger vehicle types, 13 residential building types, 4 non-
residential building types, 18 electricity generation
technologies, and 12 types of appliances.

Engineering materials construction grade steel, automotive steel, stainless steel, cast
iron, wrought Al, cast Al, copper electric grade, plastics, wood
and wood products, zinc, concrete

Waste and scrap types heavy melt, plate, and structural steel scrap; steel shred; Al
extrusion scrap, auto rims, clean; Al old sheet and construction
waste; Al old cast; copper wire scrap; construction waste,
concrete, bricks, tiles, ceramics

Chemical elements C, Al, Cr, Fe, Cu, Zn, ‘other’

Energy carriers Electricity, coal, hard coal, diesel, gasoline, natural gas,
hydrogen, fuel wood

Service categories Driving (vehicles), heating, cooling, domestic hot water
(residential and non-residential buildings)

Scenarios Socioeconomic: Low energy demand (LED), SSP1, SSP2

Climate policy: No policy after 2020 (reference scenario), 2
degrees Celsius (66%), corresponding to RCP2.6 forcing
pathway.

The model parameters are linked to the system variables (stocks and flows shown in Fig. 0.1)
via the model equations, which are grouped into the five ODYM-RECC modules. The



parameters are divided into three groups: socioeconomic parameters such as future
population, service demand, or intensity of operation of stocks (e.g. vehicle-km per year),
technology parameters like energy efficiency of stock operation of the future emissions
intensity of energy supply, and resource efficiency parameters describing both the potential
for resource efficiency at the different stages of the system (green boxes in Fig. 0.1), and the
speed of implementation of these potentials under different socioeconomic and climate policy
scenarios.

Each RE strategy can be implemented separately or as part of a cascade of strategies. The
model allows for calculating the impact of one strategy at a time (sensitivity analysis) or a
bundle of strategies in different orders of implementation, each for different socioeconomic
and climate policy scenarios.

Once the first results are mature the model and the corresponding database (barring
confidential data) will be released under a permissive license on
https://github.com/YaleCIE/RECC-ODYM and on Zenodo:

RECC Global input database: [to be inserted for final publication], DOI [to be inserted for final
publication]

RECC Global results: [to be inserted for final publication], DOI [to be inserted for final
publication]

2.2. The ODYM-RECC Database

The ODYM-RECC v2.4 database contains 104 model parameters of two to six dimensions each.
Parameters range from static values (direct emissions of combustion by MJ of energy carrier)
to highly detailed highly uncertain datasets (e.g., the future energy carrier split of buildings by
region, time, and operation mode (heating/cooling/hot water).

The ODYM-RECC database was compiled as a community effort involving a large number of
experts. Its scope is unprecedented in the industrial ecology community. Data templates and
project wide classifications were used to facilitate the compilation of the various types of
information.

Depending on data availability, we applied several pathways of data compilation, which are
listed and described in detail below.

e Extract mostly socioeconomic parameters from existing scenario models (scenario
reference)

e Compile own plausible scenario estimates for socioeconomic parameters in line with
the different scenario narratives where established model framework results are not
available (group consensus scenarios)

e Extract process-, product, and material-specific data from the engineering and
industrial ecology literature (bottom-up data)
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e Extract quantitative estimates of resource efficiency strategy potentials, mostly
related to prototypes and case studies, from the literature (strategy potentials)

e Simulate energy consumption and material composition of a number of building and
vehicle archetypes with specialised software, which are then used as bottom-up
product descriptions with and without implementation of RE strategies (archetype
descriptions)

2.3. Scenario reference

For the socioeconomic parameters the Shared Socioeconomic Pathways (SSP) database and
model results as well as available data from the World Energy Outlook and Energy Technology
Perspectives models were used wherever possible, e.g., for future population, future GHG
intensity of energy supply, or the drive technology mix for vehicles (Riahi et al. 2017; O’Neill
et al. 2014; OECD/IEA 2010a; IEA 2015; OECD/IEA 2017). The data were extracted from
available databases (like the SSP scenario database hosted at [IASA:

https://www.iiasa.ac.at/web/home/research/researchPrograms/Energy/SSP_Scenario Data

base.html) or shared by colleagues, then parsed and reviewed by the RECC team, then
aggregated, disaggregated, and interpolated to fit the ODYM-RECC project-wide classification.
For each parameter file the data gathering process is documented both in the respective
template files in the RECC database (if only Excel was used), in custom scripts (for more
comprehensive  datasets) and in the data log files archived under
https://github.com/YaleCIE/RECC-data.

Group consensus scenarios: For some parameters like the future stock levels or the split of
residential buildings into different types no detailed SSP-consistent scenario calculation was
available that we could refer to. Hence we assumed a set of plausible target values for a
number of socioeconomic parameters in line with the storylines of the individual
socioeconomic scenarios. This process is commonly used when translating broad storylines
into high product and regional resolution and sector-specific parameters, cf. Riahi et al. (2017)
and Grubler et al. (2018). The target values for 2020, 2030, 2040, 2050, and 2060 chosen and
the rationale for their choice are documented in scenario target tables, one for each
parameter. From there, the target values are read, interpolated, smoothed with a moving
average, and exported in ODYM format to be directly used in the ODYM-RECC model. The
documentation for the individual parameters is archived in https://github.com/YaleCIE/RECC-

data.

The open model and data framework allow for third parties to modify the scenario
assumptions and to run calculations with custom parameters and storylines.

Bottom-up data: For the energy intensity, emissions intensity, and material composition of
products and processes detailed but representative product or process descriptions were
compiled from the literature and available databases. These data include the material
composition and specific energy consumption of vehicles and buildings, e.g., (Hawkins et al.
2013; Reyna and Chester 2014; Marcellus-Zamora et al. 2016), the loss and recovery rates for
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the manufacturing and waste management industries e.g., (Pauliuk et al. 2013; Liu et al. 2012),
and the specific energy consumption and process emissions for the manufacturing, waste
management, and primary material production industries (Wernet et al. 2016; OECD/IEA
2010b; IEA 2015; OECD/IEA 2017). While the data can be regarded as representative of current
average global technology, their main limitation is that they are static and no information on
their change under different socioeconomic and climate policy scenarios, in particular, is
given. To become more realistic a scenario reference was made wherever possible (cf. above),
e.g., for the changing GHG intensity of the supply of different energy carriers, for which a
combination of MESSAGE IAM results and IEA Energy Technology Perspective results was
used. Also, for the average GHG intensity of primary metal production a scenario analysis
based on ecoinvent was calculated to take into account scenario-dependent changes of the
GHG intensity of electricity generation.

Resource efficiency Strategy potentials: For some parameters, including the improvement
potentials for fabrication scrap, end-of-life recovery efficiency of scrap, re-use of steel
components in buildings, or product lifetime extension, previous estimates can be used
(Milford et al. 2013). The other strategies were covered by the scenario formulation approach
described above.

Archetype descriptions: Here, ‘archetype’ refers to an idealized description of the physical
properties (energy intensity of operation and material composition) of a product with a certain
functionality, assuming typical user behaviour in a given region.

For passenger vehicles, drive technology, segment (car size), and material design choice
together determine the archetypes’ material composition, and the three properties above
plus the assumed driving cycle determine its specific operational energy consumption (specific
= per km driven).

For residential building, building type, energy standard, material intensity (conventional or
lightweight design), material design choice, and stylized climate conditions (heating and
cooling degree days by region) together determine the archetypes’ material composition and
specific operational energy consumption (specific = per m2).

For the final product categories residential buildings and vehicles, the product-specific
simulation tools BuildME (https://github.com/nheeren/BuildME), GREET
(https://greet.es.anl.gov/) and FASTSim (https://www.nrel.gov/transportation/fastsim.html)

were used to model the archetype descriptions by deriving model estimates for both the
material composition and energy intensity of operation for different building and vehicle
configuration. For each of the nine building and six vehicle types four archetypes, representing
maximal potential for change, were simulated: a standard product without special
consideration of material efficiency, downsizing, or material substitution, a downsized
product, a product with ambitious material substitution, and a downsized material-
substituted product.
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For a detailed description and definition of all model aspects, the classifications used for them,
the system variables and parameters, the model equation and their division into modules and
the data compilation, (dis)aggregation and formatting process, we refer to the ODYM-RECC
model documentation.

The ODYM-RECC database is formatted in standardised spreadsheets and archived on Zenodo
(dataset DOlIs [to be inserted for final publication]).

2.4. Model resolution

The information presented here is a summary only. The full info about the resolution of the RECC
project is documented in the Master classification file, which is part of the project’s database:
RECC_Classifications_Master_V2.0.xlsx

Time and age-cohort, dimension: Time:

e The time frame is 1900-2060, as some historic data reach back to 1900 and before. The
Actual modelling period is 2016 to 2060, where usually, results until 2050 are
extracted for reporting and publication.

Regions, dimension: Region:

e The two end-use sectors passenger vehicles and residential buildings are implemented
for 20 countries and world regions: (cf. RECC_Classifications_Master_V2.0.xlsx for

details):
o R32CAN Canada
o R32CHN China
o R32EU12-M “New” EU countries, medium income
o R32IND India
o R32JPN Japan
o R32USA USA
o France
o Germany
o ltaly
o Poland
o Spain
o UK
o Oth_R32EU15 Other “old” EU countries,
o Oth_R32EU12-H Other “new EU countries, high income
o R5.20ECD_Other Other OECD countries
o R5.2REF_Other Countries of the former USSR
o R5.2ASIA_Other Other Asian countries
o R5.2MNF_Other Middle East and Northern African Countries
o R5.2SSA_Other Sub-Saharan Africa Country
o R5.2LAM_Other Latin-American Countries
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Eningering_Materials, dimension: Material:

e Construction grade steel
e Automotive steel

e stainless steel

e C(Castiron

e  Wrought Al

e CastAl

e Copper electric grade

e Plastics

e Cement

e Wood and wood products
e Zinc

e Concrete
e Concrete aggregates

UsePhase, dimension: Process:

e Cf. Products resolution

Products, dimension: Good_Product:

e Passenger vehicles:
Internal Combustion Engine, gasoline (ICEG)
Internal Combustion Engine, diesel (ICED)
Hybrid Electric Vehicles (HEV)
Plugin Hybrid Electric Vehicles (PHEV)
Battery Electric Vehicles (BEV)
Fuel Cell Vehicles (FCV)

Eol goods, dimension: Good_Product:

e Cf. Products resolution

Energy, dimension: Energy carriers:

e Electricity
e Coal, hard coal
e Diesel

e Gasoline

e Natural gas
e Hydrogen
e Fuel wood

SSP_Scenarios, dimension: Scenario:

e LED (low energy demand)
e SSP1 (Shared Socioeconomic Pathway 1)

e SSP2 (Shared Socioeconomic Pathway 2)
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RCP_Scenarios, dimension: Scenario:

e RCP2.6, 2°C-pathway
e Baseline (no new climate policy after 2020)

Env. extensions, dimension: Extensions:

e (CO; emisisons per main output
e CH4 emissions per main output
e N0 emissions per main output
e SFs emisisons per main output

e GHG emissions

e GHG emissions, supply chain

Env. midpoints, dimension: Extensions:

e GWP 20/100/500
e GTP20/100/500

Chemical Elements, dimension: Element:
o C
o Al
o Cr
e Fe
e (Cu
e 7/n
e ‘Other’

MaterialProductionProcess, dimension: Process:

e One (average) primary production process for each material.

ManufacturingProcess, dimension: Process:

e One average manufacturing process for each product/good

Waste management process, dimension: Process:

e One waste mgt. (dismantling, shredding, sorting) process to convert each of the 15
products into waste/scrap at the end of life, one re-melting process for each scrap
category

Waste/scrap, dimension: Material:

e Heavy melt, plate, and structural steel scrap

e Steel shred

e Al extrusion scrap, auto rims, clean

e Al old sheet and construction waste

e Alold cast

o Copper wire scrap

e Construction waste, concrete, bricks, tiles, ceramics
e Thermoplastic waste

e Used wood
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Car segments, Good_Product:

e microcar

e passenger car
e minivan_SUV
e light truck
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3. RECC 2.4 database and scenario drivers

Here, we list the changes in the main drivers and the country/region-level plots.

2016-2060 relative change in main material cycle drivers LED 55P1 S5P2
France RCP2.6 Population 0%=» 0%=> 0%
France RCP2.6 per capita in-use stock, residential buildings -26% = 0% D
France RCP2.6 per capita in-use stock, passenger vehicles -10% = 0% A .
Germany RCP2.6 Population 0% =» 0%=> 0%
Germany RCP2.6 per capita in-use stock, residential buildings -28% = 0%
Germany RCP2.6 per capita in-use stock, passenger vehicles -19% = 0% A

Italy RCP2.6 Population 0% =» 0%=> 0%
Italy RCP2.6 per capita in-use stock, residential buildings -30% = 0% >

20% P 0% A
2% 0% W 8%
-21% = 0% =
21% % 0% A 1
0% =» 0%=> 0%

Italy RCP2.6 per capita in-use stock, passenger vehicles
Oth_R32EU12-H RCP2.6 Population

Oth_R32EU12-H RCP2.6 per capita in-use stock, residential buildings
Oth_R32EU12-H RCP2.6 per capita in-use stock, passenger vehicles
Oth_R32EU15 RCP2.6 Population

Oth_R32EU15 RCP2.6 per capita in-use stock, residential buildings -25% =% 0% =
Oth_R32EU15 RCP2.6 per capita in-use stock, passenger vehicles -14% % 0% A 11
Poland RCP2.6 Population 0% = 0%=> 0%
Poland RCP2.6 per capita in-use stock, residential buildings -21% = 0% D
Poland RCP2.6 per capita in-use stock, passenger vehicles -20% = 0%

1% =B 0% =
-14% ¥ 0% P
75% 0% A

3% = 0%
13% % 0% A
75% 0% A

= 0% P
-25% = 0% D
-53% < 0% A

= 0% D>
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L
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L
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>
a
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>
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»
R5.2ASIA_Other RCP2.6 Population =
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R5.2ASIA_Other RCP2.6 per capita in-use stock, passenger vehicles |
R5.2LAM_Other RCP2.6 Population =
R5.2LAM_Other RCP2.6 per capita in-use stock, residential buildings | %
RS5.2LAM_Other RCP2.6 per capita in-use stock, passenger vehicles [
R5.2MNF_Other RCP2.6 Population <>
R5.2MNF_Other RCP2.6 per capita in-use stock, residential buildings |9
R5.2MNF_Other RCP2.6 per capita in-use stock, passenger vehicles |
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Fig. SI3: Overview of major material cycle drivers: cars, residential buildings, and population.
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Figures Sl4-1 — SI4-20 below show the temporal development of the main drivers and stock
parameters by country/region for both the residential building and the passenger vehicle

sectors.

Legend for all figures: First row: residential floor space: buildings in m?/cap; share of light-weighted
buildings in new construction, unit: 1; share of material-substituted (timber-intensive) buildings in
new construction, unit: 1. Second row: population, million; car ownership rate, cars per person; share
of downsized (segment-shifted) cars in newly registered cars, unit: 1; share of material-substituted
(light-weighted) cars in newly registered cars, unit: 1. Third row: OR: Vehicle occupancy rate,
passengers per car; PKM: total passenger-km delivered by entire fleet, billion km; VKM: total vehicle-

km delivered by entire fleet, billion km)
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Fig. S14-4: Drivers and in-use stock parameters, Germany.
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Fig. S14-6: Drivers and in-use stock parameters, UK.
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Fig. S14-8: Drivers and in-use stock parameters, China.
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Fig. S14-9: Drivers and in-use stock parameters, India.
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Fig. S14-10: Drivers and in-use stock parameters, Spain.
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Fig. S14-12: Drivers and in-use stock parameters, R32EU12-H.
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Fig. S14-13: Drivers and in-use stock parameters, R32EU15.
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Fig. S14-14: Drivers and in-use stock parameters, R32EU12-M.
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Fig. S14-16: Drivers and in-use stock parameters, R5.2Asia_Other.
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Fig. S14-17: Drivers and in-use stock parameters, R5.2SSA_Other.
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Fig. S14-18: Drivers and in-use stock parameters, R5.2MNF_Other.
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Fig. S14-19: Drivers and in-use stock parameters, R5.2LAM_Other.
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Fig. S14-20: Drivers and in-use stock parameters, R5.2REF_Other.
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Main stock and service parameters, passenger vehicles, by country/region. Figures SI5-1 —
SI5-20 below show the temporal development of the passenger vehicle fleet (total number
of vehicles by drive technology, left y axis) and the annual change of the total fleet size
(stock change, right y axis).
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Fig. SI-5-1: Drivers and stock parameters, passenger vehicles, USA. Top row: no material efficiency
strategies (MES) included, bottom row: full MES spectrum. Results are shown for the 2°C-compatible
climate polity scenario.
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Fig. SI-5-2: Drivers and stock parameters, passenger vehicles, Canada. Top row: no material
efficiency strategies (MES) included, bottom row: full MES spectrum. Results are shown for the 2°C-
compatible climate polity scenario.
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Fig. SI-5-3: Drivers and stock parameters, passenger vehicles, France. Top row: no material efficiency
strategies (MES) included, bottom row: full MES spectrum. Results are shown for the 2°C-compatible
climate polity scenario.
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Fig. SI-5-4: Drivers and stock parameters, passenger vehicles, Germany. Top row: no material
efficiency strategies (MES) included, bottom row: full MES spectrum. Results are shown for the 2°C-
compatible climate polity scenario.
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Fig. SI-5-5: Drivers and stock parameters, passenger vehicles, Italy. Top row: no material efficiency
strategies (MES) included, bottom row: full MES spectrum. Results are shown for the 2°C-compatible
climate polity scenario.
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Fig. SI-5-7: Drivers and stock parameters, passenger vehicles, Japan. Top row: no material efficiency
strategies (MES) included, bottom row: full MES spectrum. Results are shown for the 2°C-compatible
climate polity scenario.
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Fig. SI-5-9: Drivers and stock parameters, passenger vehicles, India. Top row: no material efficiency
strategies (MES) included, bottom row: full MES spectrum. Results are shown for the 2°C-compatible
climate polity scenario.
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Fig. SI-5-10: Drivers and stock parameters, passenger vehicles, Spain. Top row: no material efficiency
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Fig. SI-5-11: Drivers and stock parameters, passenger vehicles, Poland. Top row: no material
efficiency strategies (MES) included, bottom row: full MES spectrum. Results are shown for the 2°C-
compatible climate polity scenario.
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Fig. SI-5-12: Drivers and stock parameters, passenger vehicles, Oth_R32EU12-H. Top row: no
material efficiency strategies (MES) included, bottom row: full MES spectrum. Results are shown for
the 2°C-compatible climate polity scenario.
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Fig. SI-5-13: Drivers and stock parameters, passenger vehicles, Oth_R32EU15. Top row: no material
efficiency strategies (MES) included, bottom row: full MES spectrum. Results are shown for the 2°C-
compatible climate polity scenario.
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Fig. SI-5-14: Drivers and stock parameters, passenger vehicles, EU28. Top row: no material efficiency
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climate polity scenario.
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Fig. SI-5-15: Drivers and stock parameters, passenger vehicles, R5.20ECD_Other. Top row: no
material efficiency strategies (MES) included, bottom row: full MES spectrum. Results are shown for
the 2°C-compatible climate polity scenario.
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Fig. SI-5-16: Drivers and stock parameters, passenger vehicles, R5.2Asia_Other. Top row: no material
efficiency strategies (MES) included, bottom row: full MES spectrum. Results are shown for the 2°C-
compatible climate polity scenario.
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Fig. SI-5-17: Drivers and stock parameters, passenger vehicles, R5.2SSA_Other. Top row: no material
efficiency strategies (MES) included, bottom row: full MES spectrum. Results are shown for the 2°C-
compatible climate polity scenario.
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Fig. SI-5-18: Drivers and stock parameters, passenger vehicles, R5.2MNF_Other. Top row: no
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the 2°C-compatible climate polity scenario.



35

LED SSP1 SSP2

200 200 200 <
= g
g 6 6 6 z
= ] m
= 150 L4 150 4 150 4 @
£ °
= ?

v 1 -2 -~. 2 2
§ 100 100 ~. 100 E
- = 0 0 0o =
z 3
% 50 L, 50 2 50 5 =
> E
0 -4 0 -4 0 -4 2

2016 2030 2045 2060 2016 2030 2045 2060 2016 2030 2045 2060

- Fuel Cell (FCV) W Battery Electric (BEV) W CE, diesel (ICED) — - Stock decrease (sec. y-axis)
W Hybrid Electric (HEV) ~ ™ Plugin Hybrid Electric (PHEV) = ICE, gasoline (ICEG)  —-' Stock increase (sec. y-axis)
LED SSP1 S5P2
) ) <
£ 150 - 5.0 150 5.0 150 5.0 g
= :
E F2.5 25 g
> 100 1 100 =
U <
S — 0.0 00 O
w0 - =1
o _—
g 0 - —2.5°0 -25 3
g 5
>

-5.0 50 &

0 0 0 -
2016 2030 2045 2060 2016 2030 2045 2060 2016 2030 2045 2060

- Fuel Cell (FCV) W Battery Electric (BEV) W ICE, diesel (ICED) — -+ Stock decrease (sec. y-axis)
W Hybrid Electric (HEV) ~ = Plugin Hybrid Electric (PHEV) ~ mmm |CE, gasoline (ICEG)  — - Stock increase (sec. y-axis)

Fig. SI-5-19: Drivers and stock parameters, passenger vehicles, R5.2LAM_Other. Top row: no
material efficiency strategies (MES) included, bottom row: full MES spectrum. Results are shown for
the 2°C-compatible climate polity scenario.
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Fig. SI-5-20: Drivers and stock parameters, passenger vehicles, R5.2REF_Other. Top row: no material
efficiency strategies (MES) included, bottom row: full MES spectrum. Results are shown for the 2°C-
compatible climate polity scenario.
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Fig. SI-6-2: Drivers and stock parameters, residential buildings, Canada. Top row: no material

efficiency strategies (MES) included, bottom row: full MES spectrum. Results are shown for the 2°C-

compatible climate polity scenario.
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Fig. SI-6-3: Drivers and stock parameters, residential buildings, France. Top row: no material
efficiency strategies (MES) included, bottom row: full MES spectrum. Results are shown for the 2°C-
compatible climate polity scenario.
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Fig. SI-6-4: Drivers and stock parameters, residential buildings, Germany. Top row: no material
efficiency strategies (MES) included, bottom row: full MES spectrum. Results are shown for the 2°C-
compatible climate polity scenario.
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Fig. SI-6-5: Drivers and stock parameters, residential buildings, Italy. Top row: no material efficiency
strategies (MES) included, bottom row: full MES spectrum. Results are shown for the 2°C-compatible
climate polity scenario.

]
— o
i a
c LED SSP1 SSP2 1]
=) =2
=4 004, | Fo.04 I -0.04 5
g ~. =
7 F0.03 - 0.03 s 003§
i 31 3 =, ] 31 ; N =
o \":..__ - i ]
E 5 = 0.02 24 - ~ 0.02 5] /,—*\ 0.02 @
o ~ e Uy [al
<] 5 L s o >
= | \‘ 0.01 1 ~) 0.01 1 N 0.01 3
2 ™ 2T 1 o.00 - 0.00 L 0.00 @
50 e o : . o : ; -
% 2016 2030 2045 2060 2016 2030 2045 2060 2016 2030 2045 2060 ;
[
o« mm informal_non-standard EE SFH_zero energy MFH_zero energy BN RT_zero energy E?
SFH_non-standard MFH_non-standard RT_non-standard — - Stock decrease (sec. y-axis) =
SFH_standard MFH_standard RT_standard — - Stock increase (sec. y-axis)
mmm SFH_efficient MFH_efficient B RT_efficient
]
—_ ru
NE 3
< LED SSP1 SSP2 o
L L - =4
g 34 0.04 34 0.04 34\ 0.04 o
. e — =
2 - -0.03 - - 0.03 \.\ ; F0.03 8
g2 2 2] ST
= [ 0.02 N T T 002 2 0.02 g
5 \ N a
~ K N
o 14 ™ L 4 AN = 4 . - =
2 1 \, 001 1 ) ~ 001 1 N 74 0.01 3
= o - ~ s oy e
Z o - 0.00 "~ - - 0.00 - 0.00 ®
o 0 T T 0 T —— 0 T T =
% 2016 2030 2045 2060 2016 2030 2045 2060 2016 2030 2045 2060 ;
]
=2 B informal_non-standard EEE SFH_zero energy MFH_zero energy Bl RT_zero energy E’;f
SFH_non-standard MFH_non-standard RT_non-standard — - Stock decrease (sec. y-axis) —
SFH_standard MFH_standard RT_standard — - Stock increase (sec. y-axis)
mmm SFH_efficient MFH_efficient mm RT_efficient

Fig. SI-6-6: Drivers and stock parameters, residential buildings, UK. Top row: no material efficiency
strategies (MES) included, bottom row: full MES spectrum. Results are shown for the 2°C-compatible
climate polity scenario.
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Fig. SI-6-7: Drivers and stock parameters, residential buildings, Japan. Top row: no material efficiency
strategies (MES) included, bottom row: full MES spectrum. Results are shown for the 2°C-compatible
climate polity scenario.

SFH_non-standard
SFH_standard
mm SFH_efficient

MFH_non-standard
MFH_standard
MFH_efficient

RT_non-standard
RT_standard

o
— ]
NE g
c LED SSP1 SSP2 ]
2 1.0 1.0 g-
¥4 =
8 60 60 1 60 =h
3 e
o 0.5 0.5 S
2 404 40 40 A 3
N o
S : 0.0 0.0 a
2 201 20 1 204 5
© '\.__ %
e L T = -0.5 -0.5 : =
o 0 T T | 0 T T 1 T T | o
% 2016 2030 2045 2060 2016 2030 2045 2060 2016 2030 2045 2060 ;
g mmm informal_non-standard B SFH_zero energy MFH_zero energy BB RT_zero energy EM

— - Stock decrease (sec. y-axis)
Stock increase (sec. y-axis)

mmm RT_efficient

o
— o
t a
5 LED SSP1 SSP2 o
=
- 60 N [
o N —
o .
# \. g
3 40 \, o
e =
5 N 3
5 * o
& 207 N 3
-— . 3
2 So T r-05%
3 0 . T { 0 : T 1 0 T —= ! T
E 2016 2030 2045 2060 2016 2030 2045 2060 2016 2030 2045 2060 ;
)
o mm informal_non-standard BN SFH_zero energy MFH_zero energy B RT_zero energy E’:’

SFH_non-standard
SFH_standard
mmm SFH_efficient

MFH_non-standard
MFH_standard
MFH_efficient

RT_non-standard
RT_standard
mmm RT_efficient

Stock decrease (sec. y-axis)
Stock increase (sec. y-axis)

Fig. SI-6-8: Drivers and stock parameters, residential buildings, China. Top row: no material efficiency
strategies (MES) included, bottom row: full MES spectrum. Results are shown for the 2°C-compatible
climate polity scenario.
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Fig. SI-6-9: Drivers and stock parameters, residential buildings, India. Top row: no material efficiency
strategies (MES) included, bottom row: full MES spectrum. Results are shown for the 2°C-compatible
climate polity scenario.
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Fig. SI-6-10: Drivers and stock parameters, residential buildings, Spain. Top row: no material

efficiency strategies (MES) included, bottom row: full MES spectrum. Results are shown for the 2°C-

compatible climate polity scenario.
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Fig. SI-6-11: Drivers and stock parameters, residential buildings, Poland. Top row: no material

efficiency strategies (MES) included, bottom row: full MES spectrum. Results are shown for the 2°C-

compatible climate polity scenario.
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Fig. SI-6-12: Drivers and stock parameters, residential buildings, Oth_R32EU12-H. Top row: no

material efficiency strategies (MES) included, bottom row: full MES spectrum. Results are shown for

the 2°C-compatible climate polity scenario.
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Fig. SI-6-13: Drivers and stock parameters, residential buildings, Oth_R32EU15. Top row: no material
efficiency strategies (MES) included, bottom row: full MES spectrum. Results are shown for the 2°C-
compatible climate polity scenario.
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Fig. SI-6-14: Drivers and stock parameters, residential buildings, EU28. Top row: no material
efficiency strategies (MES) included, bottom row: full MES spectrum. Results are shown for the 2°C-
compatible climate polity scenario.
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Fig. SI-6-15: Drivers and stock parameters, residential buildings, R5.20ECD_Other. Top row: no
material efficiency strategies (MES) included, bottom row: full MES spectrum. Results are shown for
the 2°C-compatible climate polity scenario.
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Fig. SI-6-16: Drivers and stock parameters, residential buildings, R5.2Asia_Other. Top row: no

material efficiency strategies (MES) included, bottom row: full MES spectrum. Results are shown for

the 2°C-compatible climate polity scenario.
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Fig. SI-6-17: Drivers and stock parameters, residential buildings, R5.2SSA_Other. Top row:

material efficiency strategies (MES) included, bottom row: full MES spectrum. Results are shown for

the 2°C-compatible climate polity scenario.
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Fig. SI-6-18: Drivers and stock parameters, residential buildings, R5.2MNF_Other. Top row: no
material efficiency strategies (MES) included, bottom row: full MES spectrum. Results are shown for
the 2°C-compatible climate polity scenario.
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Fig. SI-6-19: Drivers and stock parameters, residential buildings, R5.2LAM_Other. Top row: no
material efficiency strategies (MES) included, bottom row: full MES spectrum. Results are shown for
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Fig. SI-6-20: Drivers and stock parameters, residential buildings, R5.2REF_Other. Top row: no
material efficiency strategies (MES) included, bottom row: full MES spectrum. Results are shown for
the 2°C-compatible climate polity scenario.
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GHG intensity of electricity by region, g CO,-eq/kWh
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Fig. SI-6a: GHG (CO,, CH4, and N;0) intensity of electricity generation by region.
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4. Additional Results and Discussion

Detailed description of Figure 1:
Passenger vehicles, top row:

The striking difference in development is that emissions in the Global North and its
constituting regions decline steadily over time, in all scenarios. In the Global South, they
tend to peak between 2030 and 2040 (2°C scenario) or continue to increase (NoNewClimPol
scenario). This behavior is a direct consequence of contraction and convergence of service
levels: Global North service levels decline and are provided more efficiently, allowing for
absolute decoupling of GHG emissions. Global South service levels increase substantially in
most regions (current car ownership rate in Sub-Saharan Africa is ca. 18 cars per 1000
people), and fuel shift, low carbon energy supply, and ME can counter this strong growth
trend only in the 2°C scenario and only after 2030. For China, the trend reversal can happen
earlier, between 2025 and 2030.

In the SSP1 (easy mitigation and adaptation) scenario, the relative impact of full ME is similar
in both climate policy scenarios, because both non-ME baselines are material-intensive, with
a 15 year product lifetime and substantial improvement potential for end-of-life scrap
recovery especially for plastics but also for the other materials. The shift to smaller segments
and light cars and the car- and ride-sharing strategies are important contributors as well.

Residential buildings, bottom row:

Here, all regions show a huge GHG emissions reduction potential, as — despite strong growth
in the regions of the Global South — the emissions reductions from increased energy
efficiency in buildings outpace all assumed growth. Still, especially in the NoNewClimPol
scenario, 2050 emissions without ME are nowhere near carbon neutrality, which is an
aspiration for the easy-to-mitigate residential building sector in some strategy portfolios
(zero emission buildings). Here, the ME strategies can prove particularly effective in
achieving deep emissions cuts: In some regions, including the global total, Global South,
China, India, and Sub-Saharan Africa, The 2°C-plus-ME GHG emissions are only a fraction of
the 2°C-no-ME emissions, and for some regions (for SSP1: Global South, Other Asia, Middle
East-Northern Africa, and India), forest carbon uptake associated with residential building
timber use even leads to total negative emissions.

Regarding the forest regrowth modelling: There are of course some big assumptions here:
that sustainable harvest exists and is possible at the scale required, that forests would not
have added carbon to storage without timber removal, and there is no opportunity cost of
the timber no longer being available for other carbon-saving measures.
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4.1. Emissions by region, sector, and scenario
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System-wide GHG, pav, Mt CO,-eq/yr, SSP2
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Fig. SI-7: Emissions by region and socioeconomic/policy scenario plus RES on/off. Passenger vehicles.
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System-wide GHG, reb, Mt CO,-eq/yr, SSP1
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Fig. SI-8: Emissions by region and socioeconomic/policy scenario plus RES on/off. Residential
buildings. Grey shaded areas highlight periods of regional carbon negativity, which is due to forest
carbon uptake as a consequence of previous timber harvesting and regrowth.
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4.2. Cumulative emissions savings 2016-2060 for the different RES, regions,

socioeconomic scenarios, and sectors

Fig. SI-9 (next page): Cumulative (2016-2060) emissions reductions through material efficiency in the

passenger vehicle sector. For RCP2.6 scenario.
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Fig. SI-10-1: RES impacts on cumulative emissions, 2016-2060, passenger vehicles and residential

buildings, USA. For RCP2.6.
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Fig. SI-10-2: RES impacts on cumulative emissions, 2016-2060, passenger vehicles and residential

buildings, Canada. For RCP2.6.
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Fig. SI-10-3: RES impacts on cumulative emissions, 2016-2060, passenger vehicles and residential

buildings, France. For RCP2.6
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Fig. SI-10-14: RES impacts on cumulative emissions, 2016-2060, passenger vehicles and residential
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Fig. SI-10-15: RES impacts on cumulative emissions, 2016-2060, passenger vehicles and residential
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Fig. SI-10-18: RES impacts on cumulative emissions, 2016-2060, passenger vehicles and residential
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Fig. SI-10-19: RES impacts on cumulative emissions, 2016-2060, passenger vehicles and residential

buildings, R5.2LAM_Other. For RCP2.6.
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Fig. SI-11: Breakdown of the possible reduction of material production GHG for no new climate policy
(LEFT) and an RCP2.6 climate policy (RIGHT). Passenger vehicles (top) and residential buildings

(bottom) for SSP1.

Significant difference for Passenger vehicles (top) and residential buildings (bottom):

Vehicles show large trade-offs to use phase (aluminium phase in, here: low-carbon energy

can help (top right). Buildings have huge potential that occurs a bit earlier and larger for

RCP2.6.



4.4. Impact of ME on material cycle GHG emissions over time
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Matcycle GHG, pav, Mt CO»-eq/yr, SSP2
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Fig. SI-13: Material cycle GHG emissions (for all materials combined), by region and climate

policy/RES scenario, for passenger vehicles (pav).
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Fig. SI-14: Material cycle GHG emissions (for all materials combined), by region and climate

policy/RES scenario, for residential buildings (reb).
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4.5. Impact of ME on primary and secondary material production over time
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Fig. SI1-15: Total primary material (all materials added up), by region and climate policy/RES

scenario, for passenger vehicles (pav).

Total primary material, reb, Mt/yr, LED

~——— 2000 <
4000 | p = P
\‘ N 2000 — ‘~,,_~._ 1000 { % 200 |
2000 — e 1000 — N e N
Global G\oth'orl'h—‘ Glob_South Chindm = ===
[ 0 T T 0 LB T 0 L A 0
100 J 1000 4\_,_\ 200 400 A
A \\
50 \\_\ 100 ~ 500 — "\\ 100 4 o 200 T
EU28 3 USA ASIA Other REF Other ™~ MNF_Other
0 [ 0 T T T 0 LB B 0 0 LI A B
200
1000 /_\ 1000 /\ /_
h‘-. -~ |
500 4 ~~._ | 500 o ~——_ | 100 _| 104 200 g2
~ N ——
India SSA_Other OE'CﬁiothEr German LAM_Other
0 0 0 0 0

LI B |
- "
T T T 1 LI B | LA B |
20 — 2 20 40
20 — 5 - -
SN 4 =3 . .
10 — \\:s 10 20 SN
Can UK Oth_EU15Y > Japan
LI L |

0

- 0 T —r— 0 o] 0 T T T T
10
~ _ —— NoNewClimPol, no ME
10 - 10- ¢ 10 == .
M 5 5 . -== NoNewClimPol, full ME
Itahye Poland = = ¥ EU12-M ~=~| —— RCP2.6, no ME
0 0 T T T 0 L 0 L 0 LI -—— RCP2.6, full ME
coo oo coooao coooo coo oo coo0o o
N M g N O N M g N Y N oM g N WY ~NomM g N o N M g N O
o o O O O o o O O o o o O o o o O o o o c O O oC o
NN N NN NN NN N NN NN N NN N NN NNN NN



66

Total primary material, reb, Mt/yr, SSP1
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Fig. SI11-16: Total primary material (all materials added up), by region and climate policy/RES

scenario, for residential buildings (reb).
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Fig. SI11-17: Total secondary material (all materials added up), by region and climate policy/RES

scenario, for passenger vehicles (pav).
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Total secondary material, reb, Mt/yr, SSP1
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Fig. SI11-18: Total secondary material (all materials added up), by region and climate policy/RES

scenario, for residential buildings (reb).
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4.6. Impact of ME on use phase energy consumption over time

Use phase energy cons, pav, T], LED
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Use phase energy cons, pav, TJ, SSP2
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Fig. SI11-19: Use phase energy consumption, by region and climate policy/RES scenario, for passenger

vehicles (pav).
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Use phase energy cons, reb, TJ, SSP1
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Fig. SI1-20: Use phase energy consumption, by region and climate policy/RES scenario, for residential

buildings (reb).
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4.7.

Share of electricity and hydrogen in use phase energy consumption over time

Share of El and H; in use phase en. cons, pav, 1, LED
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Share of El and H, in use phase en. cons, pav, 1, SSP2
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Fig. SI1-21: Use phase share of electricity and H2 in total energy consumption, by region and climate

policy/RES scenario, for passenger vehicles (pav).
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Share of El and H, in use phase en. cons, reb, 1, SSP1
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Fig. SI1-22: Use phase share of electricity and H2 in total energy consumption, by region and climate

policy/RES scenario, for residential buildings (reb).
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4.8

. Passenger-km are delivered over time

passenger-km, Mkm, LED
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passenger-km, Mkm, SSP2
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Fig. SI11-23: passenger-km delivered (scenario driver), by region and climate policy/RES scenario, for

passenger vehicles (pav).
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4.9. ‘Service efficiency’, defined in passenger-km per total GHG and per total

material stocks, over time

passenger-km per GHG km/t, LED
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passenger-km per GHG km/t, SSP2
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Fig. SI1-24: passenger-km delivered (scenario driver) per system-wide GHG, by region and climate

policy/RES scenario, for passenger vehices (pav).

passenger-km per material stocks, km/t, LED
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passenger-km per material stocks, km/t, SSP1
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Fig. SI1-25: passenger-km delivered (scenario driver) per total material stocks, by region and climate

policy/RES scenario, for passenger vehicles (pav).
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Total global cumulative (top) and annual 2050 (bottom) emissions reductions of

4.10.

the technical potential of material efficiency strategies
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Passenger vehicles and residential buildings (Fig. 2 in the paper):
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Fig. SI11-26: Total global cumulative (top row) and annual 2050 (bottom row) emissions reductions of
the technical potential of ten supply, demand- and sufficiency-based material efficiency strategies, by
socioeconomic and climate policy scenario and ME strategy for the passenger vehicle (pav) and
residential building (reb) sectors combined. Top: passenger vehicles, middle: residential buildings,
bottom: pav and reb together.
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Residential buildings:
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Fig. SI11-27: Total global cumulative (top row) and annual 2060 (bottom row) emissions reductions of
the technical potential of ten supply, demand- and sufficiency-based material efficiency strategies, by
socioeconomic and climate policy scenario and ME strategy for the passenger vehicle (pav) and
residential building (reb) sectors combined. Top: passenger vehicles, middle: residential buildings,
bottom: pav and reb together.
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Additional discussion and context

Edelenbosch et al. (Edelenbosch et al. 2020) recently published highlighting the lack of
attention towards demand-side solutions in IAMs, noting that there is great uncertainty in
future energy/cap, and pointing out the potential for energy efficiency in transport and
buildings in particular.

Not only through our assessment of ME efficiency strategies here, which as noted is absent
from the IAM framework, we also contribute important knowledge with respect to future
drivers of service and energy demand per capita, responding to their “challenge [for
modelers] to better understand drivers of future energy efficiency and service demand, that
contribute to the projected energy demand”.

Other supporting material

The supporting information SI2 provides a detailed description of the ODYM-RECC v2.4
model as well as a summary of the input data. The data gathering is documented in the
respective data templates of the 104 model parameters, which are available via

[link to final dataset version on Zenodo will be inserted prior to publication!]. The ODYM-
RECC v2.4 model is available under a permissive license via
https://github.com/YaleCIE/RECC-ODYM. The model results here were calculated by running
the ODYM-RECC scripts of commit no. 7bd4e46 with the data in the archive linked above.



https://github.com/YaleCIE/RECC-ODYM
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