
Supplementary Methods

1 UK Biobank

To assess the effect of genetic CETP modulation on biomarkers and cardiovascular diseases by sex
and BMI, we used the UK Biobank resource. The UK Biobank is a population-based longitudinal
cohort of more than 500,000 individuals [1]. At recruitment, a touchscreen-based questionnaire
followed-up by a verbal interview with a nurse was used to assess self-reported diseases and med-
ications. Linkage with hospitalization and death registries also allows acute events such as car-
diovascular events to be well captured. Anthropomorphic measurements were also taken and an
extensive panel of blood and urine biomarkers captures many laboratory measurements including
major lipoprotein fractions. Finally, genetic data based on a genotyping array and imputation is
available on all participants.

Biochemical markers were measured from samples of urine, packed red blood cells and serum
collected at baseline for all participants. For logistics reasons, the UK Biobank opted for centralized
processing of samples in a high throughput facility. Participants were not required to fast before
the collection of biological samples.

For the analysis of blood biomarkers including lipoproteins and cholesterol levels, we trans-
formed the variables as needed to obtain an approximately normal distribution and then stan-
dardized the values (units are reported in the main text Table 1). Because we included different
biomarkers in our analyses, standardization allows unified reporting of effects in units of standard
deviation. For all continuous measurements, we used values from the baseline visit and we used the
mean if multiple measurements were available.

To define type 2 diabetes, we opted to rely on the self-reported diseases from the verbal interview
with a nurse. We extracted all individuals who self-reported “diabetes” (coded as 1220 in variable
#20002) or its children variables (“gestational diabetes” coded 1221, “type 1 diabetes” coded 1222,
“type 2 diabetes” coded 1223 or “diabetes insipidus” coded 1521). Then, we excluded from the
analyses individuals reporting “type 1 diabetes” or reporting “gestational diabetes” or “diabetes
insipidus” with no record of “type 2 diabetes”. The remaining individuals were assumed to have
type 2 diabetes and individuals that did not report any of the preceding codes were used as controls.

For cardiovascular events, preliminary analyses revealed that self-reported data could lack
precision and so we relied on ICD10 codes from hospitalization or death records. Revascularization
procedures (percutaneous coronary interventions [PCI] and coronary artery bypass graft [CABG])
were defined using OPCS procedure codes in the linkage with hospitalization data. The specific
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codes used to define the events (based on hospitalizations, deaths or procedures) are described in
Supplementary Table 3.

For the statin use status, we extracted all the self-reported medications (coded 20003). All drugs
classified under the ATC code C10B were used to define statin users. We used the UK Biobank
Self Reported Medication Data parsing and matching software (available https://github.com/
PhilAppleby/ukbb-srmed/) to achieve this coding. This procedure resulted in the identification of
83,385 statin users based on 10 drugs. The specific codes used to define this composite are described
in Supplementary Table 4.

1.1 Genetic quality control

The genetic quality control steps used to avoid risk of confounding due to ethnicity, relatedness or
incorrect genotyping has been previously described [2].

Briefly, we excluded variants or individuals with a missing rate above 2%. We compared
the genetic and self-reported sex variables to validate sample matching between the genetic and
phenotypic data. Individuals with discrepencies or aneuploidies were removed from the analysis
dataset. To avoid bias due to population stratification, we only selected individuals from the
majority population in the UK Biobank. We excluded individuals not self-reporting as of European
descent or falling outside of a manually defined region based on the principal component analysis
projections. Related individuals were also excluded from analysis using a kinship coefficient of
0.0884 as the cutoff (corresponding to a 3rd degree relationship). After genetic quality control, a
total of 413,138 individuals remained.

2 Montreal Heart Institute Biobank

Participants to the Montreal Heart Institute (MHI) Biobank and hospital cohort were recruited
from different MHI departments and its affiliated prevention centre (EPIC) between 2006 and 2016.
Blood, DNA, and plasma are collected at baseline and stored at the Pharmacogenomics Centre at
MHI. All MHI Biobank participants provided informed consent and the study was approved by the
MHI scientific and ethics review committees.

2.1 Cholesterol efflux measurements

Basal and cAMP-stimulated cholesterol efflux were measured using plasma from a subset of 5,215
participants of the MHI Biobank. The procedure for the efflux measurements was previously pub-
lished elsewhere [3]. Briefly, plasma was obtained from venous blood samples collected on potassium-
EDTA coated tubes (BD Vacutainers), centrifuged as per the manufacturer’s protocol and frozen
at -80°C until analysis. Samples were then thawed at 4°C and the cholesterol efflux capacity was
measured in vitro with J774 macrophages. Cells were grown for 24 hours in presence of tritiated
(3H) cholesterol (2 µCi/ml). After an 18 hours equilibration period, patient plasma depleted of
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apoB-containing lipoproteins with PEG6000 or control serum was added in triplicate wells for 4
hours. The concentration measurement was selected from dose-response curves obtained from pooled
human plasma to avoid saturation of the efflux signal and to allow detection of changes in efflux
capacity in any direction. Aliquots of cell-free culture medium and J774 cell homogenates were used
to measure 3H cholesterol counts with a beta counter (Tricarb, Perkin-Elmer). Cholesterol efflux
capacity was defined as the ratio of 3H-cholesterol found in the medium to the total cholesterol label
in each well. Sample batches were tested in parallel with the same pool of normolipidemic human
serum to calculate the sample/control ratio. We rejected cholesterol efflux capacity measurements
that were outside of the historical mean ± 2 standard deviations.

To avoid batch effects in the statistical analysis, we used the residuals of the multivariable
regression of efflux measurements on a factor variable representing the day of analysis. The residuals
were subsequently standardized and used as the dependant variable in our analyses.

3 Simulation-based power analyses

Simulation for an interaction with body mass index

We are interested in assessing whether BMI modifies the effect of genetically-predicted reduction
in CETP concentration on coronary artery disease (CAD). To estimate statistical power to detect
such an effect, we simulate interaction terms while fixing the overall disease prevalence, the allele
frequencies and marginal effect of the CETP genetic score to observed values from the data. We
repeat the simulation and estimate the fraction of simulated datasets where the null hypothesis of
βitx = 0 is rejected at α = 0.05 using a conventional logistic regression. The simulation parameters
are described below.

3



Parameter Description Value

n Number of individuals 413,138

P (Y = 1) Prevalence of coronary artery disease in the overall popu-
lation

10.8%

Y Coronary artery disease (CAD), the outcome. Simulated as de-
scribed in the
“Simulation” section

X The CETP genetic score expressed so that 1 unit of X cor-
responds to a 1 standard deviation decrease in the CETP
concentration score (negative of the standardized score of
CETP concentration).

Simulated N (0,1)

BMI The body mass index Simulated N (0, 1)

β0 Intercept for the logistic regression model. Corresponds to
the logistic of the prevalence when other covariables are 0.

See section “Simula-
tion model”

βx Marginal effect of a 1 unit increase in X (CETP) on Y
(coronary artery disease). In our analyses, a 1 unit increase
in X represents a 1 standard deviation reduction in the
genetic score of CETP concentration. This is the βx as
estimated in a model with no interaction terms.

-0.0255

βb Coefficient of BMI (direct effect on Y ). This value is the
observational effect of BMI on Y as estimated in the UK
Biobank. We used the estimate from a multivariable logis-
tic regression model including age, sex and principal com-
ponents as covariates.

0.366

βitx The additive effect modification of βx per unit increase in
BMI (i.e. product interaction term between BMI and X).

Simulated values be-
tween -0.03 and 0.03

The association model is the following logistic regression model:

ln

(
P (Y = 1)

1− P (Y = 1)

)
= β0 + βx ·X + βb · BMI + βitx ·X · BMI (1)

Where the parameters are as previously defined.

Simulation

When simulating the outcome (CAD), we want to control for the prevalence (P (CAD = 1)) and
obtain the desired regression coefficients. To achieve this, we use a latent variable model of the
logistic regression.
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Y ∗ = β0 + βx ·X + βb · BMI + βitx ·X · BMI + ε (2)

With

ε ∼ L(0, 1)

X ∼ N (0, 1)

BMI ∼ N (0, 1)

and the coefficients set as previously described except for β0 which we will discuss later. The
resulting continuous latent variable (Y ∗) is used to simulate the outcome as follows:

Y =

{
1 if Y ∗ > 0

0 otherwise

We then use β0 to control the prevalence (i.e. P (Y = 1)) as Y ∗ is positive if and only if

−β0 < βx ·X + βb · BMI + βitx ·X · BMI + ε

Using the normal approximation for the right hand side of the former, we have:

Z = βx ·X + βb · BMI + βitx ·X · BMI + ε

Z ∼ N (0, V ar (βxX + βbBMI + βitx ·X · BMI + ε)) Normal approximation and X standard normal

Z ∼ N
(

0, β2
x + β2

b + V ar(βitx ·X · BMI) +
π2

3
)

)
Variance of standard normal and logistic

Z ∼ N
(

0, β2
x + β2

b + β2
itx +

π2

3

)
Assuming X and BMI independant

And we can use the normal quantile function to determine the value of β0 resulting in the
observed prevalence.

P (Y = 1) = p = P (−β0 < Z)

= 1− ΦZ(−β0) ⇐⇒
β0 = −Φ−1

Z (1− p)
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Implementation (R)

We implemented the simulation in R. Power computations are done by simulating an outcome, fit-
ting a logistic regression model and empirically estimating the power as the fraction of all simulation
iterations where the null was rejected at α = 0.05.

# Fixed parameters
n <- 413138
prevalence <- 44713 / n

# Estimated from CAD ~ bmi + age + sex + PCs model
b_bmi <- 0.3659062

# Marginal effect of CETP at mean BMI
b_cetp <- -0.025514967819954

bmi <- rnorm(n)
cetp <- rnorm(n)

b0 <- -qnorm(
1 - prevalence,
mean = 0,
sd = sqrt(b_cetp^2 + b_bmi^2 + b_itx^2 + pi^2 / 3)

)

y_star <- b0 + b_cetp * cetp + b_bmi * bmi + b_itx * cetp * bmi + rlogis(n)
y <- as.numeric(y_star > 0)

Power estimation

We estimated power by repeatadly simulating datasets with fixed parameters and estimating the
proportion of all simulations where the null hypothesis is rejected using the conventional hypothesis
testing framework. Specifically, we test the hypothesis that the interaction coefficient is different
from zero at an α = 0.05 threshold and using the Wald statistic.

The standard error of the estimated power is
√
p̂(1− p̂)/n where p̂ is the proportion of simu-

lated datasets where the null is rejected and n is the number of simulated datasets. When plotting
power estimates, the standard error is used to construct the 95% confidence interval.

Simulation for an interaction with sex

The simulation model for the effect modification by sex was a little bit different. Because the
levels in the simulation were binary, we simulated men and women separately and concatenated
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the results. The proportion of men and women from our dataset and the prevalence of CAD were
fixed at observed values. The sex-specific effect of CETP was then used as the simulation parameter
using the same strategy as before to control for the prevalence of CAD (the latent logistic regression
model).

4 Construction of CETP activity scores

To construct a weighted allele score of CETP activity, we considered various approaches. We con-
structed a total of 5 scores based on various summary statistics from previous GWAS of plasma
CETP concentration [4] or lipid phenotypes measured by nuclear magnetic resonance by the MAG-
NETIC consortium [5]. In the end, we only selected one representative score for the analyses to
avoid redundancy as all the scores we generated were strongly correlated (Supplementary Table 1).
All scores were constructed using the LD clumping and p-value thresholding approach based on
variants at the CETP locus, except from the score based on the independently associated variants
as presented in the original publication of the CETP concentration GWAS. To determine an appro-
priate p-value threshold for the genetic scores, we estimated the effective number of independent
pairs of lipid and variant associations akin to the simpleM correction [6].

Specifically, we estimated the number of independent genetic variants at the CETP locus using
a Principal Component Analysis (PCA) of the genotype matrix. Including 50 principal components
explained 99% of the variance in CETP genotypes and was used to estimate the effective number
of tested variants. Similarly, to estimate the effective number of lipid phenotypes to account for,
we used hierarchical clustering of the correlation between variant association coefficients in the
MAGNETIC GWAS. We used this dataset to estimate the number of independent phenotypes
because it includes an exhaustive number of lipid traits. Manual inspection of the hierarchical
clustering dendrogram revealed that there were three major classes of lipids independently affected
by CETP. We picked HDL cholesteryl ester, small VLDL triglycerides and large VLDL triglycerides
as cluster representatives. Association coefficients for these lipids were thus used when generating
candidate scores of CETP activity. Based on the estimates of the effective number of variants and
lipids, the p-value threshold was set to 0.05/(3 × 50) = 3.3 × 10−4 for all scores. We fixed the
LD threshold at r2 = 0.1 as to not exclude variants correlated by chance and a minimum allele
frequency of 1% was used.

5 Causal interpretation

Genetic variants have an important property that makes them a good tool for causal inference:
they have very few causes. Because they are determined at birth and fixed throughout life, they
are not susceptible to reverse causation or environmental confounders, two major sources of bias in
observational studies. Mendelian randomization (MR) leverages this advantage of genetic variants
to draw causal inferences of the effect of heritable exposures [7, 8].

The current study is similar in spirit to an MR study and we will formalize how the presented
associations can be causally interpreted based on the same assumptions as any instrumental variable

7



study. We represented the causal structure of the current experiment as a causal directed acyclic
graph (DAG) below: [9]

CETP

U1

U2

G1

G2

Yi

Figure 1: Directed acyclic graph representing the causal structure of the experiment. Squares are
used to denote observed variables and circles are used to denote unobserved variables. Arrows
represent causal effects such that changes in a parent variable will result in changes in its child.

In this DAG, we can see features that are common in instrumental variable studies such as the
classical MR setup. The G1 node represents a genetic predictor of the unobserved CETP activity.
In our study, this corresponds to either the CETP concentration score or the CETP -629C>A
(rs1800775) variant. The unobserved CETP node represents all aspects of a genetic disruption
of CETP in terms of plasma concentration, isoform prevalence, enzymatic activity and substrate
preference. In our study this is an unobserved variable that encompasses different aspects of CETP
function. The Yi node represents the outcomes of interest. In our study, it is used to represent
alternatively C-reactive protein, lipid fractions, lipoprotein levels, plasma cholesterol efflux capacity
or cardiovascular outcomes, captured by the index on the Yi variable.

Two latent variables (U1 and U2) corresponding to potential confounders are also included.
The first variable (U1) is used to represent an effect of population stratification. Specifically, the
distribution of G1 is expected to vary between populations simply due to differences in population
histories. The distribution of Yi may also vary across populations because of lifestyle or environ-
mental differences. For example a diet common in one area of the world may influence risk of heart
attack in a way that is independent from genetics. If unaccounted for, this common cause of G1

and Yi (ancestry) will bias the estimate of the effect of G1 on Yi. In our study, we ensured that this
unobserved variable was controlled for by only using the largest genetically homogeneous subset of
the UK Biobank consisting of individuals of European descent. Additionally, we included principal
components capturing population structure to our regression models, which is the conventional way
to account for population stratification in genetic association studies.

The second possible confounder is depicted on the graph by the U2 node. This node represents
unobserved linkage disequilibrium (LD) inducing a correlation between the G1 variable and a second
locus (G2) with a direct effect on Yi. As is conventional in MR, we will assume no direct effect of
G1 on Y which includes the effect of the G1 → U2 → G2 → Y path. This assumption also justifies
that no arrow from G1 to Y was included in the DAG. In instrumental variable analysis and MR
this assumption is called the exclusion restriction. As in any MR study, the causal interpretation of
our results requires this unverifiable, but plausible, assumption to hold. Another reason to include
a direct effect of G1 on Y is horizontal pleiotropy, a term used to describe a genetic variant with
simultaneous effects on distinct pathways. Because the score only includes CETP locus variants
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associated with plasma concentration, and the rs1800775 "C" allele is known to repress CETP
promoter activity and Sp3 transcription factor binding, it is unlikely that the observed effects are
through another pathway. In general, studies based on well known variants at a single locus are
less likely to suffer from bias due to pleiotropy.

To summarize, we make the following assumptions:

1. There are no confounders of the G1−Yi relationship (independance). U1 is accounted
for by using a genetically homogeneous subset of the UK Biobank and including principal
components in our regression models.

2. G1 → CETP is non-null (relevance). This is given by external data validating the effect of
rs1800775 on CETP levels and by construction for the score of CETP concentration. We also
argue that the effect observed effects on HDL-c levels, a well-known consequence of CETP
disruption, supports this assumption.

3. G1 only affects Y1 through CETP (exclusion restriction). More formally, G1 ⊥⊥
Y1 | CETP. We minimized the risk of violating this assumption by only relying on genetic
variables known to affect CETP function and located at the CETP locus.

These assumptions are the same as for instrumental variable or MR analyses and allow us to
interpret the multivariable regression coefficients described in the main text as the total effect of
G1 on Yi. Because this total effect is only mediated by CETP, under our assumptions, it represents
the average causal effect of genetic CETP disruption.

In our manuscript, the focus is on effect modifiers of the genetically predicted reduction in
CETP on biomarkers and cardiovascular outcomes. The question of effect modification in causal
effects is interesting and currently scarcely discussed in the literature, especially in the parametric
and multivariable context. Stratification has been suggested as the natural way to identify effect
modification and so we reported marginal subgroup effects for all of the considered effect modifiers
in the main text [10].

Because the CETP node is unobserved, we are not able to distinguish effect modification in
the G1 → CETP from the CETP → Yi effects. This distinction is important and represents a
limitation of our study if generalization to pharmacological CETP inhibition is sought. Concretely,
if the effect modification only influences the effect of the genetic variant or genetic score on CETP
activity, then the observed effects are strictly genetic and do not represent a broadly applicable
feature of CETP inhibition.

6 Meta-analysis of randomized controlled trials of CETP in-
hibitors

We conducted a sex-stratified fixed-effects meta-analysis of three RCTs of CETP inhibitors. In the
REVEAL trial, rate ratios (RRs) were provided for all analyses. For ACCELERATE, the hazard
ratio was provided for the main study, but RRs were reported in subgroup analyses. We calculated
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the RR for the main study and it was numerically identical to the hazard ratio at two decimal
places. Similarly, for dal-OUTCOMES, the RR and hazard ratio were numerically identical in the
main study. In sex-stratified analyses only the hazard ratios were available for this study and we
could not calculate the RRs because the sex-stratified event counts were not provided. We used the
hazard ratio in place of the RR for these effects. The effect estimates are summarized below along
with the relevant references:

Study (drug) Group (n; %) Rate ratio (95% CI) Ref.

dal-OUTCOMES (dalcetrapib) All (n=15,871) 1.04 (0.93, 1.16) [11]
Male (n=12,801; 81%) Hazard ratio: 1.07 (0.95, 1.21)
Female (n=3,070; 19%) Hazard ratio: 0.92 (0.72, 1.16)

ACCELERATE (evacetrapib) All (n=12,092) 1.01 (0.91, 1.11) [12]
Male (n=9,308; 77%) 1.04 (0.93, 1.17)
Female (n=2,784; 23%) 0.91 (0.74, 1.12)

REVEAL (anacetrapib) All (n=30,449) 0.91 (0.85, 0.97) [13]
Male (n=25,534; 84%) 0.90 (0.84, 0.97)
Female (n=4,915; 16%) 0.93 (0.78, 1.11)

For the dal-OUTCOMES (main trial) and ACCELERATE (main trial and all subgroups), we
estimated the standard error of the rate ratio on the natural log scale as

√
y−1
0 + y−1

1 where y0 and
y1 denote the number of events in the treatment arm and in the placebo arm, respectively. The
95% confidence intervals were then calculated on the natural log scale and are reported on the rate
ratio scale.

The variances for the meta-analysis were calculated from the 95% confidence interval for all
studies as:

Vi =

(
ln (UCLi)− ln (LCLi)

2× Φ−1(0.05/2)

)2

Where i indexes studies, UCL is the upper confidence interval limit, LCL is the lower confidence
interval limit and Φ−1 is the normal quantile function.

The meta-analysis weights were the inverse of the variances (Wi = V −1
i ). The meta analysis

effect on the log scale is then calculated as:

β =

∑
i ln(RRi)Wi∑

iWi

V ar(β) =

(∑
i

Wi

)−1

For every group or subgroup.
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Now, we denote the sex-specific meta-analysis estimates as βM for the male-only estimate and
βF as the female-only estimate. We can conduct hypothesis testing of the null hypothesis of no
effect using the following Wald statistics (following a 1 d.f. χ2 under the null):

χ2
C = β2/V ar(β)

χ2
M = β2

M/V ar(βM)

χ2
F = β2

F/V ar(βF )

It is also possible to test for heterogeneity in the sex-specific effects using the χ2
H = χ2

M+χ2
F−χ2

C

statistic having a χ2 distribution with 1 degree of freedom as described in Magi et al. (2010) [14].
This test is equivalent to a sex-interaction test.

7 Note on interaction scales

7.1 Interpretation of the product interaction term in linear regression

In a linear regression model, the product interaction term represents an interaction contrast.

For example, assume the interaction model with one continous outcome Y and two interacting
variables X1 and X2.

E(Y |X1, X2) = β0 + β1X1 + β2X2 + βitxX1X2

We define the interaction contrast as the effect difference when both X1 = X2 = 1 compared
to the sum of their individual effects (X1 = 1 or X2 = 1). All effects are taken using the absence of
both covariables as the reference.

Concretely, the interaction contrast (IC) is:

IC = Y11 − Y00 − [(Y10 − Y00) + (Y01 − Y00)]
= Y11 − Y10 − Y01 + Y00

= (β0 + β1 + β2 + βitx)− (β0 + β1)− (β0 + β2) + β0

= βitx

Denoting Yij = E(Y |X1 = i,X2 = j).

Hence, the product interaction coefficient in a linear regression is the added effect attributable
to the co-occurence of both risk factors in addition to the sum of their individual effects.
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7.2 Interpretation of the product interaction term in logistic regression

Using the same interaction of two covariables (X1 and X2) as in the previous section, we express
the following logistic regression model on a binary outcome variable (Y ).

ln

(
p

1− p

)
= β0 + β1X1 + β2X2 + βitxX1X2

Where p = P (Y = 1|X1, X2).

In this model, the individual effects of X1 and X2 expressed as odds ratios are represented by
eβ1 = OR10 and eβ2 = OR01, respectively. Their combined effect when compared to no effect of X1

and X2 can be derived as follows:

ln (OR11) = ln

(
odds(Y |X1 = 1, X2 = 1)

odds(Y |X1 = 0, X2 = 0)

)
= ln(odds(Y |X1 = 1, X2 = 1)− ln(odds(Y |X1 = 0, X2 = 0))

= (β0 + β1 + β2 + βitx)− β0
= β1 + β2 + βitx

→ OR11 = eβ1+β2+βitx = eβ1 · eβ2 · eβitx = OR10 ·OR01 · eβitx

This reveals how the interaction coefficient (βitx) represents a multiplicative change from the
combined individual effects of the covariables on the odds ratio scale [15]:

eβitx =
OR11

OR10 OR01

7.3 Estimating additive interactions from a logistic regression model

It is often argued that additive interactions are most relevant to the study of disease etiology or
public health [16]. For this reason, we calculated additive interactions from the logistic regression
results. We used two complementary strategies. First, we calculated the Relative Excess Risk due
to Interaction (RERI) on the odds ratio scale as defined in [15]:

RERI = (RR11 − 1)− (RR10 − 1)− (RR01 − 1)

= RR11 − RR10 − RR01 + 1

≈ eβ̂1+β̂2+β̂itx − eβ̂1 − eβ̂2 + 1

12



Which holds if the odds ratio approximates the relative risk as is the case with rare outcomes.
This statistic can be seen as the additive deviation on the relative risk scale due to the interaction
[15]. In our analyses, the RERI were computed from the logistic regression fit using the “inter-
actionR” R package (https://cran.r-project.org/web/packages/interactionR/index.html) and using
the “mover” method to compute the confidence interval [17].

Because this measure is a deviation on the relative risk scale, we also considered interaction
contrasts on the probability scale which may be more interpretable. For this analysis, we computed
marginal predicted probabilities from the logistic regression fit by using a weighted average across
observed covariable levels while fixing the interaction variables. We then used the interaction
contrast (IC) as defined in Section 7.1:

IC = P11 − P10 − P01 + P00

With Pij = P (Y = 1|X1 = i,X2 = j)

We used the “boot” R package to construct 95% confidence intervals for this statistic using the
percentile method and 2,000 bootstrap replicates.
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