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Supplementary Fig. 1. Purification of wild-type hPres and hPres'.

(a) A SEC profile for hPres. The elution fractions of hPres and EGFP are indicated. (b)
Representative averaged 2D classes of wild-type hPres, indicating the high heterogeneity of the
purified hPres protein. (c) SEC profile of hPres™. The elution fractions of hPres™ and EGFP are
indicated. (d) Representative averaged 2D classes of hPres™
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Supplementary Fig. 2. Sequence alignment of hPres™ and prestin orthologs.

Sequence comparison of hPres™ and four prestin orthologs (human (Hs), UniProt: P58743;
naked mole rat (Hg), UniProt: G5BI49; chicken (Gg), UniProt: AOFKNS5; zebrafish (Dr),
UniProt: Q7T2N6). The locations of the transmembrane helices (TM), other a helices (H), and 3
strands (B) are also indicated. The residues contributing to the anion binding site, the core-gate
domain interface, and the dimerization interface present in the transmembrane region are
highlighted in orange.
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Supplementary Fig. 3. Data processing of the chloride-bound structure of hPres™

(a) Representative cryo-EM micrograph of the chloride-bound structure of hPres™ in complex
with chloride, recorded on a 300 kV Titan Krios electron microscope with a K3 camera. (b) Data
processing workflow of the single particle image processing. Fourier Shell Correlation (FSC)
between the two independently refined half-maps is shown. (c) FSC curves for map-to-model
fitting.
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Supplementary Fig. 4. Data processing of the sulfate-bound structure of hPres'.

(a) Representative cryo-EM micrograph of the chloride-bound structure of hPres™ in complex
with sulfate, recorded on a 300 kV Titan Krios electron microscope with a K3 camera. (b) Data
processing workflow of the single particle image processing. FSC between the two
independently refined half-maps is shown. (¢) FSC curves for map-to-model fitting.
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Supplementary Fig. 5. Data processing of the salicylate-bound structure of hPres™.

(a) Representative cryo-EM micrograph of the chloride-bound structure of hPres™ in complex
with salicylate recorded on a 300 kV Titan Krios electron microscope with a K3 camera. (b)
Data processing workflow of the single particle image processing. FSC between the two
independently refined half-maps is shown. (c) FSC curves for map-to-model fitting.
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Supplementary Fig. 6. Structural comparison of hPres™ and mSLC26A9.

(a) Structural superimposition of protomers of hPres™ (green) and murine SLC26A9
(mSLC26A9) (PDBID: 6RTC, light beige). Both molecules are shown as cylinder models.
Residues 58-722 of hPres™ and 5-740 of murine SLC26A9 are superimposed together (R.m.s.
deviation is 1.66 A). (b) Structural superimposition of the transmembrane domains of hPres™
(the same color scheme as in Fig. 1c) and the core (light pink) and gate (light blue) domains of
murine SLC26A9 viewed from the extracellular side (left), the gate domain viewed from the
lateral side (middle) and the core domain viewed from the lateral side (right).
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Supplementary Fig. 7. Quantification of membrane targeting efficiencies of the prestin
constructs used in this study.

mTq2-tagged hPres™ and HgPres constructs expressed in HEK293T cells were labeled with a

5 membrane impermeable fluorescent probe, sulfo-Cy3 NHS ester. The cells were lysed, and the
detergent extracted mTq2-tagged prestin proteins were captured by anti-mTq2 affinity beads. (a)
Fluorescence intensities in the cyan (Fmtq2) and red (Fcys) channels were determined from
images of the beads, and plotted against each other. Results for mTg2 alone (negative control),
hPres™, and WT-HgPres are shown as examples. The X-Y axis ratio is fixed to 10 : 1. The slope

10 (Fcya/Fmtq2) was determined by Deming’s linear regression analysis, which indicates the

efficiency of cell membrane targeting. (b) A summary of the cell membrane targeting
efficiencies. Error bars indicate 95% confidence intervals of the slope values. The horizontal
dashed line indicates the slope value of the negative control (ctrl).
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Supplementary Fig. 8. Structure and dynamics of chloride ion binding observed in MD
simulations.

CI" binding in an MD simulation. A snapshot of the CI” binding (a) and time evolutions of the
distances between CI" and C. atom of Arg399 (b) and that between CI” and the O, atoms of
Ser396 (red) and Ser398 (blue) (c), respectively, are depicted.
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Supplementary Fig. 9. The effects of salicylate on wild-type OHCs and HEK cells
expressing various HgPres constructs.

(a) Salicylate-induced elongation of OHCs. Video frame images of OHCs before (upper panels)
and after (bottom panels) the application of 1.5 mM salicylate in the bath solution (see also
Supplementary Movie 2). (b) The effect of salicylate on the NLC of WT-, S396D-, S396E-, and
S398A-HgPres. NLC was measured in the absence (upper panels) and presence (lower panels) of
10 mM salicylate in the bath solution. Three to five examples are shown in different colors for
each construct and condition.
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Data collectioin and processing
EMDB-ID 31757 31758 31759
PDB ID V73 VT4 V75
Bound anion Chloride Sulfate Salicylate
Microscope Titan Krios G4
Detector Gatan K3 Camera with Quantum LS energy filter
Magnification 105,000
Voltage (kV) 300
Electron exposure (eflAz) 54 54 54
Defocus range (um) -08to-1.6
Pixel size (A/px) 0.83
Symmetry imposed Cc2
Number of movies 4,680 4,077 3,375
Initial particle images 1,373,022 1,181,278 848,704
Final particle images 341,744 249 144 113,410
Map resolution (A) 3.52 3.63 3.57
FSC threshold 0.143
Map sharpening B factor (A?) -188.514 -181.17 -171.721
Model building and refinement
Model composition
Protein atoms 4620 4620 4687
Metals 0 0 0
Other atoms 252 249 299
R.M.S. deviations from ideal
Bond lengths (A) 0.0107 0.0125 0.012
Bond angles (") 1.697 1.8889 1.7164
Validation
Clashscore 578 426 6.41
Rotamer outliers (%) 1.99 3.38 5.68
Ramachandran plot
Favored (%) 95.26 93.23 94.66
Allowed (%) 474 6.6 5.18
Outlier (%) 0 0.17 0.17

Supplementary Table 1. Data collection, processing, model refinement and validation.
Clashscores, rotamer outliers, and Ramachandran plots were calculated using MolProbity 2.
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Supplementary Movie 1. Rigid-body domain movement deduced from the chloride- vs.
salicylate-bound hPres™ structures.

The salicylate-bound and chloride-bound structures are overlayed with the gate domains used as
superimposition references. The anion binding site is indicated by a circle. See also Fig. 3C.

Supplementary Movie 2. Salicylate-induced elongation of mouse OHCs.
Salicylate (1.5 mM) was added to the bath solution at time zero.
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