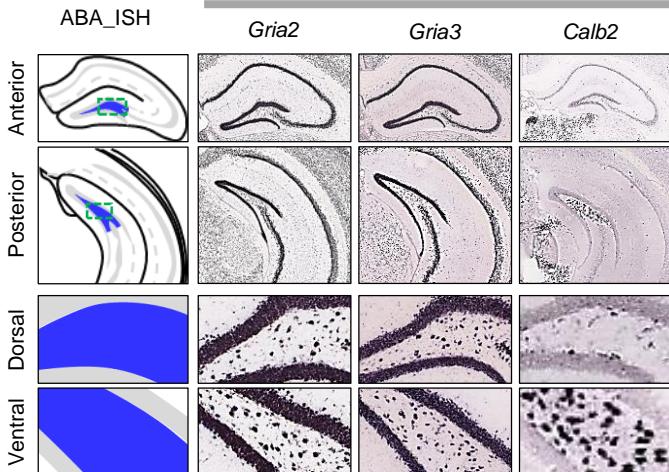
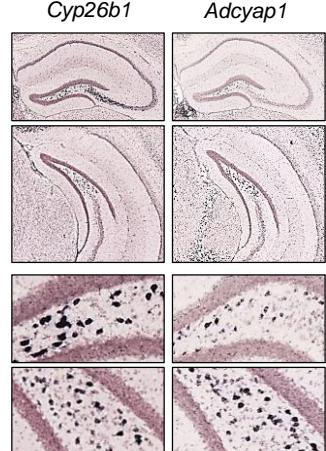


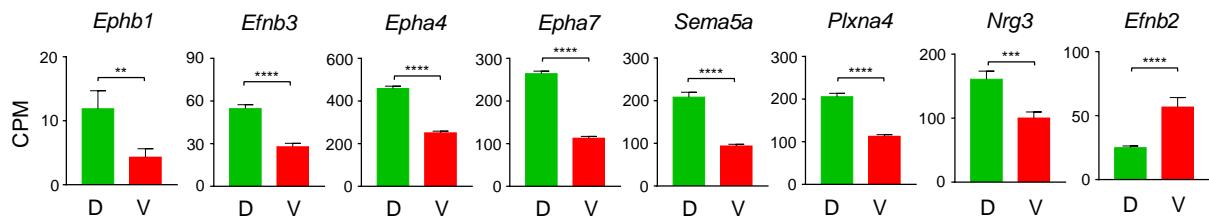

**a****b****c****d****e**


**Supplementary Fig. 1 Calcrl-Cre mice displays a high levels of specificity of MCs (Related to Fig. 1)** **a** Calcrl-Cre mice were unilaterally injected Cre-dependent EGFP expressing virus into either dHil or vHil, respectively **b, c** Representative coronal images showing of MC specific fluorescence labeling in dHil (b) and vHil (c) of Calcrl-Cre mice. EGFP expressing cells were immunostained for GluR2/3 (GluR2/3; Pan MCs marker), Calretinin (CRT, vMCs marker), parvalbumin (PV; subpopulation of basket cell marker), neuropeptide Y (NPY, hilar perforant path-associated cell marker). Solid arrow heads bar: representative doubly labeled cells. Open arrow heads bar: cells labeled only with markers. Open arrow heads: calretinin-positive interneurons. Scale bar, 50  $\mu$ m. **d, e** The quantitative analysis of MCs specificity of Calcrl-Cre mice. Labeled cells in dHil (d) were highly colocalized with GluR2/3 (95% $\pm$ 1.4), but not colocalized with other marker (CRT, PV, and NPY). Labeled cells in vHil (e) were colocalized with both GluR2/3 (95% $\pm$ 1.7) and CRT (99% $\pm$ 0.6), their cells were no colocalized with marker (PV and NPY). (n = 3, mice per group). All data represented as mean  $\pm$  SEM.

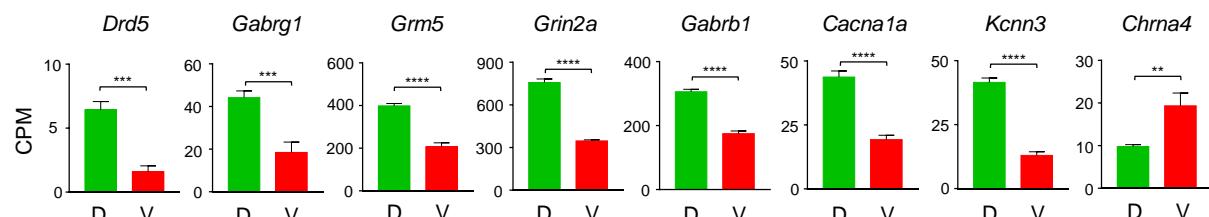
**a**


**Supplementary Fig. 2 Axonal fibers in MML of vDG are originated from dMCs (Related to Fig. 1)** **a** Representative fluorescence images with calretinin (CRT) immunostaining of the dorsal (top) and ventral (bottom) DG from Fig. 1A. Hil, hilus; GCL, granule cell layer; IML, inner molecular layer; MML, middle molecular layer; OML, outer molecular layer. Scale bar, 200  $\mu$ m.

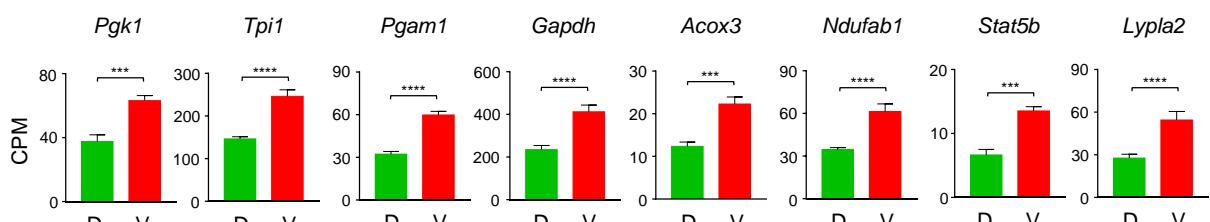
**a**


## Classical MCs marker

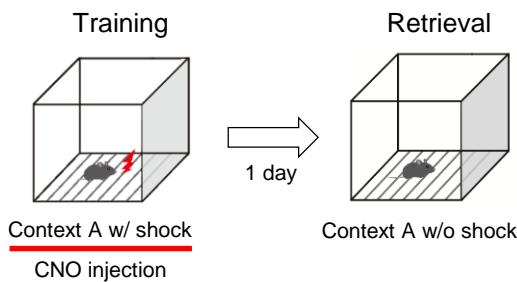
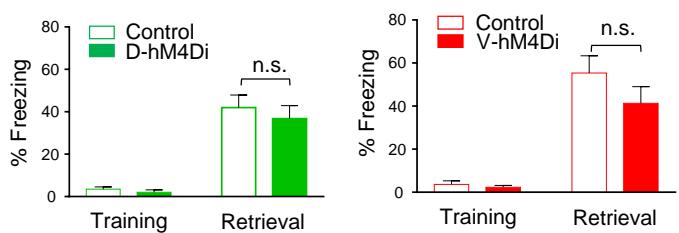
**b**


## Enriched gene

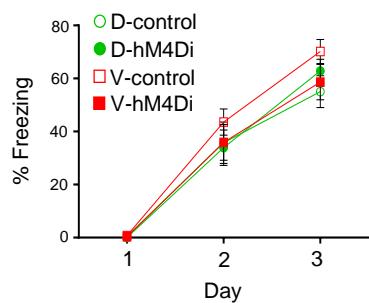
**c**


## Connectivity

**d**

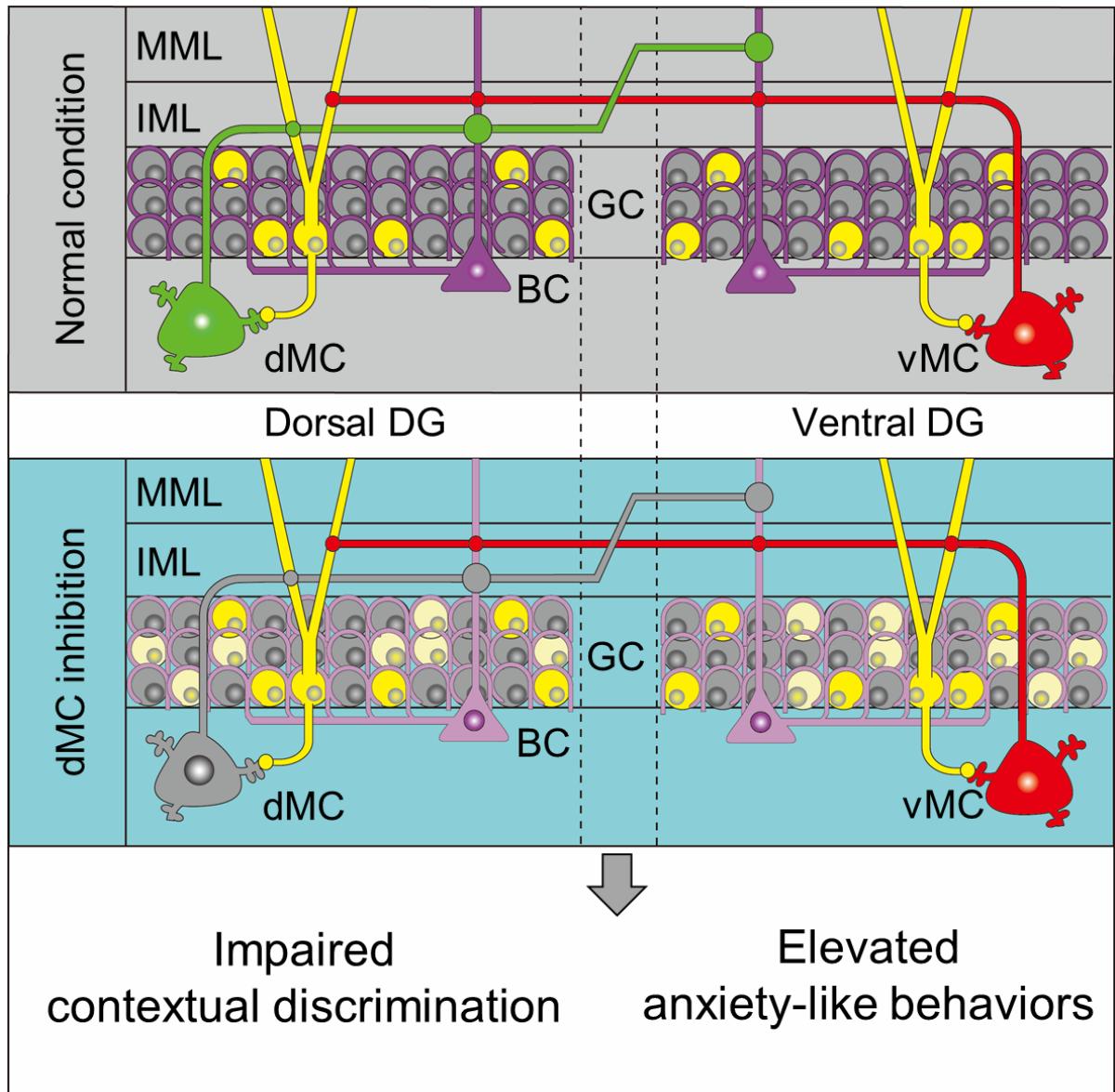


## Transmission

**e**



## Neurometabolism




**Supplementary Fig. 3 dMCs and vMCs express differential subsets of genes associated with various functions (Related to Fig. 3)** **a** Representative ISH images from ABA showing distribution of MCs marker (Gria2 and Gria3; MCs marker, Calb2; vMCs marker) along the DV axis of the DG. **b** Representative ISH images from ABA showing differential enriched genes pattern (Cyp26b1; dMCs-, Adycap1; vMCs-enriched) along the DV of the DG. **c-e** Representative gene expression patterns in differential enrichment of MC subpopulations associated with connectivity (c), transmission (d), and neurometabolism (e) categories. \*\*p < 0.01, \*\*\*p < 0.001, and \*\*\*\*p < 0.0001, quasi-likelihood test. All data represented as mean  $\pm$  SEM.

**a****b**

**Supplementary Fig. 4 Contextual fear memory acquisition is not interfered by MC inhibition along the DV axis (Related to Fig. 5)** **a** Experimental procedure for contextual fear conditioning. **b** Effect of chemogenetic inhibition of either dMCs or vMCs on freezing levels. For dMCs group; DREADD ( $F_{1,18}=0.5022$ ,  $p=0.4876$ ); encoding ( $F_{1,18}=81.17$ ,  $p<0.0001$ ); interaction ( $F_{1,18}=0.2066$ ,  $p=0.6549$ ). For vMCs groups; DREADD ( $F_{1,19}=1.703$ ,  $p=0.2075$ ); encoding ( $F_{1,19}=72.4$ ,  $p<0.0001$ ); interaction ( $F_{1,19}=1.42$ ,  $p=0.2480$ ). Two-way repeated-measure ANOVA, Bonferroni post test. All data represented as mean  $\pm$  SEM.

**a****b**

**Supplementary Fig. 5 Contextual fear learning and generalization is consistent within all comparison groups (Related to Fig. 5)** **a** Freezing level in context A during acquisition. The mice trained in context A through 3 days. Comparison groups;  $F_{3,33}=1.008$ ,  $p=0.4017$ ; learning;  $F_{2,66}=204$ ,  $p<0.0001$ ; interaction;  $F_{3,33}=0.7028$ ,  $p=0.6483$ ; Two-way repeated-measure ANOVA. **b** Contextual generalization in context B. the mice were exposed alternatively in between context A and B. Comparison groups;  $F_{3,70}=2.652$ ,  $p=0.0554$ ; day;  $F_{1,70}=19.81$ ,  $p<0.0001$ ; interaction;  $F_{3,70}=0.6876$ ,  $p=0.5626$ ; Two-way repeated-measure ANOVA. All data represented as mean  $\pm$  SEM.



**Supplementary Fig. 6 Schematic illustration of dorsoventral heterogeneity of MCs.** dMCs and vMCs extend distinct axonal projection along DV axis of DG. Long-range axonal projection of dMCs, but not vMCs, provide net inhibitory control of GCs across the longitudinal axis of the DG, possibly through PV+BCs. Inhibition of dMCs increases behavioral anxiety and disables rapid contextual discrimination.

**Supplementary Table 3**

| Fig     | Sample size (n)                                                                                                             | Type of statistical analysis                            | Values                                                                                                                                                                                                                                                                                                                                         |
|---------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fig. 1d | Axonal fiber of dMCs and vMCs:<br>n = 3, 3 slices per mice                                                                  | Two-way mseausres ANOVA                                 | Molecular layers (dMC)<br>$F (1, 48) = 7.913, P = 0.0071$<br>DV axis (dMC)<br>$F (2, 48) = 53.94, P < 0.0001$<br>Interaction (dMC)<br>$F (2, 48) = 83.78, P < 0.0001$<br>Molecular layers (vMC)<br>$F (1, 48) = 391.6, P < 0.0001$<br>DV axis (vMC)<br>$F (2, 48) = 26.87, P < 0.0001$<br>Interaction (vMC)<br>$F (2, 48) = 15.74, P < 0.0001$ |
| Fig. 1f | Axonal fiber of dMCs and vMCs:<br>n = 3, 3 slices per mice                                                                  | Two-way mseausres ANOVA                                 | Molecular layers (dMC)<br>$F (1, 48) = 40.24, P < 0.0001$<br>DV axis (dMC)<br>$F (2, 48) = 97.12, P < 0.0001$<br>Interaction (dMC)<br>$F (2, 48) = 79.2, P < 0.0001$<br>Molecular layers (vMC)<br>$F (1, 48) = 77.02, P < 0.0001$<br>DV axis (vMC)<br>$F (2, 48) = 24.29, P < 0.0001$<br>Interaction (vMC)<br>$F (2, 48) = 22.14, P < 0.0001$  |
| Fig. 2e | MC proportions: n = 5                                                                                                       | Paired t test                                           | $T (4) = 5.398; P = 0.0057$                                                                                                                                                                                                                                                                                                                    |
| Fig. 3c | Expression of grα3, dMCs, n = 3; vMCs, n = 3<br>Expression of calb2, dMCs, n = 3; vMCs, n = 3                               | Unpaired t test                                         | $T (4) = 1.374; P = 0.2414$                                                                                                                                                                                                                                                                                                                    |
| Fig. 4c | Induction of DV of MCs c-fos:<br>Naive, n = 5; CFC, n = 6                                                                   | Unpaired t test                                         | $T (31) = 8.212; P < 0.0001$                                                                                                                                                                                                                                                                                                                   |
| Fig. 4h | Acute inhibition of dMCs on dGCs activity:<br>D- and V-control, n = 5; inhibition of dMCs, n = 5;<br>3 slices per mice      | Unpaired t test                                         | $T (28) = 4.923; P < 0.0001$                                                                                                                                                                                                                                                                                                                   |
|         | Acute inhibition of dMCs on vGCs activity:<br>D- and V-control, n = 5; inhibition of dMCs, n = 5;<br>3 slices per mice      | Unpaired t test                                         | $T (28) = 4.835; P < 0.0001$                                                                                                                                                                                                                                                                                                                   |
| Fig. 4i | Acute inhibition of vMCs on dGCs excitability:<br>D- and V-control n=5; inhibition of vMCs n=3<br>each sections: 3 per mice | Unpaired t test                                         | $T (22) = 1.73; P = 0.0976$                                                                                                                                                                                                                                                                                                                    |
|         | Acute inhibition of vMCs on dGCs excitability:<br>D- and V-control n=5; inhibition of vMCs n=3<br>each sections: 3 per mice | Unpaired t test                                         | $T (22) = 1.714; P = 0.1005$                                                                                                                                                                                                                                                                                                                   |
| Fig. 4k | Acute inhibition of dMCs on dBcs excitability<br>D-control n=3; Inhibition of dMCs n=5<br>each sections: 2 per mice         | Unpaired t test                                         | $T (14) = 2.003; P = 0.0649$                                                                                                                                                                                                                                                                                                                   |
|         | Acute inhibition of dMCs on vBCs excitability:<br>D-control n=3; Inhibition of dMCs n=5<br>each sections: 2 per mice        | Unpaired t test                                         | $T (14) = 3.357; P = 0.0047$                                                                                                                                                                                                                                                                                                                   |
| Fig. 4l | Acute inhibition of dMCs on dBcs number:<br>D-control n=3; Inhibition of dMCs n=5<br>each sections: 2 per mice              | Unpaired t test                                         | $T (14) = 1.32; P = 0.2080$                                                                                                                                                                                                                                                                                                                    |
|         | Acute inhibition of dMCs on vBCs number:<br>D-control n=3; Inhibition of dMCs n=5<br>each sections: 2 per mice              | Unpaired t test                                         | $T (14) = 0.8029; P = 0.4355$                                                                                                                                                                                                                                                                                                                  |
| Fig. 5c | Acute inhibition of dMCs in EPM:<br>D-control n=9; Inhibition of dMCs n=10                                                  | Unpaired t test                                         | $T (17) = 2.261, P = 0.0372$                                                                                                                                                                                                                                                                                                                   |
|         | Acute inhibition of vMCs in EPM:<br>V-control n=9; Inhibition of dMCs n=10                                                  | Unpaired t test                                         | $T (17) = 1.288; P = 0.2149$                                                                                                                                                                                                                                                                                                                   |
| Fig. 5d | Acute inhibition of dMCs in OFT:<br>D-control n=9; Inhibition of dMCs n=10                                                  | Unpaired t test                                         | $T (17) = 4.566; P = 0.0003$                                                                                                                                                                                                                                                                                                                   |
|         | Acute inhibition of vMCs in OFT:<br>V-control n=9; Inhibition of dMCs n=10                                                  | Unpaired t test                                         | $T (17) = 0.4139; P = 0.6841$                                                                                                                                                                                                                                                                                                                  |
| Fig. 5g | D-control on discrimination training: n=10                                                                                  | Two-way repeated-measures ANOVA<br>Bonferroni post test | Block:<br>$F (5, 95) = 5.563; P = 0.0002$<br>Context:<br>$F (1, 19) = 39.43; P < 0.0001$<br>Interaction:<br>$F (5, 95) = 2.619; P = 0.0290$                                                                                                                                                                                                    |
|         | D-hM4Di on discrimination training: dMCs n=8                                                                                | Two-way repeated-measures ANOVA<br>Bonferroni post test | Block:<br>$F (5, 75) = 6.699; P < 0.0001$<br>Context:<br>$F (1, 15) = 35.49; P < 0.0001$<br>Interaction:<br>$F (5, 150) = 1.966; P = 0.0935$                                                                                                                                                                                                   |
| Fig. 5h | V-control on discrimination training: n=10                                                                                  | Two-way repeated-measures ANOVA<br>Bonferroni post test | Block:<br>$F (5, 95) = 1.681; P = 0.1467$<br>Context:<br>$F (1, 19) = 68.5; P < 0.0001$<br>Interaction:<br>$F (5, 95) = 16.41; P < 0.0001$                                                                                                                                                                                                     |
|         | V-hM4Di on discrimination training: n=9                                                                                     | Two-way repeated-measures ANOVA<br>Bonferroni post test | Block:<br>$F (5, 85) = 3.627; P = 0.0051$<br>Context:<br>$F (1, 17) = 43; P < 0.0001$<br>Interaction:<br>$F (5, 85) = 6.224; P < 0.0001$                                                                                                                                                                                                       |
| Fig. 5i | Discrimination training of dMC group on block 2-3:<br>D-control, n=10; inhibition of dMCs, n=8                              | Two-way repeated-measures ANOVA<br>Bonferroni post test | Context:<br>$F (1, 34) = 23.89; P < 0.0001$<br>DREADD:<br>$F (1, 34) = 0.6758; P = 0.4167$<br>Interaction:<br>$F (1, 34) = 4.139; P = 0.0498$                                                                                                                                                                                                  |
|         | Discrimination training of dMC group on block 5:<br>D-control, n=10; inhibition of dMCs, n=8                                | Two-way repeated-measures ANOVA<br>Bonferroni post test | Context:<br>$F (1, 34) = 45.73; P < 0.0001$<br>DREADD:<br>$F (1, 34) = 0.05068; P = 0.8232$<br>Interaction:<br>$F (1, 34) = 0.0125; P = 0.9116$                                                                                                                                                                                                |

|                       |                                                                                                |                                                         |                                                                                                                                                        |
|-----------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fig. 5j               | Discrimination training of vMC group on block 2-3:<br>V-control, n=10; inhibition of vMCs, n=9 | Two-way repeated-measures ANOVA<br>Bonferroni post test | Context:<br>$F(1, 36) = 87.51; P = 0.0173$<br>DREADD:<br>$F(1, 36) = 0.7124; P = 0.4042$<br>Interaction:<br>$F(1, 36) = 1.973; P = 0.1687$             |
|                       | Discrimination training of vMC group on block 5:<br>V-control, n=10; inhibition of vMCs, n=9   | Two-way repeated-measures ANOVA<br>Bonferroni post test | Context:<br>$F(1, 36) = 90.04; P < 0.0001$<br>DREADD:<br>$F(1, 36) = 2.237; P = 0.6855$<br>Interaction:<br>$F(1, 36) = 3.321; P = 0.0767$              |
| Supplementary Fig. 4b | Contextual fear memory encoding of dMC group:<br>D-control, n=9; D-hM4Di, n=11                 | Two-way repeated-measures ANOVA                         | Encoding:<br>$F(1, 18) = 81.17; P < 0.0001$<br>DREADD:<br>$F(1, 18) = 0.5022; P = 0.4876$<br>Interaction:<br>$F(1, 18) = 0.2066; P = 0.6549$           |
|                       | Contextual fear memory encoding of vMC group:<br>D-control, n=10; D-hM4Di, n=11                | Two-way repeated-measures ANOVA                         | Encoding:<br>$F(1, 19) = 72.4; P < 0.0001$<br>DREADD:<br>$F(1, 19) = 1.703; P = 0.2075$<br>Interaction:<br>$F(1, 19) = 1.42; P = 0.2480$               |
| Supplementary Fig. 5a | Contextual fear leaning<br>D-control, n=10; D-hM4Di, n=8<br>V-control, n=10; V-hM4Di, n=9      | Two-way repeated-measures ANOVA                         | Comparison groups:<br>$F(3, 33) = 1.008; P < 0.4017$<br>Learning:<br>$F(2, 66) = 204; P < 0.0001$<br>Interaction:<br>$F(3, 33) = 0.7028; P = 0.6483$   |
| Supplementary Fig. 5b | Generalization test:<br>D-control, n=10; D-hM4Di, n=8<br>V-control, n=10; V-hM4Di, n=9         | Two-way repeated-measures ANOVA                         | Comparison groups:<br>$F(3, 70) = 2.652; P = 0.0554$<br>Contexts:<br>$F(1, 70) = 19.81; P < 0.0001$<br>Interaction:<br>$F(3, 70) = 0.6876; p = 0.5626$ |

**Supplementary Movie 1** (Related to Fig. 1h): Three-dimensional imaging of dMCs and vMCs projections

The movie shows three-dimensional axonal projection of dMCs (green) and vMCs (red) in the intact hippocampus. *Calcrl Cre* mice were injected bilaterally with Cre-dependent expressing EGFP and tdTomato virus into dHil and vHil, respectively (Fig. 1). The brain was imaged through whole brain, and individual sectioned images were reconstructed into whole structure of hippocampus.

**Supplementary Table 1** (Related to Fig. 3d): List of DEGs of dMCs and vMCs

**Supplementary Table 2** (Related to Fig. 3j, k): List of functionally categorized DEGs of dMCs and vMCs

**Supplementary Table 3:** Statistical analysis