

1 **Supplementary Information Guide for**
2 **Metagenomics-informed soil biogeochemical models projected less carbon loss in**
3 **tropical soils in response to climate warming**

6 Yang Song^{a,b}, Qiuming Yao^{c,d}, Xiaojuan Yang^b, S. Joseph Wright^g, Gangsheng Wang^{b,j}, Terry C. Hazen^{e,f},
7 Benjamin L. Turner^g, Malak M. Tfaily^{h,l}, Ljiljana Paša-Tolic^h, Eric R. Johnstonⁱ, Minjae Kimⁱ, Konstantinos
8 T. Konstantinidisⁱ, Chongle Pan^{c,k}, and Melanie A. Mayes^b

12 *Yang Song and Melanie A. Mayes
13 Email: chopinsong@arizona.edu and mayesma@ornl.gov

15 **The SI files includes:**

17 1. Song et al SI.pdf

18 a. Supplementary Methods

19 **Method S1.** Projection of soil carbon dynamics in response to climate change

20 **Method S2.** SOM analysis with Electrospray Ionization Fourier Transformed Ion
21 Cyclotron Resonance Mass Spectrometry (ESI-FTICR MS)

22 **Method S3.** A summary of the equations in the CoMEND model

23 **Method S4.** Parameterization of the dynamic EFC allocation scheme for resource
24 acquisition

25 **Method S5.** Kinetic parameters in the CoMEND model.

26 **Method S6.** Site-specific parameter optimization in the CoMEND model.

27 **Method S7.** Initialization of soil pools in the CoMEND model.

28 **Method S8.** Input data for the CoMEND model.

29 b. Supplementary Equations

30 **S1-S92**

31 c. Supplementary Figures

32 **Fig. S1.** Metagenomics-informed lignocellulose-containing soil organic matter (SOM)
33 decomposition pathways and corresponding enzymes identified in the Panama soil
34 samples, where EC refers to the Enzyme Classification number

35 **Fig. S2.** Metagenomics-informed nitrogen (N)-containing SOM decomposition and
36 mineralization pathways and corresponding enzymes identified in the Panama soil
37 samples, where EC refers to the Enzyme Classification numbers.

38 **Fig S3.** Metagenomics-informed P-containing SOM decomposition and mineralization
39 pathways and corresponding enzymes identified in the Panama soil samples, where EC
40 refers to the Enzyme Classification numbers.

41 **Fig. S4.** Modeled and metagenomics-informed effect sizes of enzyme function groups
42 (EFCs) between the control and P-fertilized soils. Here the effect size is defined as the
43 \log_2 fold change of gene abundance of the EFC in the control plots relative to that in the
44 P-fertilized soils. The error bar represents the standard deviation of metagenomics-
45 informed effect size of each EFC. The filled symbols indicate that the difference of the
46 EFC between the control soils and the P-fertilized soils is statistically significant (q-value
47 <0.05). The Willmott index of agreement (WI) for all EFCs is 0.47 (P value <0.05), while
48 the index (WI_{sig}) for EFCs with statistically significant effect size is 0.67 (P value <0.05).
49 CEFC, NEFC, PEFC are EFCs for decomposing lignocellulose-containing, N-containing, and
50 P-containing SOM, respectively.

51 **Fig. S5.** Effects of enzyme functional diversity of soil microbial communities on
52 decomposition kinetics of enzyme functional classes (EFCs): (a-b) Activation energy
53 (kJ/mol); (c-d) Potential EFC activity (V_d *E); and (e-f) Substrate affinity (K_m). Three

54 version of models were compared: CoMEND_H included all metagenomics-informed 22
55 EFCs for SOM decomposition and thus represented high enzyme functional diversity.
56 CoMEND_M only included 15 EFCs for SOM decomposition and thus represented
57 moderate functional diversity of microbial community. CoMEND_L included 11 clusters
58 of EFCs and represented low functional diversity of microbial community.
59

60 d. Supplementary Tables S1-S3

61 **Table S1.** Classification of soil enzyme functional groups (EFCs) in Panamanian soils.

62 **Table S2.** Classification of soil enzyme functional groups (EFCs) in Panamanian soils.

63 **Table S3.** Chemical components, representative molecular formula and C/N and C/P
64 ratio of SOM pool.

65 e. Supplementary Notes

66 References cited in the SI

67 2. Supplementary Data S1 to S7

68 a. **Supplementary Data S1.xlsx: Supplementary Data S1.** Differential analysis of gene
69 abundances of all detected enzymes in the Panama soil samples.

70 b. **Supplementary Data S2.xlsx: Supplementary Data S2.** EC numbers in soil enzyme
71 function classes (EFCs) for organic matter decomposition and mineralization in the
72 Gigante soil and differential analysis of gene abundances for each enzyme between P-
73 deficient Control and P-fertilized soils.

74 c. **Supplementary Data S3.xlsx: Supplementary Data S3.** Microbial-activated (A),
75 mineral-protected (M), and adsorbed (Q) soil organic matter (SOM) pools, inorganic N
76 and P pools, and the corresponding soil enzyme functional groups (EFCs) that act on
77 each pool in the CoMEND model.

78 d. **Supplementary Data S4.xlsx: Supplementary Data S4.** Kinetic parameters in the
79 CoMEND model.

80 e. **Supplementary Data S5.xlsx: Supplementary Data S5.** Calibrated parameters in the
81 CoMEND model.

82 f. **Supplementary Data S6.xlsx: Supplementary Data S6.** Non-calibrated parameters in
83 the CoMEND model.

84 g. **Supplementary Data S7.xlsx: Supplementary Data S7.** Initial soil physical and
85 chemical properties