

1 **Supplementary Information for**
2 **Metagenomics-informed soil biogeochemical models projected less carbon loss in**
3 **tropical soils in response to climate warming**

4
5
6 Yang Song^{a,b}, Qiuming Yao^{c,d}, Xiaojuan Yang^b, S. Joseph Wright^g, Gangsheng Wang^{b,j}, Terry C. Hazen^{e,f},
7 Benjamin L. Turner^g, Malak M. Tfaily^{h,l}, Ljiljana Paša-Tolic^h, Eric R. Johnstonⁱ, Minjae Kimⁱ, Konstantinos
8 T. Konstantinidisⁱ, Chongle Pan^{c,k}, and Melanie A. Mayes^b

9
10 ^a Department of Hydrology and Atmospheric Science, the University of Arizona, Tucson, AZ 85721-
11 0011USA

12 ^b Climate Change Science Institute and Environmental Sciences Division, Oak Ridge National Laboratory,
13 Oak Ridge, TN 37830 USA

14 ^c Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830
15 USA

16 ^d Department of Computer Science and Engineering, the University of Nebraska-Lincoln, Lincoln, NE
17 68588-0115 USA

18 ^e Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA

19 ^f Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996 USA

20 ^g Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Republic of Panama

21 ^h Environmental Molecular Sciences Laboratory and Biological Sciences Division, Pacific Northwest
22 National Laboratory, Richland, WA 99352 USA

23 ⁱ School of Civil and Environmental Engineering, Georgia Institute of Technology

24 ^j Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of
25 Oklahoma, Norman, OK 73019 USA

26 ^k Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019 USA

27 ^l Department of Environmental Science, the University of Arizona, Tucson, AZ 85721 USA

28
29 *Yang Song and Melanie A. Mayes

30 Email: chopinsong@arizona.edu and mayesma@ornl.gov

31
32 **This PDF file includes:**

33
34 Supplementary Methods S1-S8
35 Supplementary Equations S1-S92
36 Supplementary Figures S1 to S5
37 Supplementary Tables S1 to S3
38 Supplementary Notes

43 **Supplementary Methods**

44 **1. Projection of soil carbon dynamics in response to climate change**

45 To test how metagenomics-informed functional diversity and environmental acclimation of microbial
46 communities affect soil carbon dynamics in response to projected climate change in Panama, we built upon
47 the modeled microbial dynamics and soil condition in 2014 and further performed simulations over the
48 period of 2015-2100 with CoMEND_L, CoMEND_M, CoMEND_H, and CoMEND_{HD}, respectively. Each model
49 was driven by simulated daily soil moisture and soil temperature, litter input and plant P rates from the
50 CESM large ensemble projection under the RCP8.5 scenarios. The CESM-projected climate forcing
51 indicated that the mean annual soil temperature increased to 2.6 °C by the year 2100, while soil moisture
52 has no significant trend over the 2015-2100 in Panama¹. To test how this warming trend will affect the
53 projected soil carbon dynamics by different versions of CoMEND, we performed two simulations by each
54 model. The Simulation I was driven by the detrended soil temperature and soil moisture projected by the
55 climate model. The Simulation II was driven by the projected soil temperature and detrended soil moisture
56 data. Then the difference in the simulated SOM between the Simulation II and the Simulation I was defined
57 as the effect of warming on projected soil carbon dynamics.
58

59 **2. SOM analysis with Electrospray Ionization Fourier Transformed Ion Cyclotron Resonance Mass
60 Spectrometry (ESI-FTICR MS)**

61 We performed ESI-FTICR MS analysis to analyze the relative abundance of SOM compounds
62 (lignin-like, carbohydrate-like, etc.) in the control and P-fertilized plots, as described previously^{2,3}. Briefly,
63 1g bulk soil samples were sequentially extracted using three solvents with decreasing polarity (water-
64 methanol-chloroform). The high-resolution mass spectra of the SOM in the extracts were collected in the
65 negative ion mode on a 12 Tesla Bruker SolariX FGICR spectrometer. ESI-FTICR MS data were acquired
66 for the mass to charge ratio (m/z) in the range of 112 to 1333 with an ion accumulation time of 0.1 s. One
67 hundred forty-four scans were averaged for each sample and internally calibrated using OM homologous
68 series separated by 14 Da (–CH₂ groups). Molecular formulae were assigned based on the following
69 criteria: S/N >7, and mass measurement error <1 ppm, taking into consideration the presence of C, H, O, N,
70 S and P and excluding other elements. Peaks with large mass ratios (m/z values >500 Da) were assigned
71 formulae through propagation of CH₂, O, and H₂ homologous series. The fractions of different biochemical
72 classes of compounds (lignin-like, carbohydrate-like, etc.) were calculated based on their hydrogen-to-
73 carbon and oxygen-to-carbon atomic ratios, as described previously⁴. This ESI-FTICR MS measurement
74 together with reported soil organic matter and inorganic N and P components at Panama site⁵⁻⁷ were used
75 to inform enzyme available SOM compounds. Integrating this information with omics-informed soil
76 enzyme information allowed us to identify existing SOM decomposition pathways in Panamanian soils
77 (Fig. S1-S3).
78

79 **3. A summary of the equations in the CoMEND model**

80 There are 15 microbial-activated SOM (ASOM), 15 mineral-protected SOM (MSOM), and 15
81 adsorbed SOM (QSOM) pools in the CoMEND model (Supplementary Equations). The decomposition of
82 each ASOM pool is catalyzed by the corresponding enzyme functional class (EFC) described by the
83 Michaelis-Menten equation (Eqs. S1-S3). The dynamic adsorption of each ASOM pool to the
84 corresponding QSOM pool is simulated as a function of the pool size of ASOM and mineral surface
85 coverage defined as the ratio of actual adsorbed ASOM content to the maximum adsorption capacity
86 (Qmax) of each QSOM pool (Eqs. S4-S7). The desorption of each QSOM pool to the corresponding
87 ASOM pool is only controlled by the mineral surface coverage (Eqs. S8-S11). The mutual conversion
88 between QSOM and MSOM pools follows the same equation as that used for simulating the mutual
89 conversion between ASOM and QSOM pools, but with a lower desorption rate and larger maximum
90 adsorption capacity (Eqs. S12-S19).

91 The original MEND model lacked a P cycle process. We incorporated inorganic P conversion
92 processes into the CoMEND model following the Community Land Model (CLM)-CNP^{8,9}. There are five
93 inorganic P (IP) pools in the CoMEND model: dissolved IP (DIP), labile IP (QIP), secondary mineral IP
94 (SIP), parent material P (PIP), and occluded IP (OIP). The rate of PIP weathering, SIP occlusion and
95 desorption and DIP adsorption are simulated through the first-order rate processes (Eqs. S20-S23). Instead
96 of using the first order rate equation as in the MEND model and the CLM-CNP model, we applied the
97 Michaelis-Menten equation to simulate the enzyme-mediated DIP immobilization, monomer biochemical P

98 mineralization and biological P mineralization, biological N-mineralization, and other inorganic N
 99 transformation processes (e.g., nitrification, denitrification and microbial N assimilation etc.) (Eqs. S24-
 100 S31). The microbial growth and maintenance, dormancy and mortality and enzyme synthesis and
 101 deactivation are simulated following the MEND model (Eqs. S32-S40). The dynamics of each SOM pool
 102 and inorganic N and inorganic P pool are listed in Supplementary Equations (Eqs. S41-S92).
 103

104 **4. Parameterization of the dynamic EFC allocation scheme for resource acquisition**

105 A metagenomics-informed dynamic EFC allocation scheme was developed to parameterize adaptive
 106 microbial responses to environmental perturbation. This scheme assumes that the allocation of microbially-
 107 synthesized enzymes to each EFC varies with the availability of C, nutrients and soil water in order to
 108 maximize the acquisition of limiting resources and minimize energy consumption and osmotic stress. The
 109 limitation factors for C, N, P, and soil water (L_C, L_N, L_P, L_W) are calculated as follows

$$\left\{ \begin{array}{l} L_C = \max \left\{ \min \left[1.0, \max \left(0, \frac{CN_{MB} - CN_{MB\ avg}}{CN_{MB\ min} - CN_{MB\ avg}} \right) \right], \min \left[1.0, \max \left(0, \frac{CP_{MB} - CP_{MB\ avg}}{CP_{MB\ min} - CP_{MB\ avg}} \right) \right] \right\} \\ L_N = \min \left[1.0, \max \left(0, \frac{CN_{MB} - CN_{MB\ avg}}{CN_{MB\ max} - CN_{MB\ avg}} \right) \right] \\ L_P = \min \left[1.0, \max \left(0, \frac{CP_{MB} - CP_{MB\ avg}}{CP_{MB\ max} - CP_{MB\ avg}} \right) \right] \\ L_W = \frac{|\psi|^b}{|\psi|^b + |\psi_D|^b} \end{array} \right. \quad \text{Eq. S112}$$

110 where CN_{MB} is the microbial C/N ratio at the current time step. $CN_{MB\ avg}$, $CN_{MB\ min}$ and $CN_{MB\ max}$ are the
 111 averaged, minimum and maximum microbial C/N ratio, respectively. CP_{MB} is the microbial C/P ratio at the
 112 current time step. $CP_{MB\ avg}$, $CP_{MB\ min}$ and $CP_{MB\ max}$ are the averaged, minimum, and maximum microbial
 113 C/P ratio, respectively. The water limitation factor is the same as the soil water response function for
 114 microbial mortality rate (Eq. S107). The exponent b describes the steepness of the water limitation factor
 115 curve, and ψ_D is the critical soil water potential parameter depending on the osmolyte synthesis strategy¹⁰.
 116 Thus, L_W reflects drying-induced matric stress and osmotic stress¹¹. The values of L_C, L_N, L_P and L_W varied
 117 from 0 to 1. The closer the values are to 1, the stronger the limitation of C, N, P, and soil water.
 118 The CoMEND model assigns microbially synthesized enzymes to 22 EFCs ($f_{C_i}, f_{N_j}, f_{P_k}$) and other non-
 119 defined functional enzymes (f_U) as follows.
 120

$$f_{C_i} = \begin{cases} \frac{\sum f_{0C_i} + w_{N1}L_N + w_{P1}L_P + w_{W1}L_W}{1.0 + w_C L_C + w_N L_N + w_P L_P + w_W L_W} \alpha_{C_i}, & i = endo1, exo, oligo \\ \frac{f_{0C_i} + w_{C1}L_C}{1.0 + w_C L_C + w_N L_N + w_P L_P + w_W L_W}, & i = endo2 \end{cases} \quad \text{Eq. S113}$$

$$f_{N_j} = \begin{cases} \frac{\sum f_{0N_j} + w_{N2}L_N + w_{P2}L_P + w_{W2}L_W}{1.0 + w_C L_C + w_N L_N + w_P L_P + w_W L_W} \alpha_{N_j}, & j = endo1, exo1, exo2 \\ \frac{\sum f_{0N_j} + w_{C2}L_C + w_{N3}L_N}{1.0 + w_C L_C + w_N L_N + w_P L_P + w_W L_W} \alpha_{N_j}, & j = oligo1, oligo2, inN1, inN3 \\ \frac{f_{0N_j} + w_{P3}L_P}{1.0 + w_C L_C + w_N L_N + w_P L_P + w_W L_W}, & j = mono \\ \frac{f_{0N_j}}{1.0 + w_C L_C + w_N L_N + w_P L_P + w_W L_W} \alpha_{N_j}, & j = inN2, inN4 \end{cases} \quad \text{Eq. S114}$$

$$f_{P_k} = \frac{\sum f_{0P_k} + w_{P4}L_P + w_{W3}L_W}{1.0 + w_C L_C + w_N L_N + w_P L_P + w_W L_W} \alpha_{P_k}, \quad k = exo1, oligo1, exo2, oligo2, mono1, mono2, mono3, inP \quad \text{Eq. S115}$$

$$f_U = \max (0.0, (1.0 - \sum f_{C_i} - \sum f_{N_j} - \sum f_{P_k})) \quad \text{Eq. S116}$$

121 Here the values of w_C, w_N, w_P and w_W represent the sensitivity of overall enzyme allocation to limitation of
 122 C, N, P, and soil water, respectively. The w_{C_i} ($i = 1,2$), w_{N_j} ($j = 1,2,3$) and w_{P_k} ($k = 1,2,3,4$), w_{wl} ($l =$
 123 1,2,3) and represent the sensitivity of specific EFC allocation to the limitation of C, N, P, and soil water,
 124 where $w_C = \sum w_{C_i}$, $w_N = \sum w_{N_j}$, $w_P = \sum w_{P_k}$, and $w_W = \sum w_{wl}$. Here $w_{C_i}, w_{N_j}, w_{P_k}$ and w_{wl} depend on
 125 metagenomics-informed tradeoffs between enzyme allocation and energy investment, and osmolyte

133 synthesis and can be validated by integrated effect size of each EFC in response to nutrient and water
134 stresses.

135 To maximize nutrient acquisition and minimize energy consumption, the microbial community prefers to
136 allocate more synthesized enzymes to EFCs for lignin decomposition under the C-limited condition (Eq.
137 S113), to EFCs for N-containing SOM decomposition and inorganic N transformation under the N-limited
138 condition (Eq. S114) and to EFCs for P-containing SOM decomposition under the P-limited condition (Eq.
139 S115). Also, the microbial community allocates enzymes to EFCs for decomposing complex carbohydrates
140 and N-containing SOM (e.g., large polymers of proteins) under P-limited conditions (Eqs. S113-114) and
141 to EFCs for decomposing complex carbohydrates under N-limited condition (Eq. S114). When a resource
142 can be acquired from multiple substrates, the total enzyme allocation for acquiring this resource is weighted
143 by the corresponding EFC allocation weighting factors (α_{C_i} , α_{N_j} , α_{P_k}) to calculate the EFC-specific

144 allocation factor. The α_{C_i} , α_{N_j} and α_{P_k} are expressed as the form of $\frac{Vd_{EFC}}{\frac{(Km_{EFC}/S_{EFC}+1)}{Vd_{EFC}}}$, where Vd_{EFC} and
 $\Sigma \frac{1}{(Km_{EFC}/S_{EFC}+1)}$

145 Km_{EFC} are the maximum specific decomposition rate and half-saturation constant for the EFC, E_{EFC} , while
146 S_{E_m} is the pool size of SOM that the E_m catalyzes. The m denotes lignocellulose-containing SOM i , N-
147 containing SOM j , and P-containing SOM k , respectively. The larger the values of Vd_{E_m} and S_{E_m} , the
148 more sensitive E_m is to resource limitation.

149 Our metagenomics analyses at the Panama site did not have sufficient information for an examination of
150 the response of enzyme allocation to soil water limitation. However, a metagenomic analysis in similar
151 tropical forest soils in Puerto Rico found that microbial communities increased extracellular enzyme
152 production for macromolecular SOM decomposition to satisfy increased C demand under water-limited
153 conditions^{12,13}. This tradeoff between enzyme allocation and water deficiency is represented by the L_w
154 parameter-related part in Eqs. 1-3. The closer the L_w is to 1 (stronger water limitation), the more the
155 enzyme allocation is to EFCs for macromolecular SOM decomposition.

156 This tradeoff between dynamic EFC allocation and water stress will in turn mitigate the microbial
157 dormancy and mortality. This feedback is parameterized by adjusting critical soil water potential
158 parameters (ψ_{A2D} and ψ_D) in Eqs. S109 and S107. The values of ψ_{A2D} and ψ_D indicate the soil water
159 potential at which the dormancy or mortality rate is half the maximum dormancy or mortality rate,
160 respectively. Therefore, the more EFCs for macromolecular SOM decomposition, the smaller the L_c value
161 is, the larger the absolute value of ψ_{A2D} and ψ_D , and the smaller the microbial dormancy and mortality rate
162 (Eq. S109 and Eq. S107 in Table S2).

163 5. Kinetic parameters in the CoMEND model

164 We collected the reported kinetics parameters and corresponding experimental conditions (e.g., origin,
165 substrate, product, temperature, and pH, enzyme strain etc.) for each enzyme classification (EC) number in
166 each EFC from the BRENDA biochemical database¹⁴. The final dataset contained around 4900
167 observations for 118 EC numbers in all EFCs. The parameters in the response functions of temperature and
168 pH (Eqs. S100-S101) are activation energy (E_a), the optimal pH (pH_{opt}), and the sensitivity of the reaction
169 rate to deviation from pH_{opt} (pH_{sen}). They were estimated with curve fitting of temperature and pH response
170 data, if reported. We estimated the maximum specific reaction rate (Vd) and half-saturation constant (K_s)
171 for each EC number at 20°C and optimum pH using Eq. S97. We considered difference in kinetics of each
172 EC numbers among diverse isoenzymes by collecting data from diverse microbial source (e.g. enzymes
173 from bacteria, fungi or archaea), habitats (soils, water, or lab), and the type of enzyme (wildtype or mutant).
174 Here we only used kinetic parameters estimated for wildtype enzymes from bacteria with metagenomics-
175 based taxonomic distribution analyses, which indicated high abundances of bacteria in our research soils².
176 We estimated the mean and standard deviation values of a kinetic parameter of each EC number based on
177 these collected data. Finally, we calculated the weighted mean and the weighted standard deviation of a
178 kinetic parameter of all EC numbers within each EFC to present the EFC-specific kinetic parameter and its
179 variability (SI Data S4). The weighted factor was the relative gene abundance of each EC number within an
180 EFC (SI Data S2). As enzyme composition is different within each EFC defined in CoMEND_{HD},
181 CoMEND_H, CoMEND_M, and CoMEND_L (SI Data S2), estimated kinetic parameters of the EFC varies with
182 represented functional diversity of microbial communities (SI Table S4).

183 6. Site-specific parameter optimization in the CoMEND model

185 We optimized the site-specific model parameters through the SCE (Shuffled Complex Evolution)
186 algorithm^{15,16}. This parameter optimization aims to minimize the total objective function (J), estimated as
187 the weighted average of multiple single-objectives.

188
$$J = \sum_{i=1}^m w_i \times J_i \quad \text{Eq. S117}$$

189
$$\sum_{i=1}^m w_i = 1.0, \text{ with } w_i \in (0,1), \quad \text{Eq. S118}$$

190 Here w_i is the weighting factor for J_i and m is the number of objective functions. Each single
191 objective J_i is defined as $(1-R^2)$, where R^2 is the Coefficient of Determination between the observed and
192 modeled data. The higher the R^2 value is, the better the model performance is. To avoid over-fitting and
193 make sure the tested differences among CoMEND_L, CoMEND_M, CoMEND_H and CoMEND_{HD} result from
194 model structure differences rather than model parameters optimization, we only calibrated these site-
195 specific parameters for CoMEND_{HD} and applied them in the other version of CoMEND.

196 We optimized the CoMEND_{HD} parameters in two steps. In the first step, we assumed that the
197 synthesized enzymes allocated to the 22 EFCs had no change in response to resource availability. We
198 calibrated the parameters related to microbial growth, dormancy and mortality, inorganic P conversion and
199 SOM adsorption/desorption (SI Data S5) with five single objectives ($m=5$): J_1 for microbial biomass carbon,
200 J_2 for microbial C/P ratio, J_3 for incubation CO₂ fluxes, J_4 for soil organic carbon, J_5 for the SOM C/P
201 ratios. In the second step, the values obtained in the first step were used to calibrate the parameters for the
202 optimal enzyme allocation strategy (SI Data S5) with five single-objectives as above (J_1, J_2, J_3, J_4, J_5) and an
203 extra single objective J_6 for enzyme allocation to EFC in response to P-fertilization. Here the data for
204 optimizing dynamic enzyme allocation parameters were the combined effect size for all gene-coding
205 enzymes in each EFC. The combined effect size of each EFC was estimated based on metagenomics-
206 informed gene abundance data. The data for optimizing other parameters were microbial biomass carbon,
207 microbial C/P ratio, soil carbon stock, and the SOM C/P ratios over the year 2006-2007 and five days of
208 incubated CO₂ emissions from 2014 year of soil samples in the P-fertilized plots¹⁷.
209

210 7. Initialization of soil pools in the CoMEND model

211 Soil measurements were not available at the beginning of the fertilization experiment in the year
212 1998. We used soil data collected from the control plot on November, 2006¹⁷ to approximate the soil
213 physical and chemical properties before the fertilization experiments in both the control plots and the P-
214 fertilization plots. Collected soil data included soil texture, soil pH, soil total C, N and P content, microbial
215 C, C/N and C/P ratio, DOC C/N and C/P ratio, and inorganic N and P content (SI Data S7).

216 The partitioning of total C and N between all ASOMs and MSOMs was based on reported ratio of
217 particulate organic C (or N) to mineral organic C (or N) at the Panama site⁷. The partitioning of total P
218 between total ASOM, total MSOM, QMOM, and five inorganic P pools was based on the Hedley
219 fractionation analysis at the Panama site^{6,18}. The N and P content of each ASOM were estimated based on
220 the reported soil chemical composition of organic N (e.g. protein, N components in cell walls, etc.) and
221 organic P (e.g. phytate, nucleic acids, monomer P, etc.) with a chemolytic and hydrolysis approaches^{5,19}.
222 We assumed that inositol P existed in the residue form (AROM₇), whereas nucleic acids, phospholipids and
223 60% of organic N existed in the oligopolymer form (AOOM₅ and AOOM₆) due to their rapid hydrolysis.
224 The C content of each N-containing and P-containing ASOM was calculated by multiplying N and P
225 content of ASOM with its C/N and C/P ratio (SI Table S3). The C content of each lignocellulose-
226 containing ASOM (carbohydrate-related pool and lignin-related pool) was estimated based on reported
227 lignin ratio of lignocellulose²⁰. The fraction of each ASOM to total ASOMs was finally defined as the C
228 content of the corresponding ASOM to total C in all ASOMs. We assumed the chemical composition of
229 organic N and P in the mineral-protected SOM was similar to that in the microbial-activated SOM and then
230 estimated the fraction of each MSOM to total MSOM following the method described above.
231

232 8. Input data for the CoMEND model

233 Hourly soil temperature at 10 cm depth over the 2000-2011 growing season and hourly air
234 temperature at 1m height over the year 1998-2014 were measured at the nearby Lutz monitoring station
235 (9.17°N, 79.73°W). This site is similar to our study site in forest covers and soil textures. We used the soil
236 and air temperature measurements from the overlapping period to develop a regression relationship. This
237 relationship was then used to generate a continuous time series of soil temperature from the observed air
238 temperature for input to CoMEND. Hourly soil moisture was estimated by linearly interpolating weekly
239

240 soil moisture data at 10cm soil depth, which were collected at the study site for the 2006-2007 growing
241 season¹⁷ and the Lutz Watershed monitoring station for the rest of simulation period²¹. Monthly leaf litter,
242 woody litter, product litter, and dust litter as well as litter nutrients ratios over the year 1998-2014 for the P-
243 fertilized plots and control plots were collected from litter trap experiments^{22,23}. The litter chemical
244 components, e.g., fraction of lignin, carbohydrates, protein, nucleic acids, phospholipids and phytate, were
245 attained from a previous study²⁴. Monthly plant P uptake was calculated by interpolating yearly plant P
246 uptake based on monthly net primary productivity (NPP). Here yearly plant P uptake was estimated by
247 producing a P uptake rate on a dry weight basis for two forest species at the Panama site²⁵ with annual
248 NPP, which was calculated as the sum of wood and leaves litter production²³.
249

250 **Supplementary Equations:** Components fluxes and dynamics of SOM pools in the CoMEND model.
 251

252 1. Decomposition of $AROM_i$ (D_{AROC_i})

$$253 \quad D_{AROC_i} = \frac{Vd_{E_{AROM_i}} \times C_{E_{AROM_i}} \times AROC_i}{Ks_{E_{AROM_i}} + AROC_i} \quad \text{Eq. S1}$$

254 E_{AROM_i} denotes C_{endo1} , C_{endo2} , N_{endo1} , N_{endo2} , P_{exo1} , P_{exo2} and P_{mono1} for $i=1,2,3,4,5,6,7$, respectively,

255 $AROC_i$ and $C_{E_{AROM_i}}$ are C mass of $AROM_i$ and E_{AROM_i} , respectively

256 2. Decomposition of $ALOM_i$ (D_{ALOC_i})

$$257 \quad D_{ALOC_i} = \frac{Vd_{E_{ALOM_i}} \times C_{E_{ALOM_i}} \times ALOC_i}{Ks_{E_{ALOM_i}} + ALOC_i} \quad \text{Eq. S2}$$

258 E_{ALOM_i} denotes C_{exo} and N_{exo1} for $i=1,3$ respectively,

259 $ALOC_i$ and $C_{E_{ALOM_i}}$ are C mass of $ALOM_i$ and E_{ALOM_i} , respectively

260 3. Decomposition of $AOOM_i$ (D_{AOOC_i})

$$261 \quad D_{AOOC_i} = \frac{Vd_{E_{AOOM_i}} \times C_{E_{AOOM_i}} \times AOOC_i}{Ks_{E_{AOOM_i}} + AOOC_i} \quad \text{Eq. S3}$$

262 E_{AOOM_i} denotes C_{oligo} , N_{oligo1} , N_{oligo2} , P_{oligo1} , P_{oligo2} for $i=2,3,4,5,6$ respectively, $AOOC_i$ and $C_{E_{AOOM_i}}$ are C mass of $AOOM_i$ and E_{AOOM_i} , respectively

264 4. Adsorption of $AROM_i$ to $QROM_i$ (Ad_{AROC_i})

$$265 \quad Ad_{AROC_i} = k_{ads_{AROM_i}} \times \left(1 - \frac{QROC_i}{Qmax_{QROM_i}}\right) \times AROC_i \quad \text{Eq. S4}$$

266 $QROC_i$ is C mass of $QROM_i$

267 5. Adsorption of $ALOM_i$ to $QLOM_i$ (Ad_{ALOC_i})

$$268 \quad Ad_{ALOC_i} = k_{ads_{ALOM_i}} \times \left(1 - \frac{QLOC_i}{Qmax_{QLOM_i}}\right) \times ALOC_i \quad \text{Eq. S5}$$

269 $QLOC_i$ is C mass of $QLOM_i$

270 6. Adsorption of $AOOM_i$ to $QOOM_i$ (Ad_{AOOC_i})

$$271 \quad Ad_{AOOC_i} = k_{ads_{AOOM_i}} \times \left(1 - \frac{QOOC_i}{Qmax_{QOOM_i}}\right) \times AOOC_i \quad \text{Eq. S6}$$

272 $QOOC_i$ is C mass of $QOOM_i$

273 7. Adsorption of DOM to $QMOM$ (Ad_{DOC})

$$274 \quad Ad_{DOC} = k_{ads_{QMOM}} \times \left(1 - \frac{QMOC}{Qmax_{QMOM}}\right) \times DOC \quad \text{Eq. S7}$$

275 $QMOC$ and DOC are C mass of $QMOM$ and DOM , respectively

276 8. Desorption from $QROM_i$ to $AROM_i$ (De_{QROC_i})

$$277 \quad De_{QROC_i} = k_{des_{QROM_i}} \times \frac{QROC_i}{Qmax_{QROM_i}} \quad \text{Eq. S8}$$

278 9. Desorption of $QLOM_i$ to $ALOM_i$ (De_{QLOC_i})

$$279 \quad De_{QLOC_i} = k_{des_{QLOM_i}} \times \frac{QLOC_i}{Qmax_{QLOM_i}} \quad \text{Eq. S9}$$

280 10. Desorption of $QOOM_i$ to $AOOM_i$ (De_{QOOC_i})

$$281 \quad De_{QOOC_i} = k_{des_{QOOM_i}} \times \frac{QOOC_i}{Qmax_{QOOM_i}} \quad \text{Eq. S10}$$

282 11. Desorption of $QMOM$ to DOM (De_{QMOC})

$$283 \quad De_{QMOC} = k_{des_{QMOM}} \times \frac{QMOC}{Qmax_{QMOM}} \quad \text{Eq. S11}$$

284 12. Conversion from $QROM_i$ to $MROM_i$ (Ad_{QROC_i})

$$285 \quad Ad_{QROC_i} = k_{ads_{QROM_i}} \times \left(1 - \frac{MROC_i}{Qmax_{MROM_i}}\right) \times QROC_i \quad \text{Eq. S12}$$

286 $MROC_i$ is C mass of $MROM_i$

287 13. Conversion from $MROM_i$ to $QROM_i$ (De_{MROC_i})

$$288 \quad De_{MROC_i} = k_{des_{MROM_i}} \times \frac{MROC_i}{Qmax_{MROM_i}} \quad \text{Eq. S13}$$

289 14. Conversion from $QLOM_i$ to $MLOM_i$ (Ad_{QLOC_i})

290	$Ad_{QLOC_i} = k_{ads_{QLOM_i}} \times \left(1 - \frac{MLOC_i}{Qmax_{MLOM_i}}\right) \times QLOC_i$	Eq. S14
291	$MLOC_i$ is C mass of $MLOM_i$	
292	15. Conversion from $MLOM_i$ to $QLOM_i$ (De_{MLOC_i})	
293	$De_{MLOC_i} = k_{des_{MLOM_i}} \times \frac{MLOC_i}{Qmax_{MLOM_i}}$	Eq. S15
294	16. The conversion from $QOOC_i$ to $MOOC_i$ (Ad_{QOOC_i})	
295	$Ad_{QOOC_i} = k_{ads_{QOOC_i}} \times \left(1 - \frac{MOOC_i}{Qmax_{MOOC_i}}\right) \times QOOC_i$	Eq. S16
296	$MOOC_i$ is C mass of $MOOM_i$	
297	17. The conversion from $MOOM_i$ to $QOOC_i$ (De_{MOOC_i})	
298	$De_{MOOC_i} = k_{des_{MOOM_i}} \times \frac{MOOC_i}{Qmax_{MOOM_i}}$	Eq. S17
299	18. The conversion from $QMOC$ to $MMOC$ (Ad_{QMOC})	
300	$Ad_{QMOC} = k_{ads_{QMOC}} \times \left(1 - \frac{MMOC}{Qmax_{MMOC}}\right) \times QMOC$	Eq. S18
301	$MMOC$ is C mass of $MMOM$	
302	19. The conversion from $MMOM$ to $QMOM$ (De_{MMOC})	
303	$De_{MMOC} = k_{des_{MMOM}} \times \frac{MMOM}{Qmax_{MMOM}}$	Eq. S19
304	20. PIP weathering (P_{wea})	
305	$P_{wea} = PIP \times \gamma_{wea}$	Eq. S20
306	21. SIP occlusion (P_{ocl})	
307	$P_{ocl} = SIP \times \gamma_{ocl}$	Eq. S21
308	22. SIP desorption (P_{sec})	
309	$P_{sec} = SIP \times \gamma_{des}$	Eq. S22
310	23. Adsorption of QIP ($P_{QIP_{ads}}$)	
311	$P_{QIP_{ads}} = QIP \times \gamma_{QIP_{ads}}$	Eq. S23
312	24. DIP immobilization (P_{im})	
313	$P_{im} = \frac{Vd_{P_{inP}} \times P_{inP} \times DIP}{Ks_{P_{inP}} + DIP}$	Eq. S24
314	25. Extracellular dissolved organic P (DOP) mineralization (DOP_{mn})	
315	$DOP_{mn} = \frac{Vd_{P_{mono2}} \times P_{mono2} \times DOP}{Ks_{P_{mono2}} + DOP}$	Eq. S25
316	26. Active microbial P (P_{MBA}) mineralization (P_{mn})	
317	$P_{mn} = \frac{Vd_{P_{mono3}} \times P_{mono3} \times P_{MBA}}{Ks_{P_{mono3}} + P_{MBA}}$	Eq. S26
318	27. Active microbial N (N_{MBA}) mineralization (N_{mn})	
319	$N_{mn} = \frac{Vd_{N_{mono}} \times N_{mono} \times N_{MBA}}{Ks_{N_{mono}} + N_{MBA}}$	Eq. S27
320	28. Nitrification (N_{nitri})	
321	$N_{nitri} = \frac{Vd_{N_{inN1}} \times N_{inN1} \times IN_1}{Ks_{N_{inN1}} + IN_1}$	Eq. S28
322	29. Denitrification ($N_{denitri}$)	
323	$N_{denitri} = \frac{Vd_{N_{inN2}} \times N_{inN2} \times IN_2}{Ks_{N_{inN2}} + IN_2}$	Eq. S29
324	30. N assimilation (N_{assim})	
325	$N_{assim} = \frac{Vd_{N_{inN3}} \times N_{inN3} \times IN_1}{Ks_{N_{inN3}} + IN_1}$	Eq. S30
326	31. N fixation (N_{fix})	
327	$N_{fix} = Vd_{N_{inN4}} \times N_{inN4}$	Eq. S31
328	32. DOM uptake by microbes (A_{DOC})	
329	$A_{DOC} = \frac{1}{Y_g} (V_g + V_m) \frac{DOC \times C_{MBA}}{Ks_{DOC} + DOC}$, C_{MBA} is active microbial C mass	Eq. S32
330	33. MBA growth respiration (Rg_a)	
331	$Rg_a = (\frac{1}{Y_g} - 1) \frac{V_g \times DOC \times C_{MBA}}{Ks_{DOC} + DOC}$	Eq. S33

332 34. MBA maintenance respiration (Rm_a)
333 $Rm_a = (\frac{1}{Y_g} - 1) \frac{V_m \times DOC \times C_{MBA}}{Ks_{DOC} + DOC}$ Eq. S34

335 35. MBD maintenance respiration (Rm_d)
336 $Rm_d = \beta \times V_m \times C_{MBD}$ Eq. S35
337 C_{MBD} is dormant microbial C mass

338 36. MBA mortality ($D_{C_{MBA}}$)
339 $D_{C_{MBA}} = \gamma_M \times V_m \times C_{MBA}$ Eq. S36

340 37. Dormancy of MBA (C_{A2D})
341 $C_{A2D} = (1 - \frac{DOC}{Ks_{DOC} + DOC}) \times Vm_{A2D} \times C_{MBA}$ Eq. S37

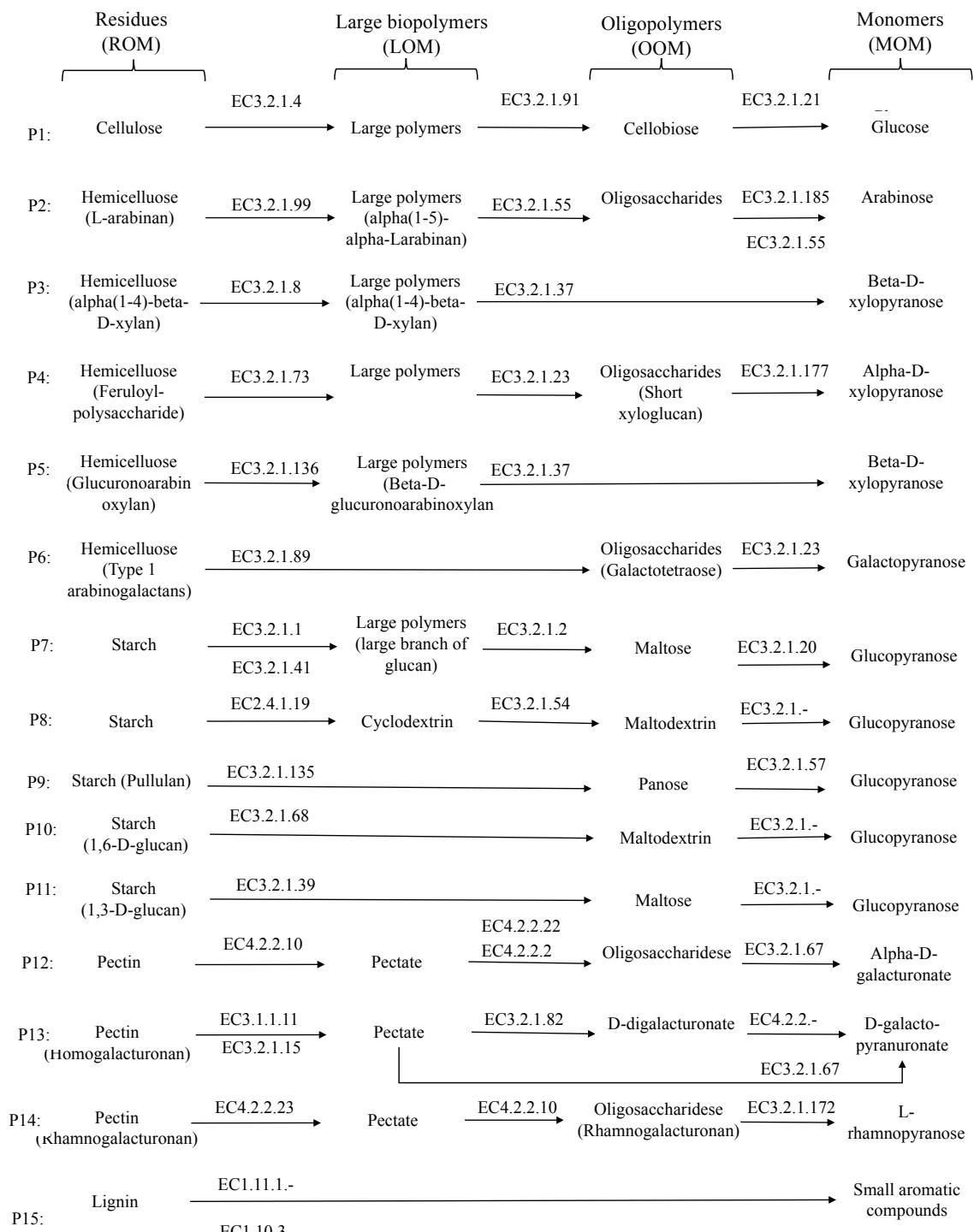
342 38. Reactivation of MBD (C_{D2A})
343 $C_{D2A} = \frac{DOC}{Ks_{DOC} + DOC} \times Vm_{D2A} \times C_{MBD}$ Eq. S38

344 39. Synthesis of EFC (S_{C_E})
345 $S_{C_E} = (1.0 - \gamma_M) \times V_m \times C_{MBA}$ Eq. S39

346 40. Turnover of EFC (D_{C_E})
347 $D_{C_E} = \gamma_E \times C_E$, γ_E is turnover rate of enzyme, $\gamma_E = \frac{\gamma_M \times C_{MBA}}{C_E}$ Eq. S40
348 C_E is C mass of all EFCs

349 41. The dynamics of C ($\frac{d_{AROCi}}{dt}$), N ($\frac{d_{ARONi}}{dt}$), and P ($\frac{d_{AROPi}}{dt}$) in $AROM_i$
350 $\frac{d_{AROCi}}{dt} = I_i + (1 - f_{DOM}) \times D_{C_{MBA}} \times f_{MBAi} - D_{AROCi} - Ad_{AROCi} + De_{QROCi}$ Eq. S41
351 $\frac{d_{ARONi}}{dt} = \frac{I_i}{CN_{I_i}} + (1 - f_{DOM}) \times \frac{D_{C_{MBA}}}{CN_{MBA}} \times f_{MBAi} - \frac{D_{AROCi}}{CN_{AROM_i}} \frac{Ad_{AROCi}}{CN_{AROM_i}} + \frac{De_{QROCi}}{CN_{QROM_i}}$ Eq. S42
352 $\frac{d_{AROPi}}{dt} = \frac{I_i}{CP_{I_i}} + (1 - f_{DOM}) \times \frac{D_{C_{MBA}}}{CP_{MBA}} \times f_{MBAi} - \frac{D_{AROCi}}{CP_{AROM_i}} \frac{Ad_{AROCi}}{CP_{AROM_i}} + \frac{De_{QROCi}}{CP_{QROM_i}}$ Eq. S43
353 I_i is litter C input into each $AROC_i$
354

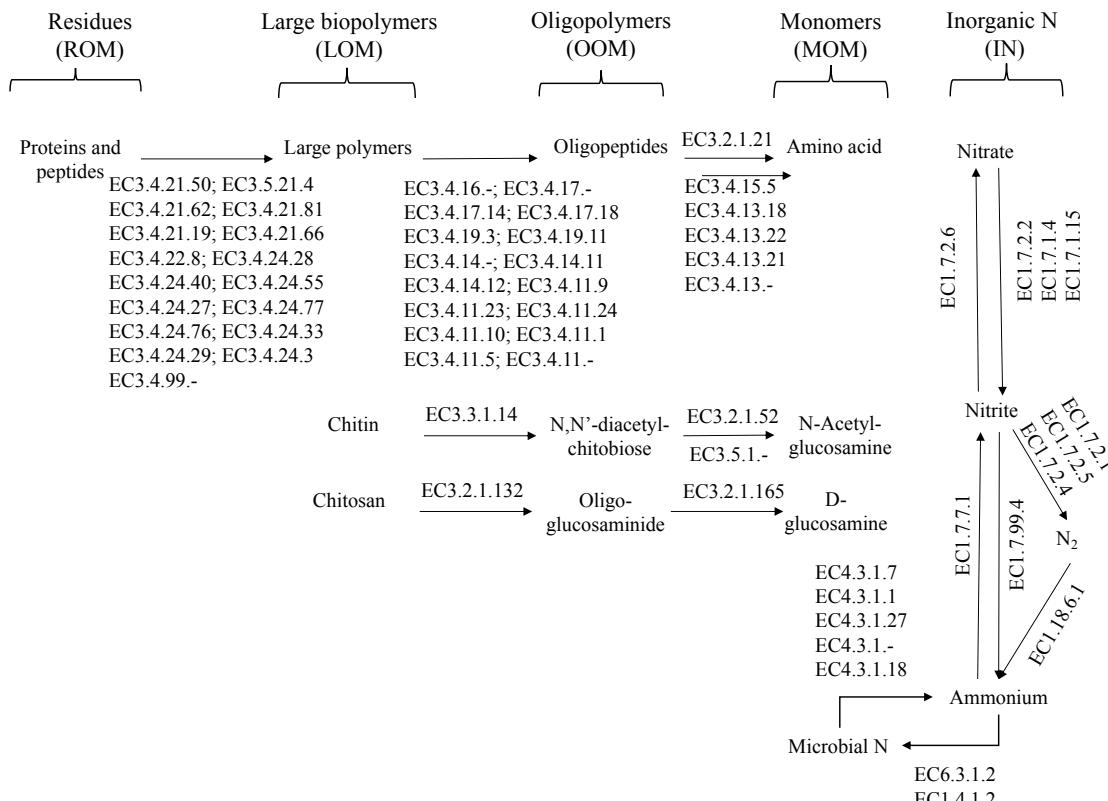
355 42. The dynamics of C ($\frac{d_{ALOCi}}{dt}$), N ($\frac{d_{ALONi}}{dt}$), and P ($\frac{d_{ALOPi}}{dt}$) in $ALOM_i$
356 $\frac{d_{ALOCi}}{dt} = \begin{cases} D_{AROCi} - D_{ALOCi} - Ad_{ALOCi} + De_{QLOCi} & i = 1,3 \\ 0 & i \neq 1,3 \end{cases}$ Eq. S44
357 $\frac{d_{ALONi}}{dt} = \begin{cases} \frac{D_{AROCi}}{CN_{AROM_i}} - \frac{D_{ALOCi}}{CN_{ALOM_i}} - \frac{Ad_{ALOCi}}{CN_{ALOM_i}} + \frac{De_{QLOCi}}{CN_{QLOM_i}} & i = 3 \\ 0 & i \neq 3 \end{cases}$ Eq. S45
358 $\frac{d_{ALOPi}}{dt} = 0$ Eq. S46


359 43. The dynamics of C ($\frac{d_{AOOCi}}{dt}$), N ($\frac{d_{AOONi}}{dt}$), and P ($\frac{d_{AOOPi}}{dt}$) in $AOOM_i$
360 $\frac{d_{AOOCi}}{dt} = \begin{cases} D_{ALOCi} - D_{AOOCi} - Ad_{AOOCi} + De_{QOOCi}, & i = 1,3 \\ D_{AROCi} - D_{AOOCi} - Ad_{AOOCi} + De_{QOOCi}, & i = 4,5,6 \\ 0 & i = 2,7 \end{cases}$ Eq. S47
361 $\frac{d_{AOONi}}{dt} = \begin{cases} \frac{D_{ALOCi}}{CN_{ALOM_i}} - \frac{D_{AOOCi}}{CN_{AOOM_i}} - \frac{Ad_{AOOCi}}{CN_{AOOM_i}} + \frac{De_{QOOCi}}{CN_{QOOM_i}}, & i = 1,3 \\ \frac{D_{AROCi}}{CN_{AROM_i}} - \frac{D_{AOOCi}}{CN_{AOOM_i}} - \frac{Ad_{AOOCi}}{CN_{AOOM_i}} + \frac{De_{QOOCi}}{CN_{QOOM_i}}, & i = 4,5,6 \\ 0 & i = 2,7 \end{cases}$ Eq. S48
362 $\frac{d_{AOOPi}}{dt} = \begin{cases} \frac{D_{ALOCi}}{CP_{ALOM_i}} - \frac{D_{AOOCi}}{CP_{AOOM_i}} - \frac{Ad_{AOOCi}}{CP_{AOOM_i}} + \frac{De_{QOOCi}}{CP_{QOOM_i}}, & i = 1,3 \\ \frac{D_{AROCi}}{CP_{AROM_i}} - \frac{D_{AOOCi}}{CP_{AOOM_i}} - \frac{Ad_{AOOCi}}{CP_{AOOM_i}} + \frac{De_{QOOCi}}{CP_{QOOM_i}}, & i = 4,5,6 \\ 0 & i = 2,7 \end{cases}$ Eq. S49

363 44. The dynamics of C ($\frac{dDOC}{dt}$), N ($\frac{dDON}{dt}$), and P ($\frac{dDOP}{dt}$) in DOM
364 $\frac{dDOC}{dt} = I_{DOC} + f_{DOM} \times D_{C_{MBA}} + D_{AROC_2} + \sum D_{AOOCi} + A_{DOC} + D_{C_E} - Ad_{DOC} + De_{DOC}$ Eq. S50

365	$\frac{dDON}{dt} = \frac{I_{DOC}}{CN_{I_{DOC}}} + \mathbf{f}_{DOM} \times \frac{DC_{MBA}}{CN_{MBA}} + \sum \frac{DAOOC_i}{CN_{AOOM_i}} + \frac{A_{DOC}}{CN_{DOM}} + \frac{DC_E}{CN_E} - \frac{Ad_{DOC}}{CN_{POM}} + \frac{De_{QMO}}{CN_{QMO}} \quad \text{Eq. S51}$
366	$\frac{dDOP}{dt} = \frac{I_{DOC}}{CP_{I_{DOC}}} + \mathbf{f}_{DOM} \times \frac{DC_{MBA}}{CP_{MBA}} + \sum \frac{DAOOC_i}{CP_{AOOM_i}} + \frac{A_{DOC}}{CP_{DOM}} + \frac{DC_E}{CP_E} - \frac{Ad_{DOC}}{CP_{POM}} + \frac{De_{QMO}}{CP_{QMO}} - DOP_{mn} \quad \text{Eq. S52}$
367	I_{DOC} is litter C input into DOM
368	45. The dynamics of C ($\frac{d_{QROCi}}{dt}$), N ($\frac{d_{QRONi}}{dt}$), and P ($\frac{d_{QROPi}}{dt}$) in $QROM_i$
369	$\frac{d_{QROCi}}{dt} = Ad_{AROC_i} - De_{QROCi} - Ad_{QROCi} \quad \text{Eq. S53}$
370	$\frac{d_{QRONi}}{dt} = \frac{Ad_{AROC_i}}{CN_{AROM_i}} - \frac{De_{QROCi}}{CN_{QROM_i}} - \frac{Ad_{QROCi}}{CN_{QROM_i}} \quad \text{Eq. S54}$
371	$\frac{d_{QROPi}}{dt} = \frac{Ad_{AROC_i}}{CP_{AROM_i}} - \frac{De_{QROCi}}{CP_{QROM_i}} - \frac{Ad_{QROCi}}{CP_{QROM_i}} \quad \text{Eq. S55}$
372	46. The dynamics of C ($\frac{d_{QLOCi}}{dt}$), N ($\frac{d_{QLONi}}{dt}$), and P ($\frac{d_{QLOPi}}{dt}$) in $QLOM_i$
373	$\frac{d_{QLOCi}}{dt} = Ad_{ALOC_i} - De_{QLOCi} - Ad_{QLOCi} \quad \text{Eq. S56}$
374	$\frac{d_{QLONi}}{dt} = \frac{Ad_{ALOC_i}}{CN_{ALOM_i}} - \frac{De_{QLOCi}}{CN_{QLOM_i}} - \frac{Ad_{QLOCi}}{CN_{QLOM_i}} \quad \text{Eq. S57}$
375	$\frac{d_{QLOPi}}{dt} = \frac{Ad_{ALOC_i}}{CP_{ALOM_i}} - \frac{De_{QLOCi}}{CP_{QLOM_i}} - \frac{Ad_{QLOCi}}{CP_{QLOM_i}} \quad \text{Eq. S58}$
376	47. The dynamics of C ($\frac{d_{QOOCi}}{dt}$), N ($\frac{d_{QOONi}}{dt}$), and P ($\frac{d_{QOOPi}}{dt}$) in $QOOM_i$
377	$\frac{d_{QOOCi}}{dt} = Ad_{AOOC_i} - De_{QOOC_i} - Ad_{QOOC_i} \quad \text{Eq. S59}$
378	$\frac{d_{QOONi}}{dt} = \frac{Ad_{AOOC_i}}{CN_{AOOM_i}} - \frac{De_{QOOC_i}}{CN_{QOOM_i}} - \frac{Ad_{QOOC_i}}{CN_{QOOM_i}} \quad \text{Eq. S60}$
379	$\frac{d_{QOOPi}}{dt} = \frac{Ad_{AOOC_i}}{CP_{AOOM_i}} - \frac{De_{QOOC_i}}{CP_{QOOM_i}} - \frac{Ad_{QOOC_i}}{CP_{QOOM_i}} \quad \text{Eq. S61}$
380	48. The dynamics of C ($\frac{d_{QMO}}{dt}$), N ($\frac{d_{QMO}}{dt}$), and P ($\frac{d_{QMO}}{dt}$) in $QMOM$
381	$\frac{d_{QMO}}{dt} = Ad_{DOC} - De_{QMO} - Ad_{QMO} \quad \text{Eq. S62}$
382	$\frac{d_{QMO}}{dt} = \frac{Ad_{DOC}}{CN_{DOM}} - \frac{De_{QMO}}{CN_{QMO}} - \frac{Ad_{QMO}}{CN_{QMO}} \quad \text{Eq. S63}$
383	$\frac{d_{QMO}}{dt} = \frac{Ad_{DOC}}{CP_{DOM}} - \frac{De_{QMO}}{CP_{QMO}} - \frac{Ad_{QMO}}{CP_{QMO}} \quad \text{Eq. S64}$
384	49. The dynamics of C ($\frac{d_{MROCi}}{dt}$), N ($\frac{d_{MRONi}}{dt}$), and P ($\frac{d_{MROPi}}{dt}$) in $MROM_i$
385	$\frac{d_{MROCi}}{dt} = Ad_{QROCi} - De_{MROCi} \quad \text{Eq. S65}$
386	$\frac{d_{MRONi}}{dt} = \frac{Ad_{QROCi}}{CN_{QROM_i}} - \frac{De_{MROCi}}{CN_{MROM_i}} \quad \text{Eq. S66}$
387	$\frac{d_{MROPi}}{dt} = \frac{Ad_{QROCi}}{CP_{QROM_i}} - \frac{De_{MROCi}}{CP_{MROM_i}} \quad \text{Eq. S67}$
388	50. The dynamics of C ($\frac{d_{MLOCi}}{dt}$), N ($\frac{d_{MLONi}}{dt}$), and P ($\frac{d_{MLOPi}}{dt}$) in $MLOM_i$
389	$\frac{d_{MLOCi}}{dt} = Ad_{QLOCi} - De_{MLOCi} \quad \text{Eq. S68}$
390	$\frac{d_{MLONi}}{dt} = \frac{Ad_{QLOCi}}{CN_{QLOM_i}} - \frac{De_{MLOCi}}{CN_{MLOM_i}} \quad \text{Eq. S69}$
391	$\frac{d_{MLOPi}}{dt} = \frac{Ad_{QLOCi}}{CP_{QLOM_i}} - \frac{De_{MLOCi}}{CP_{MLOM_i}} \quad \text{Eq. S70}$
392	51. The dynamics of C ($\frac{d_{MOOCi}}{dt}$), N ($\frac{d_{MOONi}}{dt}$), and P ($\frac{d_{MOOPi}}{dt}$) in $MOOM_i$
393	$\frac{d_{MOOCi}}{dt} = Ad_{QOOCi} - De_{MOOCi} \quad \text{Eq. S71}$
394	$\frac{d_{MOONi}}{dt} = \frac{Ad_{QOOCi}}{CN_{QOOM_i}} - \frac{De_{MOOCi}}{CN_{MOOM_i}} \quad \text{Eq. S72}$
395	$\frac{d_{MOOPi}}{dt} = \frac{Ad_{QOOCi}}{CP_{QOOM_i}} - \frac{De_{MOOCi}}{CP_{MOOM_i}} \quad \text{Eq. S73}$
396	52. The dynamics of C ($\frac{d_{MMOC}}{dt}$), N ($\frac{d_{MMON}}{dt}$), and P ($\frac{d_{MMOP}}{dt}$) in $MMOM$
397	$\frac{d_{MMOC}}{dt} = Ad_{QMO} - De_{MMOC} \quad \text{Eq. S74}$

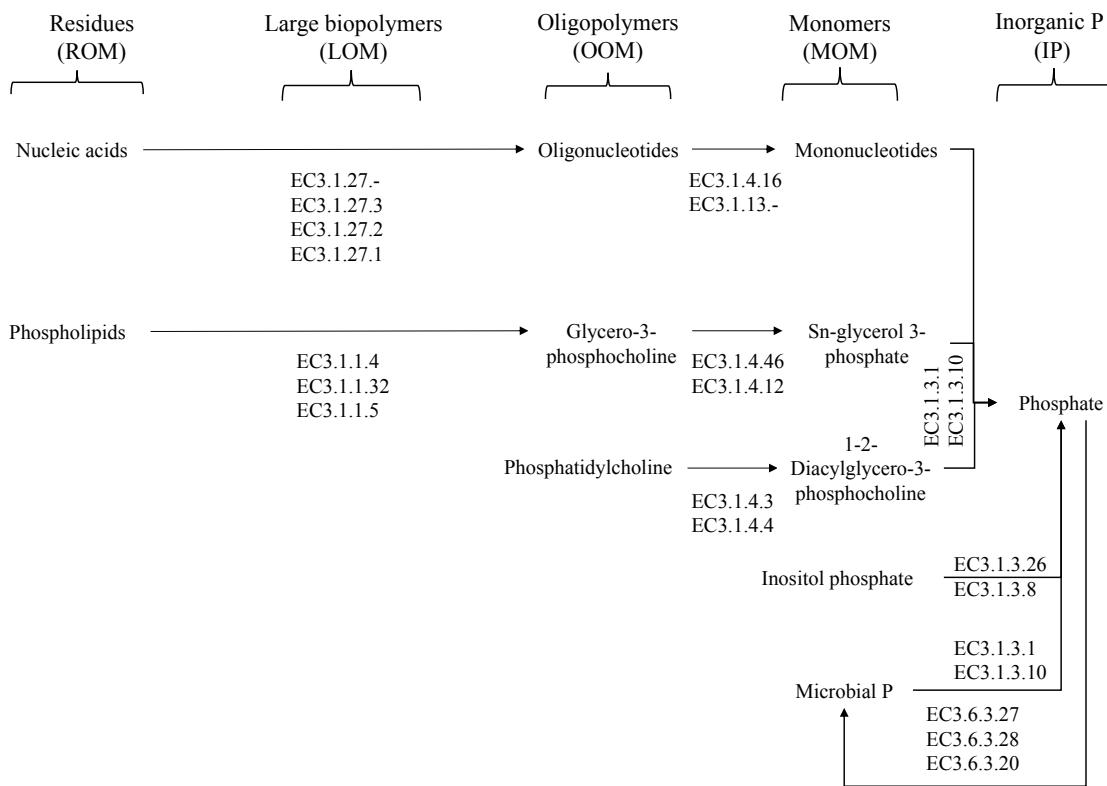
398	$\frac{d_{MMON}}{dt} = \frac{Ad_{QMO}}{CN_{QMO}} - \frac{De_{MMO}}{CN_{MMO}}$	Eq. S75
399	$\frac{d_{MMOP}}{dt} = \frac{Ad_{QMO}}{CP_{QMO}} - \frac{De_{MMO}}{CP_{MMO}}$	Eq. S76
400	53. The dynamics of C ($\frac{dC_{MBA}}{dt}$), N ($\frac{dN_{MBA}}{dt}$), and P ($\frac{dP_{MBA}}{dt}$) in MBA	
401	$\frac{dC_{MBA}}{dt} = A_{DOC} + C_{D2A} - C_{A2D} - Rg_a - Rm_a - S_{CE} - D_{CE}$	Eq. S77
402	$\frac{dN_{MBA}}{dt} = \frac{A_{DOC}}{CN_{DOM}} + \frac{C_{D2A}}{CN_{MBD}} - \frac{C_{A2D}}{CN_{MBA}} - \frac{S_{CE}}{CN_E} - \frac{D_{CE}}{CN_{MBA}} + N_{AS} - N_{mn}$	Eq. S78
403	$\frac{dP_{MBA}}{dt} = \frac{A_{DOC}}{CP_{DOM}} + \frac{C_{D2A}}{CP_{MBD}} - \frac{C_{A2D}}{CP_{MBA}} - \frac{S_{CE}}{CP_E} - \frac{D_{CE}}{CP_{MBA}} + P_{im} - P_{mn}$	Eq. S79
404	54. The dynamics of C ($\frac{dC_{MBD}}{dt}$), N ($\frac{dN_{MBD}}{dt}$), and P ($\frac{dP_{MBD}}{dt}$) in MBD	
405	$\frac{dC_{MBD}}{dt} = C_{A2D} - C_{D2A} - Rm_d$	Eq. S80
406	$\frac{dN_{MBD}}{dt} = \frac{C_{A2D}}{CN_{MBA}} - \frac{C_{D2A}}{CN_{MBD}}$	Eq. S81
407	$\frac{dP_{MBD}}{dt} = \frac{C_{A2D}}{CP_{MBA}} - \frac{C_{D2A}}{CP_{MBD}}$	Eq. S82
408	55. The dynamic of C ($\frac{dC_E}{dt}$), N ($\frac{dN_E}{dt}$), P ($\frac{dP_E}{dt}$) in EFCs pool	
409	$\frac{dC_E}{dt} = S_{CE} - D_{CE}$	Eq. S83
410	$\frac{dN_E}{dt} = \frac{S_{CE}}{CN_E} - \frac{D_{CE}}{CN_E}$	Eq. S84
411	$\frac{dP_E}{dt} = \frac{S_{CE}}{CP_E} - \frac{D_{CE}}{CP_E}$	Eq. S85
412	56. Dynamics of DIP ($\frac{dDIP}{dt}$)	
413	$\frac{dDIP}{dt} = \frac{((Ks_{DIP} + DIP)^2)}{((Ks_{DIP} + DIP)^2 + Qmax_{DIP} \times Ks_{DIP})} \times (P_{wea} + D_{AROP_7} + DOP_{mn} + P_{mn} - P_{QIP_{ads}} - P_{plant} - P_{im})$	
414	P_{plant} is estimated P uptake by plant	Eq. S86
415	57. Dynamics of QIP ($\frac{dQIP}{dt}$)	
416	$\frac{dQIP}{dt} = \frac{Qmax_{DIP} \times Ks_{DIP}}{((Ks_{DIP} + DIP)^2 + Qmax_{DIP} \times Ks_{DIP})} \times (P_{wea} + D_{AROP_7} + DOP_{mn} + P_{mn} - P_{QIP_{ads}} - P_{plant} - P_{im})$	
417	Eq. S87	
418	58. Dynamics of SIP ($\frac{dSIP}{dt}$)	
419	$\frac{dSIP}{dt} = P_{QIP_{ads}} - P_{sec} - P_{ocl}$	Eq. S88
420	59. Dynamics of OIP ($\frac{dOIP}{dt}$)	
421	$\frac{dOIP}{dt} = P_{ocl}$	Eq. S89
422	60. Dynamics of PIP ($\frac{dPIP}{dt}$)	
423	$\frac{dPIP}{dt} = P_{pri}$	Eq. S90
424	61. Dynamics of IN ₁ ($\frac{dN_1}{dt}$)	
425	$\frac{dN_1}{dt} = N_{mn} + N_{fix} - N_{assim} - N_{nitri} - N_{plant}$	Eq. S91
426	62. Dynamics of IN ₂ ($\frac{dN_2}{dt}$)	
427	$\frac{dN_2}{dt} = N_{nitri} - N_{denitri}$	Eq. S92
428		
429	Note: Bold terms in the equations above are input parameters, which are described and given in table S5-S8. CN_i and CP_i in Eqs. (S42-S85) denote the C/N and C/P ratio of the corresponding microbial, EFC or SOM pool i , respectively.	
432		
433		
434		
435		
436		


437 **Supplementary Figures**

438

439 **Fig. S1.** Metagenomics-informed lignocellulose-containing soil organic matter (SOM) decomposition
 440 pathways and corresponding enzymes identified in the Panama soil samples, where EC refers to the
 441 Enzyme Classification number

442

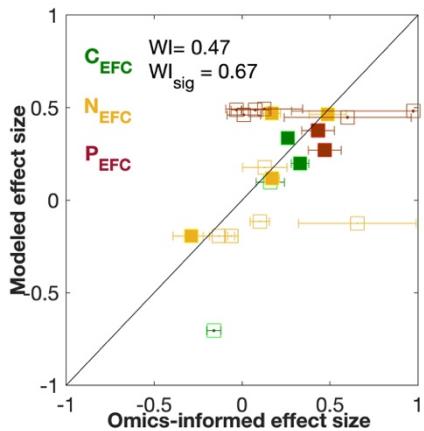

443

444

445 **Fig. S2.** Metagenomics-informed nitrogen (N)-containing SOM decomposition and mineralization
 446 pathways and corresponding enzymes identified in the Panama soil samples, where EC refers to the
 447 Enzyme Classification numbers.

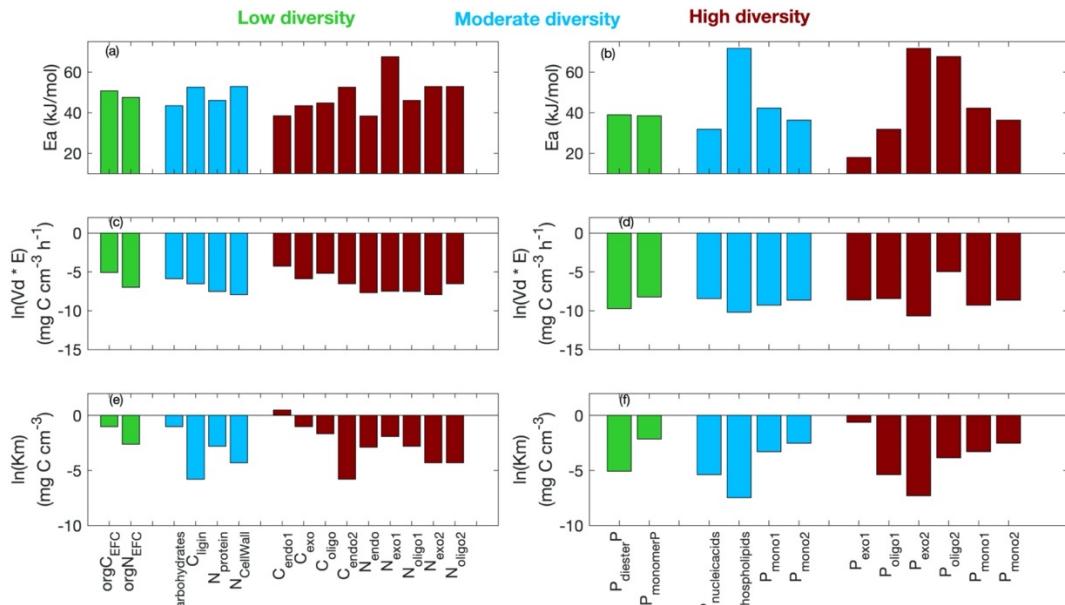
448

449



450

451 **Fig S3.** Metagenomics-informed P-containing SOM decomposition and mineralization pathways and
 452 corresponding enzymes identified in the Panama soil samples, where EC refers to the Enzyme
 453 Classification numbers.


454

455

456
 457 **Fig. S4.** Modeled and metagenomics-informed effect sizes of enzyme function groups (EFCs) between the
 458 control and P-fertilized soils. Here the effect size is defined as the \log_2 fold change of gene abundance of
 459 the EFC in the control plots relative to that in the P-fertilized soils. The error bar represents the standard
 460 deviation of metagenomics-informed effect size of each EFC. The filled symbols indicate that the
 461 difference of the EFC between the control soils and the P-fertilized soils is statistically significant (q-value
 462 <0.05). The Willmott index of agreement (WI) for all EFCs is 0.47 (P value <0.05), while the index (WI_{sig})
 463 for EFCs with statistically significant effect size is 0.67 (P value <0.05). C_{EFC}, N_{EFC}, P_{EFC} are EFCs for
 464 decomposing lignocellulose-containing, N-containing, and P-containing SOM, respectively.

465
 466

467

468 **Fig. S5.** Effects of enzyme functional diversity of soil microbial communities on decomposition kinetics of
469 enzyme functional classes (EFCs): (a-b) Activation energy (kJ/mol); (c-d) Potential EFC activity ($V_d * E$);
470 and (e-f) Substrate affinity (K_m). Three version of models were compared: CoMEND_H included all
471 metagenomics-informed 22 EFCs for SOM decomposition and thus represented high enzyme functional
472 diversity. CoMEND_M only included 15 EFCs for SOM decomposition and thus represented moderate
473 functional diversity of microbial community. CoMEND_L included 11 clusters of EFCs and represented low
474 functional diversity of microbial community.

475

476 **Supplementary Tables**477 **Table S1.** Classification of soil enzyme functional groups (EFCs) in Panamanian soils.

Biogeochemical processes	EFC classification rule 1		EFC classification rule 2		Numbers of enzymes	EFC function
	EFC 1	The chemical component of substrate that the EFC acts on	EFC 2	The location of EFC cleaved chemical component/the function of the EFC		
Lignocellulose-containing soil organic matter (SOM) decomposition	C _{carbohydrates}	Carbohydrates	C _{endo1}	Internal C-O bonds	16	Decomposition of carbohydrate residue
		Carbohydrates	C _{exo1}	Terminal C-O bonds	9	Decomposition of large polymers of carbohydrate
		Carbohydrates	C _{oigo1}	C-O bonds	11	Decomposition of oligosaccharides
	C _{lignin}	Lignin	C _{endo2}	Internal C-C or C-O bonds	3	Decomposition of lignin
N-containing SOM decomposition and mineralization	N _{proteins}	Proteins	N _{endo1}	Internal C-N bonds	17	Decomposition of protein or peptides chains
		Proteins	N _{exo1}	Terminal C-N bonds	16	Decomposition of polypeptides
		Proteins	N _{oligo1}	C-N bonds	5	Decomposition of oligopeptides
	N _{cellwall}	Cell wall N component	N _{exo2}	Terminal C-O bonds	2	Decomposition of cell wall N residues
		Cell wall N component	N _{oligo2}	C-O bonds	2	Decomposition of oligosaccharides
	N _{microbialN}	Microbial assimilated N	N _{mono}	C-N bond	5	Microbial intracellular N mineralization
	N _{inorganicN}	Inorganic N	N _{inN1}	Nitrification	2	Nitrification
		Inorganic N	N _{inN2}	Denitrification	3	Denitrification
		Inorganic N	N _{inN3}	N assimilation	6	N assimilation
		Inorganic N	N _{inN4}	N fixation	1	N fixation
P-containing SOM decomposition and mineralization	P _{nucleicacids}	Nucleic acids	P _{exo1}	Terminal phosphoester bonds	4	Decomposition of nucleic acids residues
		Nucleic acids	P _{oligo1}	Phosphoester bonds	2	Decomposition of oligonucleotides
	P _{phospholipids}	Phospholipids	P _{exo2}	C-O bond	3	Decomposition of phospholipids
		Phospholipids	P _{oligo2}	Phosphoester bond	3	Decomposition of lyso-phosphatidylcholine
	P _{monomerP}	Inositol P	P _{mono1}	Phosphoester bond	2	Inositol P biochemical mineralization
		Monomer P	P _{mono2}	Phosphoester bond	2	General monophosphate biochemical mineralization
	P _{microbialP}	Microbial assimilated P	P _{mono3}	Phosphoester bond	2	Biological P mineralization
	P _{mono3}	Inorganic P	P _{inP}	P immobilization	3	P immobilization

Table S2. The modification of environmental factors on reaction rate parameters in the CoMEND model

The reaction rate parameters modified by environmental factors	Modification function	Eq. ID
Kinetic parameters (Vd_j and Ks_j) for SOM decomposition in Eqs. (S1-S3) and Eqs. (S24-S31),	$Vd_j = \mathbf{Vd}_j \times f(\psi) \times f(T) \times f(pH)$, where j denotes corresponding EFC in the equation. $Ks_j = \mathbf{Ks}_j \times f(T)$, where j denotes corresponding EFC in the equation.	Eq. S93 Eq. S94
	Soil water potential (ψ) modification factor $f(\psi) = \begin{cases} 0.0 & \psi < \psi_{min} \\ 1.0 - \left[\frac{\ln(\frac{\psi}{\psi_{FC}})}{\ln(\frac{\psi_{min}}{\psi_{FC}})} \right]^{1.2} & \psi_{min} < \psi \leq \psi_{FC}, \\ 1.0 & \psi > \psi_{FC} \end{cases}$	Eq. S95
	Soil temperature (T) modificatory factor $f(T) = e^{[-\frac{Ea_j(1 - \frac{1}{T - T_{ref}})}{R}]}$, $T_{ref} = 20^\circ C$	Eq. S96
	Soil pH modification factor $f(pH) = e^{[-(\frac{pH - pH_{opt,j}}{pH_{sen,j}})^2]}$	Eq. S97
SOM adsorption/desorption rate in Eqs. (S4-S19)	$k_{ads,j} = \mathbf{k}_{ads,j} \times f(T)$, where j denotes corresponding SOM in the equation $k_{des,j} = \mathbf{k}_{des,j} \times f(T)$, where j denotes corresponding SOM in the equation	Eq. S98 Eq. S99
Inorganic P adsorption/desorption rate in Eqs. (S22-S23)	$\gamma_{QIP_{ads}} = \mathbf{\gamma}_{QIP_{ads}} \times f(T)$ $\gamma_{des} = \mathbf{\gamma}_{des} \times f(T)$	Eq. S100 Eq. S101
Microbial growth rate parameters in Eqs. (S32-S35)	$Vg = \mathbf{Vg} \times f(T)$ $Vm = \mathbf{Vm} \times f(T)$ $Ks_{DOC} = \mathbf{Ks}_{DOC} \times f(T)$ $Yg = \mathbf{Yg}_0 - \mathbf{k}_{Yg}(T - T_{ref})$	Eq. S102 Eq. S103 Eq. S104 Eq. S105
Microbial mortality rate parameter in Eq. (S36)	$\gamma_M = \mathbf{\gamma}_M \times L_c$ $L_c = \frac{ \psi ^b}{ \psi ^b + \psi_D ^b}$	Eq. S106 Eq. S107
Microbial dormancy rate parameter in Eq. (S37)	$Vm_{A2D} = \mathbf{Vm} \times f(T) \times f_{A2D}(\psi)$ $f_{A2D}(\psi) = \frac{ \psi ^c}{ \psi ^c + \psi_{A2D} ^c}$	Eq. S108 Eq. S109
Microbial resuscitation rate parameter in Eq. (S38)	$Vm_{D2A} = Vm_0 \times f(T) \times f_{D2A}(\psi)$ $f_{D2A}(\psi) = \frac{ \psi ^c}{ \psi ^c + \psi_{D2A} ^c}$	Eq. S110 Eq. S111

Note: Bold terms in the equations are input parameters, which are described and given in Supplementary information (SI) Data S4.

Supplementary equations: Components fluxes and dynamics of SOM pools in the CoMEND model.

484

Table S3. Chemical components, representative molecular formula and C/N and C/P ratio of SOM pool.

SOM	Chemical component	Representative molecular formula	C/N	C/P	Source
AROM ₁ , ALOM ₁ ,AOOM ₁ , MROM ₁ ,MLOM ₁ ,MOOM ₁	Carbohydrates related	(C ₆ H ₁₀ O ₅) _n	-	-	²⁶
AROM ₂ , MROM ₂	Lignin related	(C ₁₀ H ₁₂ O ₃) _n	-	-	²⁶
AROM ₃ , ALOM ₃ , AOOM ₃ , MROM ₃ ,MLOM ₃ ,MOOM ₃	Proteinaceous	(C ₂₀ H ₃₀ O ₅ N ₅) _n	3.5	-	²⁶
AROM ₄ , AOOM ₄ , MROM ₄ ,MOOM ₄	Cell wall-N component	(C ₈ H ₁₃ NO ₅) _n	6.9	-	Brenda database ¹⁴
AROM ₅ , AOOM ₅ , MROM ₅ ,MOOM ₅	Nucleic acids related	(C ₁₀ H ₁₄ N ₄ O ₈ P) _n	2.1	3.9	²⁶
AROM ₆ , AOOM ₆ , MROM ₆ ,MOOM ₆	Phospholipids related	C ₃₃ H ₅₈ O ₂₄ P ₆	-	12.8	Brenda database ¹⁴
AROM ₇	Inositol P	(C ₆ H ₁₈ O ₂₄ P ₆) _n	-	1.4	Brenda database ¹⁴

485

486

487 **Supplementary Notes: References cited in the SI**
488

489 1 Kay, J. E. *et al.* The Community Earth System Model (CESM) Large Ensemble
490 Project: A Community Resource for Studying Climate Change in the Presence of
491 Internal Climate Variability. *Bulletin of the American Meteorological Society* **96**,
492 1333-1349, doi:10.1175/bams-d-13-00255.1 (2015).

493 2 Yao, Q. M. *et al.* Community proteogenomics reveals the systemic impact of
494 phosphorus availability on microbial functions in tropical soil. *Nat Ecol Evol* **2**,
495 499-509, doi:10.1038/s41559-017-0463-5 (2018).

496 3 Tfaily, M. M. *et al.* Sequential extraction protocol for organic matter from soils
497 and sediments using high resolution mass spectrometry. *Anal Chim Acta* **972**, 54-
498 61, doi:10.1016/j.aca.2017.03.031 (2017).

499 4 Tfaily, M. M. *et al.* Advanced Solvent Based Methods for Molecular
500 Characterization of Soil Organic Matter by High-Resolution Mass Spectrometry.
501 *Anal Chem* **87**, 5206-5215, doi:10.1021/acs.analchem.5b00116 (2015).

502 5 Darch, T. *et al.* Assessment of bioavailable organic phosphorus in tropical forest
503 soils by organic acid extraction and phosphatase hydrolysis. *Geoderma* **284**, 93-
504 102, doi:10.1016/j.geoderma.2016.08.018 (2016).

505 6 Mirabello, M. J. *et al.* Soil phosphorus responses to chronic nutrient fertilisation
506 and seasonal drought in a humid lowland forest, Panama. *Soil Research* **51**, 215-
507 221, doi:<https://doi.org/10.1071/SR12188> (2013).

508 7 Schwendenmann, L. & Pendall, E. Effects of forest conversion into grassland on
509 soil aggregate structure and carbon storage in Panama: evidence from soil carbon
510 fractionation and stable isotopes. *Plant Soil* **288**, 217-232, doi:10.1007/s11104-
511 006-9109-0 (2006).

512 8 Yang, X., Thornton, P. E., Ricciuto, D. M. & Post, W. M. The role of phosphorus
513 dynamics in tropical forests - a modeling study using CLM-CNP. *Biogeosciences*
514 **11**, 1667-1681, doi:10.5194/bg-11-1667-2014 (2014).

515 9 Yang, X. J., Thornton, P. E., Ricciuto, D. M. & Hoffman, F. M. Phosphorus
516 feedbacks constraining tropical ecosystem responses to changes in atmospheric
517 CO₂ and climate. *Geophys Res Lett* **43**, 7205-7214, doi:10.1002/2016gl069241
518 (2016).

519 10 Manzoni, S., Schaeffer, S. M., Katul, G., Porporato, A. & Schimel, J. P. A
520 theoretical analysis of microbial eco-physiological and diffusion limitations to
521 carbon cycling in drying soils. *Soil Biol Biochem* **73**, 69-83,
522 doi:10.1016/j.soilbio.2014.02.008 (2014).

523 11 Jansson, J. K. & Hofmockel, K. S. The soil microbiome - from metagenomics to
524 metagenomics. *Curr Opin Microbiol* **43**, 162-168,
525 doi:10.1016/j.mib.2018.01.013 (2018).

526 12 Bouskill, N. J. *et al.* Belowground Response to Drought in a Tropical Forest Soil.
527 II. Change in Microbial Function Impacts Carbon Composition. *Frontiers in
528 Microbiology* **7**, doi:ARTN 323
529 10.3389/fmicb.2016.00323 (2016).

530 13 Bouskill, N. J. *et al.* Belowground Response to Drought in a Tropical Forest Soil.
531 I. Changes in Microbial Functional Potential and Metabolism. *Frontiers in
532 Microbiology* **7**, doi:ARTN 525
533 10.3389/fmicb.2016.00525 (2016).

534 14 Scheer, M. *et al.* BRENDA, the enzyme information system in 2011. *Nucleic
535 Acids Res* **39**, D670-D676, doi:10.1093/nar/gkq1089 (2011).

536 15 Duan, Q. Y., Sorooshian, S. & Gupta, V. Effective and Efficient Global
537 Optimization for Conceptual Rainfall-Runoff Models. *Water Resour Res* **28**,
538 1015-1031, doi:Doi 10.1029/91wr02985 (1992).

539 16 Wang, G. S., Xia, J. & Chen, J. Quantification of effects of climate variations and
540 human activities on runoff by a monthly water balance model: A case study of the
541 Chaobai River basin in northern China. *Water Resour Res* **45**, doi:Artn W00a11
542 10.1029/2007wr006768 (2009).

543 17 Turner, B. L. & Wright, S. J. The response of microbial biomass and hydrolytic
544 enzymes to a decade of nitrogen, phosphorus, and potassium addition in a lowland
545 tropical rain forest. *Biogeochemistry* **117**, 115-130, doi:10.1007/s10533-013-
546 9848-y (2014).

547 18 Yang, X., Post, W. M., Thornton, P. E. & Jain, A. The distribution of soil
548 phosphorus for global biogeochemical modeling. *Biogeosciences* **10**, 2525-2537,
549 doi:10.5194/bg-10-2525-2013 (2013).

550 19 Kogel-Knabner, I. in *Nucleic acids and proteins in soil* (eds Paolo Nannipieri &
551 Kornelia Smalla) 23-48 (Springer, 2006).

552 20 Bugg, T. D. H., Ahmad, M., Hardiman, E. M. & Rahmanpour, R. Pathways for
553 degradation of lignin in bacteria and fungi. *Nat Prod Rep* **28**, 1883-1896,
554 doi:10.1039/c1np00042j (2011).

555 21 Paton, S. 2017 meteorological and hydrological summary for Barro Colorado
556 island. (Smithsonian Tropical Research Institute, 2017).

557 22 Kaspari, M. *et al.* Multiple nutrients limit litterfall and decomposition in a tropical
558 forest. *Ecol Lett* **11**, 35-43, doi:10.1111/j.1461-0248.2007.01124.x (2008).

559 23 Wright, S. J. *et al.* Potassium, phosphorus, or nitrogen limit root allocation, tree
560 growth, or litter production in a lowland tropical forest. *Ecology* **92**, 1616-1625
561 (2011).

562 24 Ostertag, R., Marin-Spiotta, E., Silver, W. L. & Schulter, J. Litterfall and
563 decomposition in relation to soil carbon pools along a secondary forest
564 chronosequence in Puerto Rico. *Ecosystems* **11**, 701-714, doi:10.1007/s10021-
565 008-9152-1 (2008).

566 25 Winkler, U. & Zotz, G. Highly efficient uptake of phosphorus in epiphytic
567 bromeliads. *Ann Bot-London* **103**, 477-484, doi:10.1093/aob/mcn231 (2009).

568 26 Riley, W. J. *et al.* Long residence times of rapidly decomposable soil organic
569 matter: application of a multi-phase, multi-component, and vertically resolved
570 model (BAMS1) to soil carbon dynamics. *Geosci Model Dev* **7**, 1335-1355,
571 doi:10.5194/gmd-7-1335-2014 (2014).

572 27 Torabizadeh, H. All proteins have a basic molecular formula. *World Academy of
573 Science, Engineering and Technology* **5**, 961-965 (2011).

574 28 Wang, G. S., Post, W. M. & Mayes, M. A. Development of microbial-enzyme-
575 mediated decomposition model parameters through steady-state and dynamic
576 analyses. *Ecol Appl* **23**, 255-272, doi:Doi 10.1890/12-0681.1 (2013)

577 29 Xu, X. F., Thornton, P. E. & Post, W. M. A global analysis of soil microbial
578 biomass carbon, nitrogen and phosphorus in terrestrial ecosystems. *Global Ecol
579 Biogeogr* **22**, 737-749, doi:10.1111/geb.12029 (2013).

580 30 Sayer, E. J. *et al.* Variable Responses of Lowland Tropical Forest Nutrient Status
581 to Fertilization and Litter Manipulation. *Ecosystems* **15**, 387-400,
582 doi:10.1007/s10021-011-9516-9 (2012).

583 31 Heineman, K. D., Turner, B. L. & Dalling, J. W. Variation in wood nutrients
584 along a tropical soil fertility gradient. *New Phytol* **211**, 440-454,
585 doi:10.1111/nph.13904 (2016).

586
587