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Figure S1. Validation of the production of a signature cyclic immonium ion from lysine lactylated

peptides.

(a) lllustration of lysine lactylation introduced by a nonenzymatic acyl transfer reaction with LGSH. DCC,

Dicyclohexylcarbodiimide; HOBT, 1-Hydroxybenzotriazole. (b) Mass spectra of the successfully

lactylated model peptides. (c) MS/MS spectra of the lactylated model peptides. (d-e) Collisional energy
(CE) and collision cell (trap and transfer cell on a SYNAPT G2 Si Q/TOF) influenced the ion counts (d)
and relative ion abundance (e) of the cyclic immonium ion (cyclm) and the linear immonium ion (linlm) in

MS/MS spectra. Relative ion abundance is normalized against the ion count of the base peak among the

matched ions in examined MS/MS spectrum.
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Figure S2. Production efficiency of the signature cyclm ions from lysine lactylation peptides is
verified using different instruments and search engines.

(a) Overview of the assigned lactylation sites of in vitro lactylated recombinant ENO1. The immonium ion
abundances in MS/MS spectra of lactylated peptides detected on a SYNAPT G2-Si Q/TOF were
annotated. (b) Production frequency of the cyclm and linim ions in lactylated and non-lactylated
peptide-spectrum matches (PSMs) of ENO1-digested peptides using data obtained on a SYNAPT G2-Si
Q/TOF and an Orbitrap Fusion Lumaos, respectively. (c) Relative ion abundance of the cyclm and linim
ions in PSMs shown in (b). Only cyclm and linlm ions of non-zero ion counts were summarized for
comparison. Data represent mean &=SD and statistical significance was determined using the unpaired
two-tailed t-test. (d) Frequency and ion abundance of the cyclm and linim ions in LGSH-mediated
lactylated and non-lactylated PSMs of recombinant ENO1-digested peptides searched by the Proteome
Discoverer (PD) software.
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Figure S3. lon mobility mass spectrometry probes the gas-phase behaviors of the cyclm and
linlm ions of lactyllysine.

(a) Sources of interfering MS/MS ions of the cyclm and linlm ions of lactyllysine. (b) Drift time of MS/MS
fragmentation-produced a-, b-type ions and cyclm ion generated by L- and D-lactylated model peptides.
The collision cross section (CCS) value of the cyclm ion is measured as 131.1 A. (c) Arrival time
distributions (ATDs) resolve the unspecific linlm ion of lactyllysine from an isobaric, interfering az ion
produced from an RNase A-digested peptide. Cam, carbamidomethylation.
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Figure S4. Chromatographic behaviors of lactylated vs. non-lactylated peptides detected on a
nanoLC-Orbitrap MS.

(a) Pairwise comparison of extracted ion chromatograms (XICs) of the lactylated and non-lactylated
peptides numbered Peak 6-13 (refer to the in vitro lactylated peptide library in Table S1) using data
obtained on a SYNAPT G2-Si Q/TOF. (b) Retention time of lactylated and non-lactylated peptide pairs
from recombinant ENO1 using data obtained on an Orbitrap. (c) Retention time distribution of lactylated
and non-lactylated peptide pairs using data obtained on an Orbitrap. (d) Retention time shifts following
lactylation using ENO1-digested peptides detected on an Orbitrap.
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Figure S5. Functional and quantitative analysis of lactylated proteins detected in
SILAC-processed, affinity-enriched MCF-7 cell proteome in response to rotenone and DCA
treatment.

(a) Cellular component (CC), molecular function (MF), biological processes (BP) analysis of the
identified lactylated non-histone proteins. (b) Transcription factor (TF) analysis of the identified lactylated
non-histone proteins (n=35). (c) Post-translational modification (PTM) category analysis of all quantified
lysines vs. lactylated lysines according to the examined SILAC proteomics data. (d) Venn diagram shows
the overlap of the quantified lactylated peptides in response to rotenone- and DCA-treatment. (e)
Representative MS/MS spectra of nucleolin (NCL) peptides carrying lactylation at K102 and K116.
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Figure S6. Benchmarking the cyclm ion to signify lactylation from the draft map of Human
Proteome.

(a) Retention time shift of lactylated vs. non-lactylated peptide pairs identified from the Human Proteome
data resources. (b) Number of lactylated PSMs identified from the proteomics data obtained from 6 tissue
types retrieved by three search engines. (c¢) Significant ion abundance of the cyclm ion from lactylated
DHRS?7 peptides using data summarized in (b). (d) Venn diagram of lactylation proteins and sites
identified from the 6 tissue types retrieved by three search engines. (e) Transfection efficiency of
His-tagged and FLAG-tagged DHRS7 plasmid in HEK293T cells. (f) Gene expression profiles of DHRS7
across given cancer types and paired normal tissues plotted via GEPIA. (g) Principal component analysis
(PCA) and orthogonal partial least square discriminant analysis (OPLS-DA) score plots of the wild type
(WT) and K321A (mutant) DHRS7-overexpressing HEK293T cells using metabolomics data collected
under the positive (+) and negative (-) ion modes (n=3/group). (h) Heatmap of the differentially expressed
metabolites between the WT and mutant groups with the significance cutoff of p<0.05 (unpaired,
two-tailed t-test) and VIP=1, CV<20%.
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Figure S7. Cyclm ion signifies enriched lactylation on glycolytic enzymes in human cells.

(a) Representative MS/MS spectra of lactylated peptides belonging to proteins involved in glycolysis
including ALDOB, ALDOA/C, TPI1, GAPDH, PGK1, ENO2, ENO1, PKM2 and LDHB, proteins involved in
TCA exemplified by IDH2 and proteins involved in PPP including G6PD and TKT. Cyclm ion is labeled in
blue in inserts. (b) Heatmap of the cyclm ion abundance in the MS/MS spectra enabling lactylation
assignment for enzymes involved in glycolysis, TCA cycle and PPP across 14 cell types. Lung fibro.,
Lung fibroblast cells; Colon sph., Colon cancer spheroids.
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Figure S8. Functional analysis of the lactylation sites identified from the Meltome Atlas proteome
data resources collected from 14 human cell types.

(a) Retention time distribution and shifts of lactylated vs. non-lactylated peptide pairs (n=71) identified
from proteome data of 14 cell types through mining the Meltome Atlas. (b) KEGG pathway analysis of the
identified lactylated proteins. (c) Motif analysis of the residues flanking the lactylated lysine residues. (d)
PTM category analysis showing the distribution of previously reported PTMs on the lactylation sites
uncovered in this study.
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Figure S9. Melting curves of lactylated vs. non-lactylated human proteins reveal functional

lactylation suggested by the Hotspot Thermal Profiling approach.
(a) Crystal structure of human PGK1 with highlighted lactylated lysines. (b) Melting curves of the
lactylated and non-lactylated PGK1 proteoforms plotted based on the Meltome data of A549 and Jurkat

cells. (c) Crystal structure of human SPR with highlighted lactylated lysines. (d) Melting curves of the

lactylated and non-lactylated SPR proteoforms plotted based on the Meltome data of HepG2 cells and

hepatocytes. (e) Melting curves of the lactylated and unmodified DHRS7 proteoforms based on the

Meltome data of K562 cells, Jurkat cells and colon cancer spheroids.
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Supporting Tables

Table 1. Summary of the lactylated peptides identified from the recombinant ENO1 protein digests using
an Orbitrap and SYNAPT G2 Si Q/TOF instrument.

Table 2. Summary of the identified lactylated peptides from SILAC-processed and affinity-enriched
proteome datasets collected from MCF-7 cells in response to rotenone and DCA intervention.

Table 3. Summary of the lactylated PSMs retrieved from proteome data of six human tissue types using
three different database search engines.

Table 4. Summary of the lactylated PSMs identified from the 14 human cell types available in the
Meltome Atlas.
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