

Supplementary information

Exposure to negative socio-emotional events induces sustained alteration of resting-state brain networks in the elderly

Authors:

Sebastian Baez Lugo^{1,2}, Yacila I. Deza-Araujo^{1,2}, Fabienne Collette³, Patrik Vuilleumier^{1,2}, Olga Klimecki^{1,4} and the Medit-Ageing Research Group

Affiliations:

¹ Swiss Center for Affective Sciences, University of Geneva, Geneva, Switzerland.

² Laboratory for Behavioral Neurology and Imaging of Cognition, Department of Neuroscience, Medical School, University of Geneva, Geneva, Switzerland.

³ GIGA-CRC In Vivo Imaging Research Unit, University of Liège, Liège, Belgium.

⁴ Psychology Department, Technische Universität Dresden, Dresden, Germany.

Supplementary Table 1: Inclusion and exclusion criteria for the Age-Well clinical trial

Supplementary Table 2: Categorization of the thought probe

Supplementary Table 3: Regions significantly activated during the SoVT-Rest (videos and rest periods)

Supplementary Fig. 1: Significant brain activations during the SoVT-Rest (main effects)

Supplementary Fig. 2: Significant brain activations during rest periods after LE videos in contrast to rest periods after HE videos

Supplementary Fig. 3: Age-related SoVT differences

Supplementary Fig. 4: Correlation between empathic concern (IRI) and aMPFC-l.Al during rest periods after HE > LE videos

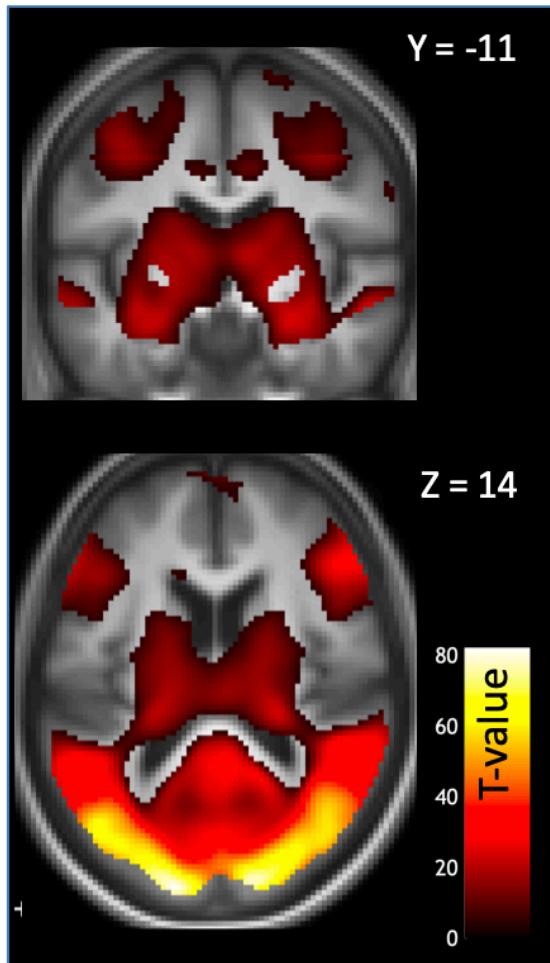
Supplementary Fig. 5: Second-level mask

Supplementary Table 1. Inclusion and exclusion criteria for Age-Well clinical trial (adapted from Poisnel et al., 2018)

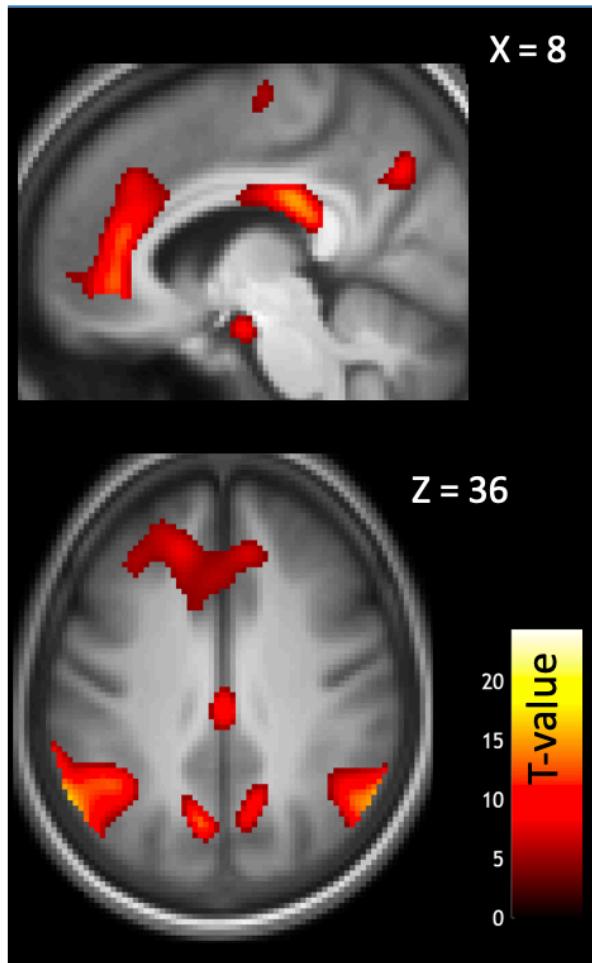
Inclusion criteria	Exclusion criteria
<ul style="list-style-type: none"> - Age \geq65 years - Autonomous - Living at home - Educational level \geq7 years (from the Preparatory Course -1st grade- included) - Registered to the social security system - Motivated to effectively participate in the project and signing the informed consent form - Performance within the normal range on standardized cognitive tests according to agreed study-specific standards (age, sex and education level when available) - Native French speaker - Available to attend the intervention for the trial duration (24 months) - Retired for at least one year - No strong preference or aversion for an intervention group - No present or past regular or intensive practice of meditation or comparable practices; the practice is considered as regular and/or intensive if i) it occurs more than one day per week for more than six consecutive months over the last 10 years, and/or in case of more than five consecutive days of intensive practice (internship or retreat) over the past 10 years, and/or of more than 25 days of retreats (cumulatively) within the last 10 years - Not speaking fluent English 	<ul style="list-style-type: none"> - Safety concerns in relation to MR scanning (claustrophobia, ferro- magnetic object) or PET scanning (blood sampling to check hepatic and renal functions are performed before the PET scans; known hypersensitivity to Amyvid or Glucotep) - Presence of a major neurological or psychiatric disorder (including an addiction to alcohol or drugs) - History of cerebral disease (vascular, degenerative, physical malformation, tumor, or head trauma with loss of consciousness for more than an hour) - Presence of a chronic disease or acute unstable illness (respiratory, cardiovascular, digestive, renal, metabolic, hematologic, endocrine or infectious) - Current or recent medication that may interfere with cognitive functioning (psychotropic, antihistaminic with anticholinergic action, anti- Parkinson's, benzodiazepines, steroid anti-inflammatory long-term treatment, antiepileptic or analgesic drugs), the interfering nature of the different treatments being at the discretion of the investigating doctor - Being under legal guardianship or incapacitation - Participation in another biomedical research protocol including the injection of radiopharmaceuticals - Physical or behavioral inability to perform the follow-up visits as planned in the study protocol

Supplementary Table 2. Categorization of the thought probes

Categories	Labels	Criteria	Intra-group variability		Inter-rater reliability	
			LE % (n=110)	HE % (n=109)	LE (n=110)	HE (n=109)
Positive emotions	Present/ Absent	Presence or absence of items including: Affection, Enthusiasm, Happiness, Humor, Interest, Validation.	Present = 40 Absent = 28.18 Undefined = 31.82	Present = 36.7 Absent = 24.77 Undefined = 38.53	Kappa = 0.39 p<0.001	Kappa = 0.28 p<0.001
Negative emotions	Present/ Absent	Presence or absence of items including: Anger, Belligerence, Complaining, Criticism, Defensiveness, Disgust, Fear, Sadness, Stonewalling, Threats, Whining, Helplessness.	Present = 37.27 Absent = 45.45 Undefined = 17.27	Present = 54.13 Absent = 27.52 Undefined = 18.35	Kappa = 0.66 p<0.001	Kappa = 0.61 p<0.001
Positive social emotions	Present/ Absent	Presence or absence of items including: Compassion, Curiosity, Empathy, Goodwill, Love, Pride, Social conquest, Solidarity, Sympathy.	Present = 50 Absent = 29.09 Undefined = 20.91	Present = 66.97 Absent = 16.51 Undefined = 16.51	Kappa = 0.57 p<0.001	Kappa = 0.57 p<0.001
Negative social emotions	Present/ Absent	Presence or absence of items including: Embarrassment, Envy, Depreciation, Domineering, Disdain, Guilt, Jealousy, Self-criticism, Timidity.	Present = 1.82 Absent = 97.27 Undefined = 0.91	Present = 2.75 Absent = 94.50 Undefined = 2.75		
Emotion regulation (voluntary control of emotions)	Present/ Absent	Presence or absence of strategies willing to voluntarily repress or control the emotions felt.	Present = 2.73 Absent = 95.45 Undefined = 1.82	Present = 0.92 Absent = 97.25 Undefined = 1.83		
Temporality	Past or future / Present	Presence of elements referring to experiences from the past or the present. No references to experiences from the past or the future.	Present = 90.91 Past or future = 1.82 Undefined = 7.27	Present = 91.74 Past or future = 3.67 Undefined = 4.59		
Directed attention to oneself	Present/ Absent	Expressed thoughts oriented towards itself or things concerning it.	Present = 37.27 Absent = 44.55 Undefined = 18.18	Present = 26.61 Absent = 50.46 Undefined = 22.94	Kappa = 0.64 p<0.001	Kappa = 0.52 p<0.001
Directed attention to others	Present/ Absent	Expressed thoughts oriented towards others.	Present = 54.55 Absent = 28.18 Undefined = 17.27	Present = 59.63 Absent = 17.43 Undefined = 22.94	Kappa = 0.64 p<0.001	Kappa = 0.46 p<0.001
Rumination	Present/ Absent	Presence or absence of recall and description of images.	Present = 10 Absent = 84.55 Undefined = 5.45	Present = 4.59 Absent = 88.99 Undefined = 6.42		

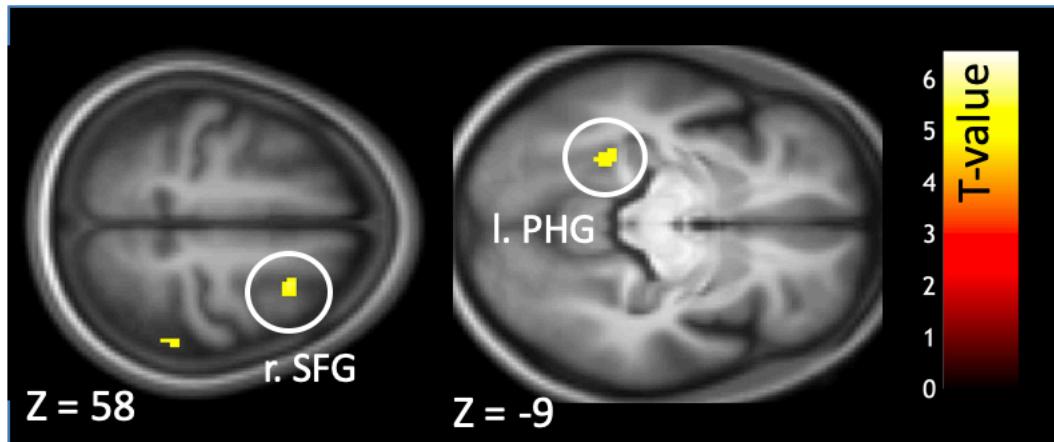

Categories based on Coan, J. A., & Gottman, J. M. (2007) and Lindahl and colleagues (2017). LE, Low emotion; HE, High emotion. Cohen's kappa index was calculated for categories with intra-group variability higher than 15% (indicated in bold).

Supplementary Table 3. Regions significantly activated during the SoVT-Rest (videos and rest periods)


Region	Hemisphere	MNI peak coordinates			T-score	P(FWE-corr)	k
		x	y	z			
Rest > Videos							
Angular gyrus / IPL	R	52	-58	44	24.36	<0.0001	744
	L	-50	-58	46	21.66	<0.0001	1148
Supramarginal gyrus (SMG)	L	-58	-44	42	11.88	<0.0001	
Middle cingulate cortex (MCC)	R	4	-24	28	16.39	<0.0001	2689
Anterior cingulate cortex (ACC) / Medial prefrontal cortex (MPFC)	L	-10	38	8	14.57	<0.0001	6060
Precuneus / Posterior cingulate cortex	L	-8	-68	38	12.96	<0.0001	231
	R	10	-64	38	10.22	<0.0001	192
Posterior insula (PI) / Central operculum	R	44	-16	14	9.43	<0.0001	1349
Central operculum	L	-54	-4	12	8.69	<0.0001	365
Posterior insula (PI)	L	-40	-18	18	6.80	<0.0001	86
Anterior insula (AI)	R	36	10	10	7.84	<0.0001	125
	L	-34	8	10	6.41	<0.0001	39
Supperior motor cortex		0	-12	64	6.37	<0.0001	201
Caudate	L	-16	20	0	6.27	<0.0001	49
Postcentral gyrus	R	42	-18	48	5.69	<0.0001	47
	L	-38	-22	48	5.49	<0.0001	24
Videos: HE > LE							
Inferior occipital gyrus (IFG)	R	48	-70	2	9.73	<0.0001	1185
Lingual gyrus	L	-6	-66	2	9.46	<0.0001	11161
Superior parietal lobule	R	30	-44	56	8.35	<0.0001	952
Anterior insula (AI)	L	-34	8	2	5.44	<0.0001	887
	R	38	10	4	5.75	<0.0001	1046
Caudate (Ventral striatum, VS)	R	10	2	2	6.15	<0.0001	
Anterior cingulate cortex (ACC)	L	-4	24	18	7.51	<0.0001	589
Superior frontal gyrus (SFG)	L	-18	52	26	6.51	<0.001	132
Tempor- parietal junction (TPJ)	L	-50	-22	18	5.90	<0.001	119
Posterior cingulate cortex (PCC)		-2	-40	22	5.86	<0.0001	348
Middle cingulate cortex (MCC)		-6	-10	36	5.78	<0.001	140
Middle frontal gyrus (MFG)	R	36	4	58	5.55	<0.0001	349
Rest: Post HE > Post LE							
Precuneus	L	-8	-52	34	8.21	<0.0001	1089
Posterior cingulate cortex (PCC)		-12	-46	24	6.44		
Anterior cingulate cortex (ACC)		-8	40	18	7.43	<0.0001	1180
Superior frontal gyrus (SFG) / Medial prefrontal cortex (MPFC)		6	52	20	6.89	<0.0001	
Superior temporal gyrus (STG)	R	50	-32	-2	8.49	<0.0001	764
	L	-60	-22	0	6.10	<0.001	117
Supramarginal gyrus (SMG)	L	-52	-46	22	7.35	<0.0001	532
Anterior insula (AI)	R	30	20	-12	5.33	0.01	24
Putamen	L	-30	2	-12	5.12	0.002	64
Amygdala	R	22	-8	-12	4.67	0.03	3
Hippocampus	R	22	-12	-10	4.59	0.03	5
Rest: Post LE > Post HE							
Superior frontal gyrus (SFG)	L	-20	-4	74	5.81	0.01	21
Superior/middle frontal gyrus (SFC)	R	28	12	58	5.56	0.002	54
Parahippocampal (PHG)/ Fusiform	L	-30	-42	-8	5.28	0.006	36
Supramarginal / Sup parietal gyrus	R	52	-38	56	5.08	0.02	12
Precentral gyrus	R	6	-24	76	5.06	0.02	8

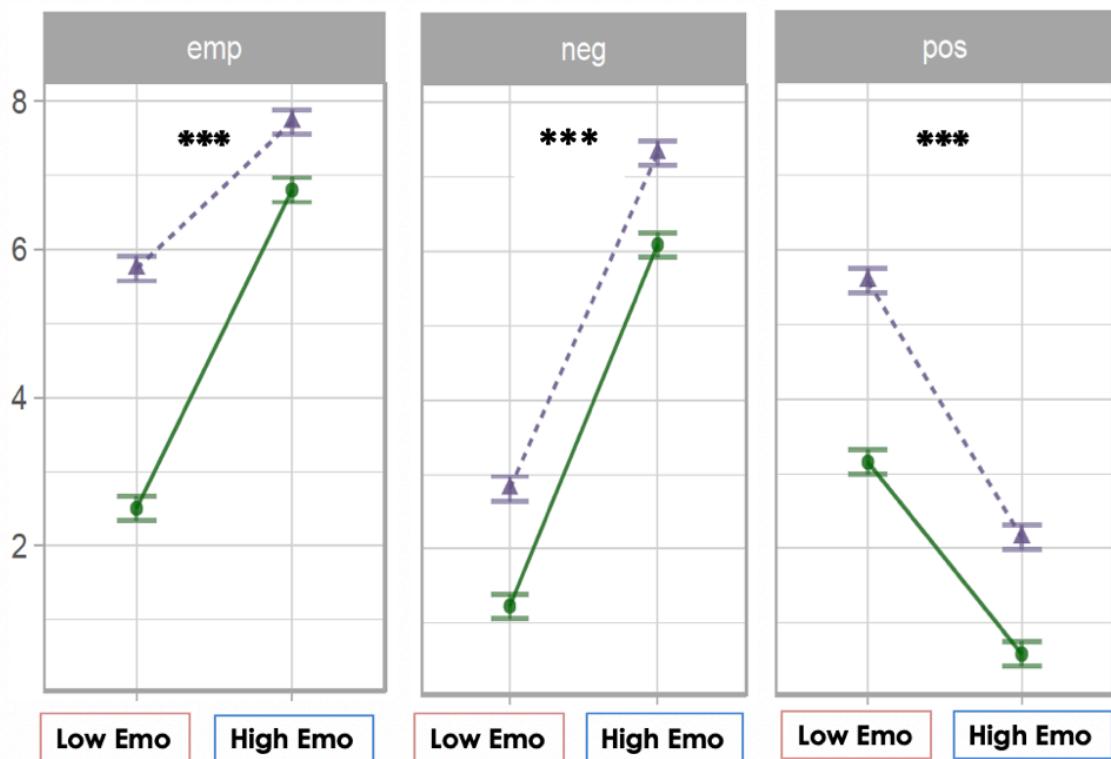
P(FWE-corr) indicates the p value resulting from a whole-brain family-wise error (FWE) correction at a voxel level. LE, Low emotion; HE, High emotion; MNI, Montreal Neurological Institute; k, Cluster size. Regions significantly activated during *Videos > Rest* are not reported in the present table due to the widespread activation of this contrast (see Supplementary Fig. 1).

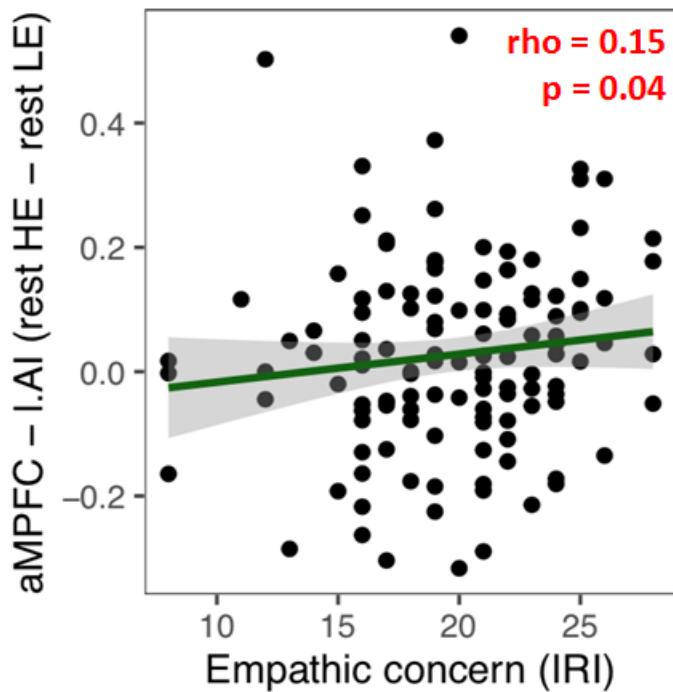
Videos > Rest



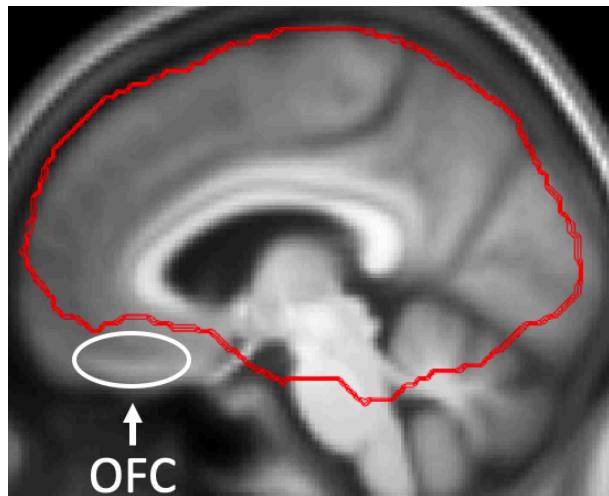
Rest > Videos

Supplementary Fig. 1. Significant brain activations during the SoVT-Rest task blocks (main effects). Results are reported at $p < 0.05$ FWE-corrected at the voxel level.


Rest: Post LE > Post HE


Supplementary Fig. 2. Brain regions with greater activation during rest periods after low emotional videos (rest post LE) in contrast to rest periods after high emotional videos (rest post HE). Results are reported at $p < 0.05$ FWE-corrected at the voxel level. For a full list, see Supplementary Table 2; r.SFG, right superior frontal gyrus; l.PHG, left parahippocampal gyrus.

Group


Young (Klimecki et al., 2013) Elderly (Current study)

Supplementary Fig. 3. Age-related SoVT differences. The young group from Klimecki and colleagues (2013) is shown for comparison (consisting of $N = 94$ young females between 18 and 35 years of age), together with the elderly group from the present study ($N = 127$ older adults). ***= significant group differences $p < 0.001$; emp, empathy; neg, negative; pos, positive self-reports.

Supplementary Fig. 4. Spearman (ρ) correlation shows that higher functional connectivity between anterior medial prefrontal cortex and left anterior insula during rest periods after HE > LE videos [amPFC-I.AI (rest HE-rest LE)] was positively related to the empathic concern subscale of the IRI. Note that this correlation was relatively weak ($\rho = 0.15$, $p = 0.04$, one-tailed).

Supplementary Fig. 5 Group-based mask computed for the second-level GLM analysis. Red line delineates the brain volume (“mask”) comprising all voxels included in the group-level analyses after the pre-processing pipeline applied to individual brain images. Voxels outside the red line were not included in the subsequent brain analyses of fMRI data. Note that this removed large parts of the orbitofrontal cortex (OFC) due to magnetic field inhomogeneity. The structural image was created by averaging all T1 images from our 127 participants.

Supplementary References

Poisnel, G., Arenaza-Urquijo, E., Collette, F., Klimecki, O. M., Marchant, N. L., Wirth, M., ... Chételat, G. (2018). The Age-Well randomized controlled trial of the Medit-Ageing European project: Effect of meditation or foreign language training on brain and mental health in older adults. *Alzheimer's and Dementia: Translational Research and Clinical Interventions*, 4, 714–723. <https://doi.org/10.1016/j.trci.2018.10.011>

Coan, J. A., & Gottman, J. M. (2007). *The Specific Affect Coding System (SPAFF)*. In J. A. Coan & J. J. B. Allen (Eds.), *Series in affective science. Handbook of emotion elicitation and assessment* (p. 267–285). Oxford University Press.

Lindahl, J., Fisher, N., Cooper, D., Rosen, R., and Britton, W. (2017). “The Varieties of Contemplative Experience: A Mixed-Methods Study of Meditation-Related Challenges in Western Buddhists.” *PLOS ONE* 12(5): e0176239

Klimecki, O. M., Leiberg, S., Lamm, C., & Singer, T. (2013). Functional neural plasticity and associated changes in positive affect after compassion training. *Cerebral Cortex*, 23(7), 1552–1561. <https://doi.org/10.1093/cercor/bhs142>