

Supplementary Materials for

Synthetic neuromorphic computing in living cells

Luna Rizik†, Loai Danial†, Mouna Habib†, Ron Weiss and Ramez Daniel*

†These authors contributed equally to this work

Correspondence to: ramizda@bm.technion.ac.il

This PDF file includes:

Materials and Methods

Supplementary Text

Figs. S1.1 to S14.158

Tables S1.1 to S9.1

Supplementary References

1

Materials and Methods

Strains

All plasmids in this work were constructed using basic molecular cloning techniques. Escherichia

coli 10 β (araD139 D(ara-leu)7697 fhuA lacX74 galK (W80 D(lacZ)M15) mcrA galU recA1

endA1 nupG rpsL (StrR) D(mrr-hsdRMS-mcrBC)).

Plasmid Construction
All the plasmids in this work were constructed using basic molecular cloning techniques(1). New

England Biolab's (Beverly, MA) restriction endonucleases and Thermo Scientific FastDigest

Restriction Enzymes, T4 DNA Ligase, and Taq Polymerase were used. PCRs were carried out

with a Bio-Rad S1000™ Thermal Cycler with Dual 48/48 Fast Reaction Modules. Synthetic

oligonucleotides were synthesized by Integrated DNA Technologies (Coralville, IA). Plasmids

were transformed into E. coli 10β, with a standard heat shock protocol (1). Plasmids were isolated

with Qiagen QIAprep Spin Miniprep Kits (Qiagen, Hilden, Germany) according to the

manufacturer's recommendations. Modifications were confirmed by restriction digests. DNA

sequencing was done by the Macrogen Sequencing Service (Macrogen Europe, The Netherlands).

All devices (promoter-RBS-gene-terminator) were initially assembled in the Lutz and Bujard

expression vector pZE11G (2) containing ampicillin resistance and the ColE1 origin of replication.

Parts are defined as promoters, RBSs, genes, and terminators. Manipulation of different parts of

the same type was carried out using the same restriction sites. For example, to change a gene in a

device we used Acc65I/KpnI and BamHI/XmaI. To assemble two devices, we used a single

restriction site flanking one device and used oligonucleotide primers and PCR to add that

restriction site to the 5' and 3' ends of a second device. To assemble multi-devices, we used the

Gibson Assembly Master Mix from New England Biolabs to join the DNA fragments (Ipswich,

MA), following the manufacturer's instructions. The overlapping inserts were prepared by PCR

amplifications using the Phusion High-Fidelity PCR kit (New England Biolabs). Each assembly

reaction contained approximately 250 ng of each insert and 100 ng of the linearized vector and

incubated at 50°C for 60 min, followed by a transformation into heat shock E. coli 10β cells.

Colony PCR screening was carried out using forward and reverse primer pairs. Positive clones

were sequencing verified. After assembling devices in the ampicillin-resistant ColE1 backbone,

antibiotic-resistance genes were changed using AatII and SacI, and the origin of replications was

changed with SacI and AvrII. Supplementary Information, Section 16, provides details regarding

plasmid maps. The references in Supplementary Information, Section 18, provide details

regarding the origin of the plasmids.

Circuit Characterization
Overnight cultures of E. coli strains were grown from frozen glycerol stocks at 37oC, in a Shel

Labs SSI5 shaking incubator at 250 r.p.m., in 5 ml of Luria–Bertani–Miller medium (Fisher) with

appropriate antibiotics: Carbenicillin (50 µg mL-1), Kanamycin (30 µg mL-1), Chloramphenicol

(25 µg mL-1). The inducers used were arabinose, IPTG - isopropyl-b-D-1-thiogalactopyranoside,

and AHL 3OC6HSL (Sigma-Aldrich). Overnight cultures were diluted 1:100 into 5 ml fresh Luria–

Bertani medium with antibiotics and were incubated at 37oC, 250 r.p.m. for 30 min. Cultures (200

µl) were then moved into 96-well plates, combined with inducers, and incubated for 4 h and 20

min in a microplate shaker (37oC, 500 r.p.m.) until they reached an OD600nm ~ 0.4–0.6. At least

10,000 events were recorded in all experiments, and these data were then gated by forward scatter

and side scatter using CyExpert 2.2 (Cytoflex S).

2

The geometric means of the gated fluorescence distributions were calculated using MATLAB.

Fluorescence values were based on geometric means of flowcytometry populations from three

experiments, each of which corresponded to 10,000 events.

Plate Reader/FACS set-up

GFP fluorescence was quantified by excitation at a wavelength of 484nm and emission at a

wavelength of 510nm. mCherry fluorescence was quantified by excitation at 587nm and emission

at 610nm. PE-TexasRed filter voltages on a BD LSRFortessa high throughput sampler to measure

GFP and mCherry expression levels, respectively. The FACS voltages were adjusted using

CyExpert 2.2 software so that the maximum and minimum expression levels could be measured

with the same voltage settings. Thus, consistent voltages were used across each entire experiment.

The same voltages were used for subsequent repetitions of the same experiment. GFP was excited

with a 488nm laser, and mCherry was excited with a 561nm laser. Supplementary Information,

Section 14, provides our FACS data.

3

1. Perceptual computing models

A single layer of the artificial neural networks (ANN) receives multiple linear-scale analog inputs

(-∞,+∞). This network (Fig. S1.2): (1) multiplies each input xi by its corresponding analog scalar

ni, which represents the synaptic weight, (2) sums the multiplication products, 𝑦 = ∑𝑥𝑖𝑛𝑖, and (3)

contains a non-linear activation function, which is commonly described by a sigmoid function 𝑧 =
𝑒𝑦/𝐾

1+𝑒𝑦/𝐾
, 𝑧 ∈ [0,1]. This neural model is known as the perceptron (3). Asymptotically, the node or

the activation function acts as a decision-making function that determines the digital levels

corresponding to the analog inputs.

Fig. S1.1. An artificial neural network. The non-linear digital elements in the network are called

artificial neurons, and are represented as nodes within the graphical abstraction of the network.

The strength of each analog signal is called an artificial synapse (weight) and is represented by an

edge. The interactions between nodes through the weights lead to the global behavior of the

network.

The simulation results of perceptron including the analog signal and the perceptron output signal

are shown in Figure S1.2. We present the results in the 2D contour curve and the 3D surface curve.

Every method has its benefits. For example, it is simpler to present the analog pattern in 2D contour

compared to the 3D surface curve. By contrast to the perceptron output signal, it is better

illustrated in the 3D surface curve.

(A) (B) (C)

4

Fig. S1.2. (A) Anatomical structure of abstract perceptron model. The proposed model receives

analog inputs processed by analog-weighted elements that collectively interact through non-

linear nodes to make an assertive decision. The perceptron model operates in the linear domain,

which is widely used as the neuro-processing core in artificial neural networks. (B) Simulation

results of the analog signal (n1x1+ n2x2) in 2D contour curve and 3D surface curve. (C)

Simulation results of the perceptron signal in 2D contour curve and 3D surface curve.

5

BOX1: Abstract model of perceptgene
The output of power-law and multiplication circuit can be approximated as:

𝑌 = ∏ 𝑌𝑚 ∙ (
𝑋𝑖

𝐾𝑚𝑖
)
𝑛𝑖𝑁

𝑖=1 (I)

Where 𝑋𝑖 is the input concentration, 𝐾𝑚𝑖 is dissociation constant, or input dynamic range or

normalization. 𝑌𝑚 has units of concentration, and it equlas the the maximum level of produced

transcription factors (See Supplementary Eq. S2.13). 𝑛𝑖 is Hill-coefficient of the input 𝑋𝑖. The

promoter activity is initiated when the transcription factor Y binds, and is given by:

𝑃𝑟 =
(
𝑌

𝐾𝑑
)
𝑚

+𝛽

1+𝛽+(
𝑌

𝐾𝑑
)
𝑚 (II)

Where 𝛽 is the basal level of the promoter, 𝐾𝑑 is the dissociation constant of binding 𝑌 to

promoter, and 𝒎 is the Hill-coefficient (e.g. number of binding sites within the promoter). The

two equations yield an abstract model which is given by:

{
𝑦 = (∏ 𝐵 ∙ 𝑥𝑖

𝑛𝑖𝑁
𝑖=1)𝑚

𝑃𝑟 =
𝑦+𝛽

1+𝛽+𝑦

 (III)

𝑥𝑖 is normalized input (1 < 𝑥𝑖 < 𝐼𝐷𝑅).

Where 𝐼𝐷𝑅 is the input dynamic range

of each input xi.

The abstract model includes three computational components:

(1) Network Weights (𝒏𝒊 and 𝒎): are represented by the effective Hill-coefficients and

depend on the biological cooperativity of proteins, number of binding sites in the

promoter, the protein quaternary structure (the number of subunits that interact

with each other and arrange themselves to form a final protein), design topology,

and some cases in other small molecules.

(2) Bias (𝑩): is determined by the translation/transcription rates, mRNA/protein half-

lives, rate of cell growth, binding affinities in protein-protein or protein-DNA

reactions. Bias constants are unit-less, B= Ym /Kd.

(3) Activation functions or network nodes (𝒛𝒊- the output of each perceptgene layer)

which depend on promoter activity and are given by the normalized Michaelis-

Menten model with a basal level.

The basal level has two significant roles in determining the behavior of perceptgene model.

First, it preserves the output dynamic range in the logarithmic scale−log (𝛽). Second, it sets the

effective threshold of the perceptgene (See Supplementary Information, Section 4).

log Transform

6

Two models of perception can be considered in this work, the perceptgene model (Fig. S1.3A) and

Michaelis-Menten (MM)-based perceptron model (Fig. S1.3B). Both models include the bindings

between transcription factors (TFs) and DNA, with promoter activities modeled as activation

functions. The perceptgene model is a logarithmic transformation of the perceptron and it operates

in the logarithmic domain. The MM-based perceptron model is similar to the perceptron and

operates in the linear domain. The MM-based perceptron model is advantageous in its simple

design. For example, the summation will be implemented by expressing common proteins by the

inputs (4), and the weight 𝑛𝑖 is represented as the affinity at ribosome-binding site (4). Our analysis

showed that such a model requires a much higher Hill coefficient (𝑚) to operate than the

perceptgene model.

Fig. S1.3. (A) Perceptgene model, (B) Michaelis-Menten (MM)-based perceptron model.

The two systems accept two inputs in the range of 𝑥𝐿 < 𝑥1, 𝑥2 < 𝑥𝐻 . For simplicity, we assume

that 𝑛1 = 𝑛2 = 𝑛 , and the basal level (β) of every promoter is very low. As in Madar et al.(5) and

illustrated in Fig. S1.4, for systems that can be described by a Hill function
𝑦𝑚

𝐾𝑚+𝑦𝑚
, we define the

output dynamic range (ODR) as the difference between the 90% and 10% of the maximal output

𝑧𝑚𝑎𝑥 and the input dynamic range (𝐼𝐷𝑅) as the ratio of the input concentrations required for 90%

and 10% of the maximal output. For simplicity, we assume that 𝑧𝑚𝑎𝑥 = 1.

1.1. Perceptgene model

For low-value inputs 𝑥1 = 𝑥2 = 𝑥𝐿, we get:

𝑦𝐿 = 𝑥𝐿
𝑛 ∙ 𝑥𝐿

𝑛

𝑧𝐿 =
𝑦𝐿
𝑚

𝐾𝑚+𝑦𝐿𝑚
= 0.1

 𝑛 ∙ 𝑚 ∙ log(𝑥𝐿) = 0.5 ∙ log (
1

9
) +

𝑚

2
∙ log (𝐾) (S1.1)

For high value inputs 𝑥1 = 𝑥2 = 𝑥𝐻, we get:

𝑦𝐻 = 𝑥𝐻
𝑛 ∙ 𝑥𝐻

𝑛

𝑧𝐻 =
𝑦𝐻

𝑚

𝐾𝑚+𝑦𝐻𝑚
= 0.9

 𝑛 ∙ 𝑚 ∙ log(𝑥𝐻) = 0.5 ∙ log(9) +
𝑚

2
∙ log (𝐾) (S1.2)

The 𝑰𝑫𝑹 can be expressed as (Fig. S4):

𝐼𝐷𝑅 = log(𝑥𝐻) − log(𝑥𝐿) (S1.3)

Substituting Eq. S1.1 and Eq. S1.2 into Eq. S1.3, the 𝐼𝐷𝑅 of perceptgene is given by:

𝐼𝐷𝑅 =
1

𝑛∙𝑚
∙ 0.5 ∙ log (81) ≈

1

𝑛∙𝑚
 (S1.4)

(A) (B)

7

1.2. Michaelis-Menten (MM)-based perceptron model

For low-value inputs 𝑥1 = 𝑥2 = 𝑥𝐿, we get:

𝑦𝐿 = 𝑛 ∙ 𝑥𝐿 + 𝑛 ∙ 𝑥𝐿

𝑧𝐿 =
𝑦𝐿
𝑚

𝐾𝑚+𝑦𝐿𝑚
= 0.1

 𝑚 ∙ log(𝑥𝐿) = log (
1

9
) + 𝑚 ∙ log(𝐾) −𝑚 ∙ log(2) − 𝑚 ∙ log(𝑛) (S1.5)

For high-value inputs 𝑥1 = 𝑥2 = 𝑥𝐻, we get:

𝑦𝐻 = 𝑛 ∙ 𝑥𝐻 + 𝑛 ∙ 𝑥𝐻

𝑧𝐻 =
𝑦𝐻

𝑚

𝐾𝑚+𝑦𝐻𝑚
= 0.9

 𝑚 ∙ log(𝑥𝐻) = log(9) + 𝑚 ∙ log(𝐾) − 𝑚 ∙ log(2) − 𝑚 ∙ log(𝑛) (S1.6)

Substituting Eq. S1.5 and Eq. S1.6 into Eq. S1.3, the 𝐼𝐷𝑅 of MM-based perceptron is given by:

𝐼𝐷𝑅 =
log (81)

𝑚
≈

2

𝑚
 (S1.7)

The Hill coefficient values (𝒎,𝒏) of synthetic biological parts often are between 1 – 2 (4, 6).

Therefore, the 𝑰𝑫𝑹 of the MM-based perceptron is approximated as 1.333 fold (for 𝑚 = 1.5), and

the 𝑰𝑫𝑹 of perceptgene is approximated as 0.667 fold (for 𝑛 = 1,𝑚 = 1.5) and 0.333 fold (for

𝑛 = 2,𝑚 = 1.5), respectively. Therefore, Eq. S1.4 and Eq. S1.7 show that the MM-based

perceptron model requires a higher value of 𝒎 than the perceptgene model to operate.

Fig. S1.4. Definition of Input Dynamic Range and Output Dynamic Range.

Figs. S1.5 and S1.6 show the simulation results of the perceptgene model and the MM-based

perceptron model for 𝑛=1 and 0.5, respectively. The MM-based perceptron model fails to act as a

binary classifier (there is no clear separation between "0" and "1" states). By contrast, the

perceptgene shows a distinct separation between "0" and "1" states.

z
1

0.9

0.5

0.1

yL K yH

y
IDR

ODR

8

Fig. S1.5. (A) Michaelis-Menten (MM)-based perceptron model that combines linear operations

and biochemical reactions. The model operates in the linear domain. Simulation results of the

MM-based perceptron model, with 𝑛1 = 𝑛2 = 1,𝑚 = 1 . (B) Simulation results of the

perceptgene model, with 𝑛1 = 𝑛2 = 1,𝑚 = 1.

Fig. S1.6. Simulation results of (A) Analog signal (𝑌/𝐾) for MM-based perceptron model, 𝑛 =
1. (B) Analog signal (𝑌/𝐾) for perceptgene model, 𝑛 = 1. (C) Output signal for MM-based

perceptron model, 𝑛 = 1. (D) Output signal for perceptgene model, 𝑛 = 1. (E) Analog signal

(𝑌/𝐾) for MM-based perceptron model, 𝑛 = 0.5. (F) Analog signal (𝑌/𝐾) for perceptgene

model, 𝑛 = 0.5. (G) Output signal for MM-based perceptron model, 𝑛 = 0.5. (H) Output signal

for perceptgene model, 𝑛 = 0.5. In all the simulations, we assumed that 𝑚 = 1.

(B)

(E) (F) (H) (G)

(A)

(A) (B) (C) (D)

9

1.3. 3D-Plane: Simulation of perceptron and perceptgene models include basal level

The perceptron model includes MM as the activation function failed to classify the analog

pattern into two non-linear levels even for high hill coefficient in the activation function

Fig. S1.7. Simulation results of (A) Analog signal (𝑌/𝐾) for MM-based perceptron. (B) Output

signal for modified perceptron model, 𝑚 = 1. (C) Output signal for modified perceptron model,

𝑚 = 2. In all the simulations, we assumed that 𝑛1 = 𝑛2 = 1, 𝛽 = 0.01.

(A)

(B) (C)

10

The perceptgene succeed to classify the analog pattern into two non-linear levels even for

low Hill coefficient in the activation function

Fig. S1.8. Simulation results of (A) Analog signal (𝑌/𝐾) for perceptgene. (B) Output signal for

perceptgene model, 𝑚 = 1 . (C) Output signal for perceptgene model, 𝑚 = 2 . In all the

simulations, we assumed that 𝑛1 = 𝑛2 = 1, 𝛽 = 0.01.

1.4. Sensitivity analysis for perceptgene circuit

Sensitivity measures the fold change in the output as a function of the fold change in the input and

is given by:

𝑆𝑂𝑢𝑡−𝐼𝑛 =
∆𝑂𝑢𝑡/〈𝑂𝑢𝑡〉

∆𝐼𝑛/〈𝐼𝑛〉
 (S1.8)

Where 𝐼𝑛 is the input and 𝑂𝑢𝑡 is the output (Fig. S1.9A). "< >" denotes the mean of the signal. In

this section, we analyze the signals' sensitivity that propagate through the perceptgene (Fig.

S1.9B). The signals are given by:

𝑦 = 𝐵 ∙ (
𝑥

𝐼𝐷𝑅
)
𝑛

+ 𝑦0 + 𝜎𝑦 (S1.9.1)

𝑧 = 𝑍𝑚𝑎𝑥 ∙
𝑦𝑚

𝑦𝑚+𝐾𝑚
+ 𝑧0 + 𝜎𝑧 (S1.9.2)

Where 𝐵 is the bias with concentration units, 𝑰𝑫𝑹 is the input dynamic range, 𝑥 is the perceptgene

input (unitless), 𝑦0 is the background signal, 𝑧0 is the promoter basal level, 𝑛 and 𝑚 are Hill-

coefficients, σ𝑦 and σ𝑧 are random numbers, 𝑍𝑚𝑎𝑥 is the maximum protein expressed in the

system.

We calculate the sensitivity of three systems (Fig. S1.9B):

(A)

(B) (C)

11

• An analog system maps the analog input signal (𝑥) to collective weighted analog output

signal (𝑦) using a power-law and multiplication function:

𝑆𝑦−𝑥 =
∆𝑦/〈𝑦〉

∆𝑥/〈𝑥〉
 (S1.10)

• A digital system maps analog signal (𝑦) to output levels (𝑧) with a sigmoidal activation

function:

𝑆𝑧−𝑦 =
∆𝑧/〈𝑧〉

∆𝑦/〈𝑦〉
 (S1.11)

• A neuromorphic system combines the analog and digital systems:

𝑆𝑧−𝑥 =
∆𝑧/〈𝑧〉

∆𝑥/〈𝑥〉
 (S1.12.1)

𝑆𝑧−𝑥 =
∆𝑧/〈𝑧〉

∆𝑦/〈𝑦〉
∙
∆𝑦/〈𝑦〉

∆𝑥/〈𝑥〉
 (S1.12.2)

Fig. S1.9. (A) A circuit that has an input 𝐼𝑛 and output 𝑂𝑢𝑡. (B) Perceptgene with one input (𝑥).

 𝑦 is the collective analog signal and 𝑧 is the output.

Using Eq. S1.9.1 and S1.9.2, we get:
Δ𝑦

<𝑦>
= 𝑛 ∙ (1 −

𝑦0

<𝑦>
) ∙

∆𝑥

<𝑥>
 (S1.13.1)

Δ𝑧

<𝑧>
= 𝑚 ∙ (1 −

𝑧0

<𝑧>
) ∙ (1 −

<𝑧>−𝑧0

𝑍𝑚𝑎𝑥
) ∙

∆𝑦

<𝑦>
 (S1.13.2)

Therefore, according to the definition of sensitivity, we get:

 𝑆𝑦−𝑥 = 𝑛 ∙ (1 −
𝑦0

<𝑦>
) (S1.14.1)

𝑆𝑧−𝑦 = 𝑚 ∙ (1 −
𝑧0

<𝑧>
) ∙ (1 −

<𝑧>−𝑧0

𝑍𝑚𝑎𝑥
) (S1.14.2)

𝑆𝑧−𝑥 = 𝑛 ∙ 𝑚 ∙ (1 −
𝑦0

<𝑦>
) ∙ (1 −

𝑧0

<𝑧>
) ∙ (1 −

<𝑧>−𝑧0

𝑍𝑚𝑎𝑥
) (S1.14.3)

Our simulation results (Fig. S1.10) based on the set of equations S1.14.1- S1.14.3 show the

influence of the background level (𝑦0) on the analog, digital and neuromorphic systems and their

sensitivity. When 𝑦0 increases, the effective input dynamic range (𝐼𝐷𝑅𝑒𝑓𝑓) decreases (Fig.

S1.10A). Based on Eq. S1.9.1 when 𝑦0 = 0 , the 𝐼𝐷𝑅𝑒𝑓𝑓 = 𝐼𝐷𝑅 , meaning that the effective

(actual) input dynamic range is equal to the theoretical input dynamic range. While increasing the

background level decreases the sensitivity of the analog system (𝑆𝑦−𝑥, Fig. S1.10D), it almost does

not affect the sensitivity of the neuromorphic system (𝑆𝑧−𝑥, Fig. S1.10F). More interestingly, the

sensitivity of the neuromorphic system (𝑆𝑧−𝑥, Fig. S1.10F) is higher than the sensitivity of digital

system (𝑆𝑧−𝑦, Fig. S1.10E). These results strongly depend on the value of basal promoter level

(𝑧0). In case where 𝑧0 = 0, the digital system's sensitivity can be higher than the sensitivity of the

(A) (B)

12

neuromorphic system. However, since synthetic biological parts always have basal levels, we

expect that the neuromorphic system's sensitivity will not be affected by the background level as

compared to the digital system. Therefore, in conclusion, the main contribution of increasing the

background level (𝑦0) on the performance of a neuromorphic (perceptgene) system is decreasing

the input dynamic range.

Fig. S1.10. Simulation results show the influence of the background level (𝑦0) on the signals and

sensitivity of perceptgene. (A) Simulation results of a weighted and collective analog signal (𝑦)

versus input level (𝑥). (B) Simulation results of the output signal (𝑧) versus collective signal (𝑦).

(C) Simulation results of the output signal (𝑧) versus input signal (𝑥). (D) Sensitivity of the analog

system (𝑆𝑦−𝑥), where 𝑥 level is the input and 𝑦 is the output. (E) Sensitivity of the digital system

(𝑆𝑧−𝑦), where 𝑦 is the input and 𝑧 is the output. (F) Sensitivity of the neuromorphic system (𝑆𝑧−𝑥),

where 𝑥 is the input and 𝑧 is the output. 𝐼𝐷𝑅𝑒𝑓𝑓 is the effective input dynamic range when the

background signal (𝑦0) is higher than zero. Simulation parameters: 𝑛 = 1.5, 𝐼𝐷𝑅 = 100, 𝐵 =
100, 𝑍𝑚𝑎𝑥 = 100,𝑚 = 2, 𝑧0 = 1.

In summary: The analog system maps input levels to output levels using a power-law and

multiplication function. The digital system maps input levels to output levels with a

sigmoidal activation function in the logarithmic domain. The neuromorphic system

combines analog and digital systems to carry out perceptgene computation. Our analysis

shows that the analog system's sensitivity is reduced significantly with an increase in basal

expression, meaning that analog operation in the low concentration regime is highly prone

to errors. The digital system is designed to be insensitive in the low concentration regime,

and hence less affected by an increase in basal expression. The neuromorphic system

combines the best features of both, namely the ability to perform analog computation while

being insensitive to the low concentration regime's noisy aspects, as shown in the sensitivity

analysis (Fig. S1. 10).

(A)

(F) (E) (D)

(C) (B)

13

1.5. Noise analysis for analog signals in perceptron

Here we will evaluate the noise that generates during the signal aggregation in genetic perceptron.

If we assume that their "l" signals that aggregate and each of them has a noise of ∆X, then the

system should satisfy two boundary conditions:

1. 𝑙 ∙ ∆𝑋𝐿"𝑋𝐿̅̅ ̅ (S1.15.1)

2. ∆𝑋𝐻"𝑋𝐿̅̅ ̅ (S1.15.2)

Where XL is defined as a low signal and XH is defined as a high signal. In the first condition, we

request that the total noise that is generated by the "l" signals is smaller than the low signal XL. In

the second condition, we inquire that the noise that is generated by the high signal (XH) is smaller

than the low signal itself. Signals often originate from the transport of discrete random carriers in

systems; in biology, it is the diffusion of biochemical molecules and proteins. Naturally, these

signals propagate with random fluctuations inside the networks. These fluctuations follow the

Poisson process and generate shot noise that scales as the square root of the molecular count.

Typically, there are two orthogonal sources of noise in any biological system (7, 8). The first

source is the intrinsic noise, which is inherently generated by the system itself. The second source

is the extrinsic noise, which is generated by random fluctuations in the input or another

environmental parameter. Here we consider the influence of the intrinsic noise only on the

perceptron. A stochastic model for intrinsic cellular noise may be greater than the Poisson process,

with the addition of burst size (𝒃𝒊𝒏𝒕) is given by (9):

∆𝑋𝐿 = √(1 + 𝑏𝑖𝑛𝑡) ∙ 𝑋𝐿̅̅ ̅ (S1.16.1)

∆𝑋𝐻 = √(1 + 𝑏𝑖𝑛𝑡) ∙ 𝑋𝐻̅̅ ̅̅ (S1.16.2)

Substituting Eq. S1.15.1 into Eq.S1.16.1 and Eq. S1.15.2 into Eq.S1.16.2, we obtain:

𝑙 ∙ √(1 + 𝑏𝑖𝑛𝑡) ∙ 𝑋𝐿̅̅ ̅"𝑋𝐿̅̅ ̅ ➔ 𝑙"√
𝑋𝐿̅̅ ̅̅

(1+𝑏𝑖𝑛𝑡)
 (S1.17.1)

√(1 + 𝑏𝑖𝑛𝑡) ∙ 𝑋𝐻̅̅ ̅̅ "𝑋𝐿̅̅ ̅ ➔ 𝑋𝐻̅̅ ̅̅ "
𝑋𝐿̅̅ ̅̅
2

(1+𝑏𝑖𝑛𝑡)
 (S1.17.2)

Therefore, there is a tradeoff between number of inputs and system accuracy

XL bint Maximum l Maximum XH

10 0 ~3 100

100 0 10 10000

10 3 1 25

100 3 5 2500

100 9 3 1000

1000 9 10 100000
Table S1.1: The relations between the maximum number of inputs that are allowed and burst size in

perceptron.

The burst size relies on the translation rate, the number of amino acids (aa) in the synthesized

protein, and mRNA half time. Typically, in Escherichia coli, the translation rate ranges between

10-20 aa/sec, depending on growth condition (10), and mRNA half time is around 3-5 min (10).

Therefore, the burst size in Escherichia coli can be ranged between 3-15.

14

The main limitation for scaling the perceptgene beyond 2 inputs, is the construct itself.

Table S1.2 List of parameters used in this section

Symbol Description

m Hill coefficient of binding transcription factor to promoter

n Hill coefficient of binding inducer to transcription factor

𝑥𝑖 Inputs

𝑦 Summation or multiplication of inputs (analog signal)

𝑧𝑚𝑎𝑥 Maximal output

β Basal level

𝑆 Sensitivity

Table S1.3 List of abbreviations used in this section

Symbol Description

MM Michaelis-Menten

TFs Transcription factors

IDR Input dynamic range

ODR Output dynamic range

15

2. Biophysical models and analysis of single perceptgene networks

In the following sections, we model the genetic network motifs using biophysical models at

steady state d/dt=0. Our models involve detailed biochemical reactions, such as the bindings

between inducers and transcription factors (TFs), as well as between TFs and promoters that

consist of multiple binding sites. Our models focus on the effects of negative and positive

feedback loops. These detailed biochemical models can accurately capture the behavior of

the various proposed circuit topologies by solely changing the parameters that are expected

to vary between experiments (e.g., plasmid copy number). In the models, we assume that the

concentration of chemical species is uniformly distributed and the behaviors of our genetic

circuits can be analyzed at the steady states.

2.1. Model of auto-negative feedback (ANF) loops and combinatorial promoter:

In this section, we present a model of ANF loops with a combinatorial promoter (Fig. S2.1, Fig.

S2.2A), which yields the loops' behavior resembling a power-law and multiplication function. But

first, we show that the experimental results of this circuit fit the power-law and multiplication

function.

Fitting experimental results of ANF loops and PlacO/tetO-based combinatorial promoter to power-

law and multiplication function:

log(𝐺𝐹𝑃) = 𝑐 + 𝑛1 ∙ log(𝐼𝑃𝑇𝐺) + 𝑛2 ∙ log (𝑎𝑇𝑐)

Fig. S2.1. Matlab surface fits the experimental results of PlacO and PtetO ANF loops and

combinatorial promoter (PlacO/tetO- GFP) to power-law and multiplication function

log(𝐺𝐹𝑃) = 𝑐 + 𝑛1 ∙ log(𝐼𝑃𝑇𝐺) + 𝑛2 ∙ log (𝑎𝑇𝑐). The data appears in Fig. 1C in the main text

and is reproduced here for clarity.

16

The combinatorial promoter in this section includes two binding sites with different repressors. In

this system, we assume that:

• The Hill coefficient of binding 𝑅1 repressor to 𝑃 1(promoter within ANF) is equal to the

Hill coefficient of binding 𝑅1 to 𝑃 1 2⁄ (combinatorial promoter), 𝑛1

• The Hill coefficient of binding 𝑅2 repressor to 𝑃2 (promoter within ANF) is equal to the

Hill coefficient of binding 𝑅2 to 𝑃1 2⁄ (combinatorial promoter), 𝑛2

• The binding affinity of 𝑅1 repressor to 𝑃1 (promoter within ANF) is equal to binding

affinity to 𝑃1 2⁄ (combinatorial promoter), 𝐾𝑑1

• The binding affinity of 𝑅2 repressor to 𝑃2 (promoter within ANF) is equal to binding

affinity to 𝑃1 2⁄ (combinatorial promoter), 𝐾𝑑2

• The Basal levels (𝛽𝑖) of 𝑃1 , 𝑃2 and 𝑃 1 2⁄ are very low.

The binding of TFs to promoters is modeled according to the Shea-Ackers formalism (11, 12).

Therefore, the total level of expressed 𝑅𝑇𝑖 (𝑖 = 1,2) repressors in the case of ANF loops can be

expressed as:

𝑅𝑇𝑖 = 𝑅𝑚𝑎𝑥𝑖
1

1+(
𝑅𝑖
𝐾𝑑𝑖

)
𝑛𝑖

 (S2. 1)

Where 𝑅𝑚𝑎𝑥𝑖 is the maximum protein level achieved by 𝑃𝑖 which is proportional to (transcription

rate × translation rate) × (mRNA half-life × protein half-life). 𝑅𝑖 is the level of repressors that are

bound to 𝑃𝑖. The induction of the repressors by 𝑥𝑖 inducers is given by:
𝑅𝑖 = 𝑅𝑇𝑖 ∙ 𝑓𝑖(𝑥𝑖) (S2. 2)

𝑓𝑖(𝑥𝑖) =
1

1+(
𝑥𝑖
𝐾𝑚𝑖

)
ℎ𝑖

 (S2. 3)

Where 𝐾 𝑚𝑖 dissociation constant and ℎ 𝑖Hill coefficients of binding 𝑥𝑖 to 𝑅𝑖 . The formed new

complex (Inducer-repressor) prevents the repressors from binding to 𝑃1 and 𝑃2. By substituting

Eq. S2.1 into Eq. S2.2 we get:
𝑅𝑖

𝐾𝑑𝑖
∙
𝐾𝑑𝑖

𝑓𝑖(𝑥𝑖)
= 𝑅𝑚𝑎𝑥𝑖

1

1+(
𝑅𝑖
𝐾𝑑𝑖

)
𝑛𝑖

 (S2. 4)

By developing Eq. 2.4, we get:

(
𝑅𝑖

𝐾𝑑𝑖
)
𝑛𝑖
= 𝑅𝑚𝑎𝑥𝑖 ∙

𝑓𝑖(𝑥𝑖)

𝑌𝑖
− 1 (S2. 5)

The binding states for 𝑃1 2⁄ combinatorial promoter is shown in fig. S2.2B. The probability for

 𝑃1 2⁄ promoter being in open complex 𝑃 is described by the following equations(11–13):

𝑃1/2 =
1

1+(
𝑅1
𝐾𝑑1

)
𝑛1
+(

𝑅2
𝐾𝑑2

)
𝑛2
+𝜃∙(

𝑅1
𝐾𝑑1

)
𝑛1
∙(
𝑅2
𝐾𝑑2

)
𝑛2 (S2. 6)

Then, the expression level of the output protein at steady is given by:

𝑌 = 𝑌𝑚𝑎𝑥 ∙
1

1+(
𝑅1
𝐾𝑑1

)
𝑛1
+(

𝑅2
𝐾𝑑2

)
𝑛2
+𝜃∙(

𝑅1
𝐾𝑑1

)
𝑛1
∙(
𝑅2
𝐾𝑑2

)
𝑛2 (S2. 7)

Where 𝑌𝑚𝑎𝑥 is the maximum protein level achieved by 𝑃1 2⁄ promoter. In case that the two

repressors do not interfere with their bindings to 𝑃1 2⁄ promoter (𝜃 = 1), we substitute Eq. S2.5

into Eq. S2.7 and get:

 𝑌 = 𝑌𝑚𝑎𝑥 ∙ (
𝑅1

𝑅𝑚𝑎𝑥1∙𝑓1(𝑥1)
) ∙ (

𝑅2

𝑅𝑚𝑎𝑥2∙𝑓2(𝑥2)
) (S2. 8)

Substituting Eq. S2.3 into Eq. S2.8, we get:

17

𝑌 = 𝑌𝑚𝑎𝑥 ∙ (
𝑅𝑇1

𝑅𝑚𝑎𝑥1
) ∙ (

𝑅𝑇2

𝑅𝑚𝑎𝑥2
) (S2. 9)

Therefore, in an ANF loop motif that regulates a combinatorial promoter, with 𝜃 = 1 , the

expressed signal is effectively the multiplication of the two repressors. Substituting Eq. S2.2 into

Eq. S2.1, we get:

𝑅𝑇𝑖 = 𝑅𝑚𝑎𝑥𝑖
1

1+(
𝑅𝑇𝑖∙𝑓(𝑥𝑖)

𝐾𝑑𝑖
)
𝑛𝑖

𝑅𝑇𝑖 + 𝑅𝑇𝑖
𝑛𝑖+1 (

𝑓(𝑥𝑖)

𝐾𝑑𝑖
)
𝑛𝑖
= 𝑅𝑚𝑎𝑥𝑖

𝑅𝑇𝑖 ∙ (
𝐾𝑑𝑖

𝑓(𝑥𝑖)
)
𝑛𝑖
+ 𝑅𝑇𝑖

𝑛𝑖+1 = 𝑅𝑚𝑎𝑥𝑖 ∙ (
𝐾𝑑𝑖

𝑓(𝑥𝑖)
)
𝑛𝑖

 (S2. 10)

When 𝐾𝑑𝑖is very small (high binding affinity between repressors and promoters), we get:

𝑅𝑇𝑖 = (𝑅𝑚𝑎𝑥𝑖)
1/(𝑛𝑖+1)

 ∙ (
𝐾𝑑𝑖

𝑓(𝑥𝑖)
)
𝑛𝑖/(𝑛𝑖+1)

 (S2. 11)

Substituting Eq. S2.3 into Eq. S2.11:

 𝑅𝑇𝑖 = (𝑅𝑚𝑎𝑥𝑖)
1/(𝑛𝑖+1)

 ∙ (𝐾𝑑𝑖)
𝑛𝑖/(𝑛𝑖+1) ∙ (1 + (

𝑥𝑖

𝐾𝑚𝑖
)
ℎ𝑖
)
𝑛𝑖/(𝑛𝑖+1)

 (S2. 12)

 Substituting Eq. S2.12 into Eq. S2.9: we get:

𝑌 = 𝑌𝑚𝑎𝑥 ∙

(

 (𝑅𝑚𝑎𝑥1)

1/(𝑛1+1)
 ∙ (𝐾𝑑1)

𝑛1/(𝑛1+1) ∙ (1 + (
𝑥1
𝐾𝑚1

)
ℎ1
)
𝑛1/(𝑛1+1)

𝑅𝑚𝑎𝑥1

)

∙

(

 (𝑅𝑚𝑎𝑥2)

1/(𝑛2+1)
 ∙ (𝐾𝑑2)

𝑛2/(𝑛2+1) ∙ (1 + (
𝑥2
𝐾𝑚2

)
ℎ2
)
𝑛2/(𝑛2+1)

𝑅𝑚𝑎𝑥2

)

 𝑌 = 𝑌𝑚𝑎𝑥 ∙ (
𝐾𝑑1

𝑅𝑚𝑎𝑥1
)
𝑛1/(𝑛1+1)

∙ (
𝐾𝑑2

𝑅𝑚𝑎𝑥2
)
𝑛2/(𝑛21+1)

∙ (1 + (
𝑥1

𝐾𝑚1
)
ℎ1
)
𝑛1/(𝑛1+1)

∙

(1 + (
𝑥2

𝐾𝑚2
)
ℎ2
)
𝑛2/(𝑛2+1)

 (S2. 13)

By applying a logarithmic operation to Eq. S2.13, we get:

log(𝑌) = log(𝑌𝑚𝑎𝑥) +
𝑛1

𝑛1+1
∙ 𝑙𝑜𝑔 (

𝐾𝑑1

𝑅𝑚𝑎𝑥1
) +

𝑛2

𝑛2+1
∙ 𝑙𝑜𝑔 (

𝐾𝑑2

𝑅𝑚𝑎𝑥2
) +

𝑛1

𝑛1+1
∙ 𝑙𝑜𝑔 (1 + (

𝑥1

𝐾𝑚1
)
ℎ1
) +

𝑛2

𝑛2+1
∙ 𝑙𝑜𝑔 (1 + (

𝑥2

𝐾𝑚2
)
ℎ2
) (S2. 14)

We define:

C ≡ log(𝑌𝑚𝑎𝑥) +
𝑛1

𝑛1+1
∙ 𝑙𝑜𝑔 (

𝐾𝑑1

𝑅𝑚𝑎𝑥1
) +

𝑛2

𝑛2+1
∙ 𝑙𝑜𝑔 (

𝐾𝑑2

𝑅𝑚𝑎𝑥2
) (S2. 15)

Then, we get:

log(𝑌) = 𝐶 +
𝑛1

𝑛1+1
∙ 𝑙𝑜𝑔 (1 + (

𝑥1

𝐾𝑚1
)
ℎ1
) +

𝑛2

𝑛2+1
∙ 𝑙𝑜𝑔 (1 + (

𝑥2

𝐾𝑚2
)
ℎ2
) (S2. 16)

In case that 𝑥𝑖 𝐾𝑚𝑖 > 1⁄ , the ANF loops and combinatorial promoter circuit act as power-law and

multiplication function, and are linearly separable in the log-log scale as follows:

18

log(𝑌) = 𝐶 +
𝑛1∙ℎ1

𝑛1+1
∙ 𝑙𝑜𝑔 (

𝑥1

𝐾𝑚1
) +

𝑛2∙ℎ2

𝑛2+1
∙ 𝑙𝑜𝑔 (

𝑥2

𝐾𝑚2
) (S2. 17)

Eq. S2.17 and Fig. S2.3 show that the coefficients of the power-law functions are set by the

cooperativity, number of binding sites and Hill coefficients (𝑛𝑖 and ℎ𝑖). Therefore, in our circuit

motif, the cooperativity effectively acts as weights in the perceptgene model, equivalent to synaptic

weights in the perceptron model.

Fig. S2.2. A theoretical model of linearly separable function at the log-log scale. (A) ANF loops

and combinatorial promoter circuit motif, CP#=Copy number of plasmids. (B) The binding

states of 𝑃1 2⁄ hybrid promoter.

Fig. S2.3. Theoretical results of ANF loops and combinatorial promoter using Eq. S2.3. (A)

Effect of ℎ: 𝐾𝑚1 = 1,𝐾𝑚2 = 1,𝐾𝑑1 = 1,𝐾𝑑2 = 1, 𝑅𝑚𝑎𝑥1 = 1000, 𝑅𝑚𝑎𝑥2 = 1, 𝑛1 = 1, 𝑛2 = 1.
(B) Effect of 𝑛: 𝐾𝑚1 = 1,𝐾𝑚2 = 1,𝐾𝑑1 = 1,𝐾𝑑2 = 1, 𝑅𝑚𝑎𝑥1 = 1000, 𝑅𝑚𝑎𝑥2 = 1, 𝑛2 = 1.

(B) (A)

(B)

(A)

19

Then we tested the influence of other biophysical and design parameters on the behavior of the

system as shown in Fig. S2.4. We expanded our models to include other mechanisms such as the

basal levels (𝛽𝑖) of promoters, as well as the asymmetry between the combinatorial promoter

(𝑃 1 2⁄) and ANF promoters (𝑃 1 & 𝑃 2) :

• ANF loops that are based on Eq. S2.1 and include 𝛽𝑖:

 𝑅𝑇𝑖 = 𝑅𝑚𝑎𝑥𝑖
1

1+𝛽𝑖+(
𝑅𝑖
𝐾𝑑𝑖

)
𝑛𝑖

 (S2. 18)

• The induction process that is based on Eq. S2.3 can be described as follows:

 𝑅𝑖 = 𝑅𝑇𝑖 ∙
1

1+(
𝑥𝑖
𝐾𝑚𝑖

)
ℎ𝑖

 (S2. 19)

• For asymmetric combinatorial promoters, we assume that 𝐾𝑑1 ≠ 𝐾𝑑1ℎ 𝑎𝑛𝑑 𝐾𝑑2 ≠ 𝐾𝑑2ℎ

𝑌 = 𝑌𝑚𝑎𝑥 ∙
1

1+(
𝑅1
𝐾𝑑1ℎ

)
𝑛1ℎ

+(
𝑅2
𝐾𝑑2ℎ

)
𝑛2ℎ

+𝜃∙(
𝑅1
𝐾𝑑1ℎ

)
𝑛1ℎ

∙(
𝑅2
𝐾𝑑2ℎ

)
𝑛2ℎ

 (S2. 20)

Fig. S2.4A shows the influence of increasing 𝐾𝑚 (the dissociation constant of binding inducer 𝑋𝑖
and repressor 𝑅𝑖). When 𝐾𝑚 decreases, the input dynamic range increases.

Fig. S2.4B shows the influence of increasing 𝐾𝑑𝑖 (the dissociation constant of binding repressors

to 𝑃 1 & 𝑃 2 promoters, respectively). When 𝐾𝑑 increases, the input dynamic range decreases.

Fig. S2.4C shows the influence of increasing 𝐾𝑑ℎ (the dissociation constant of binding repressors

to 𝑃 1 2⁄ combinatorial promoter), without changing the 𝐾𝑑𝑖 of ANF promoters. Our simulations

show that there is a tradeoff between the width of the𝐾𝑑ℎ and the input dynamic range. For

example, the input dynamic range with 𝐾𝑑ℎ = 10 is wider than the input dynamic range with

𝐾𝑑ℎ = 100. To demonstrate, we cloned the combinatorial promoter on HCP and ANF loops on

LCP/MCP, which gave a higher 𝐾𝑑ℎ value compared to 𝐾𝑑𝑖.
Fig. S2.4D shows the influence of increasing ℎ (Hill coefficient of binding inducer to repressors).

When ℎ increases, the slope of the log-log scale increases. Therefore, the Hill coefficient acts as a

weight, resembling the synaptic weight in the perceptron model. These results match our

theoretical model (Eq. S2.23).

Fig. S2.4E shows the influence of increasing 𝑛 (Hill coefficient of binding 𝑅 repressor to 𝑃 1 & 𝑃 2

promoters). When 𝑛 increases (while 𝑛ℎ of binding repressors to 𝑃 1 2⁄ is constant), the slope of

the log-log scale increases. Remarkably the maximum protein level which is achieved by the

circuit (𝑅𝑚𝑎𝑥) has an inverse effect than decreasing 𝐾𝑑.

The interference between the binding of different TFs on combinatorial promoter (13) is

represented by 𝜃 in Eq. S2.6, (𝜃 = 1 when there is no interference). When the binding between

one TF and the combinatorial promoter affects the interaction between other TFs, then 𝜃 < 1 (Eq.

S2.6). Fig. S2.4F shows the influence of increasing 𝜃 on the ANF loops and combinatorial

promoter circuit. As in Fig. S2.4F, even for a very low 𝜃, which means a high interference between

the two repressors, the input-output transfer function of the circuit motif can be fitted to a power-

law and multiplication function.

20

(B)

(A)

(C)

(D)

21

Fig. S2.4. Simulation results of ANF loops and combinatorial promoter circuit motif.

A. Effect of 𝐾𝑚: 𝐾𝑚 = 𝐾𝑚1 = 𝐾𝑚2, ℎ1 = 1, ℎ2 = 1, 𝑘𝑑1 = 1,𝐾𝑑2 = 1,𝐾𝑑1ℎ = 1, 𝑘𝑑2ℎ =

1, 𝑅𝑚𝑎𝑥1 = 1000, 𝑅𝑚𝑎𝑥2 = 1, 𝑛1 = 1, 𝑛2 = 1, 𝑛1ℎ = 1, 𝑛2ℎ = 1, 𝜃 = 1, 𝛽 = 0.001.

B. Effect of 𝐾𝑑: 𝐾𝑑 = 𝐾𝑑1 = 𝐾𝑑2 = 𝐾𝑑1ℎ = 𝐾𝑑2ℎ, 𝐾𝑚1 = 1,𝐾𝑚2 = 1, ℎ1 = 1, ℎ2 = 1,
𝑅𝑚𝑎𝑥1 = 1000, 𝑅𝑚𝑎𝑥2 = 1, 𝑛1 = 1, 𝑛2 = 1, 𝑛1ℎ = 1, 𝑛2ℎ = 1, 𝜃 = 1, 𝛽 = 0.001.

C. Effect of 𝐾𝑑ℎ: 𝐾𝑑ℎ = 𝐾𝑑1ℎ = 𝐾𝑑2ℎ, 𝑘𝑑1 = 1, 𝐾𝑑2 = 1,𝐾𝑚1 = 1,𝐾𝑚2 = 1, ℎ1 =
1, ℎ2 = 1, 𝑅𝑚𝑎𝑥1 = 1000, 𝑅𝑚𝑎𝑥2 = 1, 𝑛1 = 1, 𝑛2 = 1, 𝑛1ℎ = 1, 𝑛2ℎ = 1, 𝜃 = 1, 𝛽 =
0.001.

D. Effect of ℎ: 𝐾𝑚1 = 1,𝐾𝑚2 = 1, 𝑘𝑑1 = 1,𝐾𝑑2 = 1,𝐾𝑑1ℎ = 1, 𝑘𝑑2ℎ = 1, 𝑅𝑚𝑎𝑥1 =
1000, 𝑅𝑚𝑎𝑥2 = 1, 𝑛1 = 1, 𝑛2 = 1, 𝑛1ℎ = 1, 𝑛2ℎ = 1, 𝜃 = 1, 𝛽 = 0.001.

(E)

(F)

22

E. Effect of 𝑛: 𝐾𝑚1 = 1,𝐾𝑚2 = 1, 𝑘𝑑1 = 1,𝐾𝑑2 = 1,𝐾𝑑1ℎ = 1, 𝑘𝑑2ℎ = 1, 𝑅𝑚𝑎𝑥1 =
1000, 𝑅𝑚𝑎𝑥2 = 1, ℎ1 = 1, ℎ2 = 1, 𝑛1ℎ = 1, 𝑛2ℎ = 1, 𝜃 = 1, 𝛽 = 0.001.

F. Simulation results show the influence of interference between transcription factors

(TFs) on the ANF loops and combinatorial promoter circuit motif.

𝐾𝑚 = 𝐾𝑚1 = 𝐾𝑚2, ℎ1 = 1, ℎ2 = 1, 𝑘𝑑1 = 1,𝐾𝑑2 = 1,𝐾𝑑1ℎ = 1, 𝑘𝑑2ℎ = 1, 𝑅𝑚𝑎𝑥1 =
1000, 𝑅𝑚𝑎𝑥2 = 1, 𝑛1 = 1, 𝑛2 = 1, 𝑛1ℎ = 1, 𝑛2ℎ = 1, 𝛽 = 0.001.

2.2. Computed transfer function of power-law and multiplication function based on ANF

The simulations are based on Eq. S2.18, Eq. S2.19, and Eq. S2.20. Parameters that were used in

simulations:

Based on 𝐏𝐥𝐚𝐜𝐎 within ANF loop – Fig. 1E

𝐾𝑚1 = 0.8, 𝐾𝑚2 = 1,𝐾𝑑1 = 10,𝐾𝑑2 = 5,𝐾𝑑1ℎ = 45,𝐾𝑑2ℎ = 4, ℎ1 = 1, ℎ2 = 1.4, 𝑅𝑚𝑎𝑥1
= 2000, 𝑅𝑚𝑎𝑥2 = 3000, 𝒏𝟏 = 𝟐, 𝑛2 = 2, 𝑛1ℎ = 1, 𝑛2ℎ = 1, 𝜃 = 1,
𝛽 = 0.001

Based on 𝐏𝐥𝐚𝐜𝐎𝟏 within ANF loop – Fig. 1F

𝐾𝑚1 = 0.8, 𝐾𝑚2 = 1,𝐾𝑑1 = 90, 𝐾𝑑2 = 6,𝐾𝑑1ℎ = 45,𝐾𝑑2ℎ = 4, ℎ1 = 1, ℎ2 = 1.4, 𝑅𝑚𝑎𝑥1
= 2000, 𝑅𝑚𝑎𝑥2 = 3000, 𝒏𝟏 = 𝟏, 𝑛2 = 2, 𝑛1ℎ = 1, 𝑛2ℎ = 1, 𝜃 = 1, 𝛽 = 0.001

The parameters that were used in our simulation fit well with the values that were reported in the

literature. For example, the binding dissociation constant of LacI is known to be 10 times larger

than of TetR. The interference parameter was set to 𝜃 = 1. Furthermore, the maximum level of

protein achieved by PlacO in our simulation is smaller than PtetO (𝑅𝑚𝑎𝑥1 < 𝑅𝑚𝑎𝑥2), which is

consistent with our construction that PlacO is located on LCP and PtetO and is located on MCN.

The binding dissociation constant of LacI and TetR to their promoters within the ANF loop (PlacO

and PtetO, respectively) is different than their values within the combinatorial promoter, because

the promoters were located on different plasmid copy numbers.

Fig. S2.5. (A) The circuit that was used to produce the computed transfer function from Fig. 1E,

power-law and multiplication based on PlacO . (B) The circuit that was used to produce the

computed transfer function from Fig. 1F, power-law and multiplication based on PlacO1.

(A) (B)

23

Fig. S2.6. Matlab surface fits the experimental results of PlacO1and PtetOANF loops and

combinatorial promoter (PlacO/tetO - GFP) to power-law and multiplication function

log(𝐺𝐹𝑃) = 𝑐 + 𝑛3 ∙ log(𝐼𝑃𝑇𝐺) + 𝑛4 ∙ log (𝑎𝑇𝑐) . The data appears in Fig. 1D in the main

text and is reproduced here for clarity.

Fig. S2.7. Matlab surface fits the simulation results of PlacO and PtetO ANF loops and

combinatorial promoter (PlacO/tetO- GFP) to power-law and multiplication function

log(𝐺𝐹𝑃) = 𝑐 + 𝑛1 ∙ log(𝐼𝑃𝑇𝐺) + 𝑛2 ∙ log (𝑎𝑇𝑐). The data appears in Fig. 1E in the main

text and is reproduced here for clarity.

Fig. S2.8. Matlab surface fits the simulation results of PlacO1 and PtetOANF loops and

combinatorial promoter (PlacO/tetO- GFP) to power-law and multiplication function

log(𝐺𝐹𝑃) = 𝑐 + 𝑛3 ∙ log(𝐼𝑃𝑇𝐺) + 𝑛4 ∙ log (𝑎𝑇𝑐). The data appears in Fig. 1F in the main

text and is reproduced here for clarity.

24

2.2.1. A simple mode for Auto-negative feedback

Fig. S2.8.1. Auto-negative feedback loop circuit.

𝐿𝑎𝑐𝐼𝑇 =
𝛼11∙𝜏1

1+(
𝐿𝑎𝑐𝐼

𝐾𝑑
)
𝑛11 (S2. 20.1)

α11 is the production rate of LacI by the PlacO_ANF

n11 is the Hill-coefficient of binding LacI to PlacO_ANF promoter

Kd is the binding affinity of LacI with PlacO_ANF promoter (promoter within ANF), which equals

(our assumption) to the binding affinity of LacI with PlacO_REP promoter regulating GFP

𝜏1 is LacI half-life

𝐿𝑎𝑐𝐼 = 𝐿𝑎𝑐𝐼𝑇 ∙ 𝑓(𝐼𝑃𝑇𝐺) (S2. 20.2)

𝑓(𝐼𝑃𝑇𝐺) =
𝐼𝑃𝑇𝐺ℎ1

𝐾𝑚
ℎ1+𝐼𝑃𝑇𝐺ℎ1

h1 is the Hill-coefficient of binding IPTG (x1) to LacI (R1)

𝐺𝐹𝑃 =
𝛼21∙𝜏2

1+(
𝐿𝑎𝑐𝐼

𝐾𝑑
)
𝑛21 (S2. 20.3)

α21 is the production rate of GFP by the PlacO_Rep

n21 is the Hill-coefficient of binding LacI to PlacO_Rep promoter

𝜏2 is GFP half-life

 𝐿𝑎𝑐𝐼𝑇 + 𝐿𝑎𝑐𝐼𝑇
𝑛11+1 (

𝐿𝑎𝑐𝐼𝑇∙𝑓(𝐼𝑃𝑇𝐺)

𝐾𝑑
)
𝑛11
= 𝛼11 ∙ 𝜏1 (S2. 20.4)

𝐿𝑎𝑐𝐼 + 𝐾𝑑 ∙ (
𝐿𝑎𝑐𝐼

𝐾𝑑
)
𝑛11+1

= 𝑓(𝐼𝑃𝑇𝐺) ∙ 𝛼11 ∙ 𝜏1 (S2. 20.5)

𝐹𝑜𝑟 𝐾𝑑 ≪ 𝛼11 ∙ 𝜏11

➔ 𝐿𝑎𝑐𝐼𝑇 = (𝛼11 ∙ 𝜏1)
1/(𝑛11+1) ∙ (

𝐾𝑑
𝑓(𝐼𝑃𝑇𝐺)

)

𝑛11
𝑛11+1 (S2. 20.6)

➔ 𝐿𝑎𝑐𝐼 = 𝐾𝑑 ∙ (
𝑍𝑚𝑎𝑥∙∙𝑓(𝐼𝑃𝑇𝐺)

𝐾𝑑
)
1/(𝑛11+1)

 (S2. 20.7)

25

 𝐺𝐹𝑃 =
𝛼21∙𝜏2

1+(
𝛼11∙𝜏1∙𝑓(𝐼𝑃𝑇𝐺)

𝐾𝑑
)
𝑛21/(𝑛11+1)

 (S2. 20.8)

 𝐺𝐹𝑃 =
𝐺𝐹𝑃𝑚𝑎𝑥

1+(
𝐿𝑎𝑐𝐼𝑚𝑎𝑥∙𝑓(𝐼𝑃𝑇𝐺)

𝐾𝑑
)
𝑛21/(𝑛11+1)

(S2. 20.9)

𝑓(IPTG) is the induction function, 𝐺𝐹𝑃𝑚𝑎𝑥 = 𝛼21 ∙ 𝜏2, 𝐿𝑎𝑐𝐼𝑚𝑎𝑥 = 𝛼11 ∙ 𝜏1

. In case that 𝑛21 = 1 (e.g., PlacO/tetO- GFP), the Hill- coefficient of IPTG − GFP is proportional

to 1/(𝑛11 + 1). Increasing the 𝑛11 leads to decrease the Hill coefficient of IPTG − GFP transfer

function.

2.3. Characterization of 𝐏𝐁𝐀𝐃 promoter

It has been reported that the behavior of the Arabinose-inducible promoter PBAD is strongly

affected by the arabinose concentration (14). Using the characteristic of PBAD, we constructed a

graded auto-positive feedback (APF) circuit (Fig. S2.9A) to tune the expression level of AraC. The

purpose of the graded APF is to increase the dynamic range of Plux which can regulate the AraC

level to a very wide range. The analysis for the APF circuit and linearization is provided in the

next sections. We added a ssrA degradation tag (15) (LAA) to AraC to ensure low basal in the

absence of the input (AHL). The circuit was first induced with different concentrations of

Arabinose (0.7mM, 0.2mM, 0.07mM and 0.02mM). Then the experimental results (Fig. S2.9B)

were fitted to Hill-function (𝑎 ∙
𝐴𝐻𝐿

𝑚𝑒𝑓𝑓

𝐴𝐻𝐿
𝑚𝑒𝑓𝑓+𝐾𝑒𝑓𝑓

𝑚𝑒𝑓𝑓
+ 𝑏). Our experimental results show that in the

presence of a low level of Arabinose (0.02mM), the input dynamic range of AHL to 𝑃𝐵𝐴𝐷

decreased with 𝑚𝑒𝑓𝑓 = 3,𝐾𝑒𝑓𝑓 = 120𝑛𝑀, 𝑎 = 165 (𝑎. 𝑢.), 𝑏 = 1 (𝑎. 𝑢.). Whereas with a high

level of Arabinose (0.7mM), the input dynamic range increased with 𝑚𝑒𝑓𝑓 = 1.5, 𝐾𝑒𝑓𝑓 =

200𝑛𝑀, 𝑎 = 170 (𝑎. 𝑢.), 𝑏 = 1 (𝑎. 𝑢.). As a result, the Hill-coefficient of binding Arabinose-

 AraC complex to PBAD increases when Arabinose is decreased. The relation between the effective

dissociation constant Keff and meff is summarized in Fig. S2.9C and can be well fitted using the

power-law function (𝐾𝑒𝑓𝑓 = 𝑎 ×𝑚𝑒𝑓𝑓
−𝑏). The transfer function of PBAD promoter with respect to

AraC is shown in Fig. S2.9D. The level of AraC is evaluated by the GFP signal from Fig. S2.13C.

26

Fig. S2.9. (A) The Characterization of PBAD promoter by tuning the expression level of AarC by

mutated APF. (B) Experimental results of AHL − GFP transfer function for a low Arabinose

(0.02mM) and a high Arabinose (0.2mM). The dotted lines are a Hill-function fitting. (C) The

relation between the effective dissociation constant and effective Hill-coefficient is described

by a power-law function. (D) AraC -PBAD the transfer function for low and high Arabinose

levels.

Nonlinear fitting models of 𝐀𝐫𝐚𝐂 -based synthetic perceptgene circuit

Fig. S2.10. (A) Fitting experimental results of ANF loops and PlacO1/tetO-based combinatorial

promoter to non-linear models (Quadratic) using locally weighted scatterplot smoothing (Circuit

from Fig. 1B, Data based on Fig. 1D). (B) Fitting experimental results of perceptgene based

ANF loops and PlacO1/tetO combinatorial promoter to non-linear models (Quadratic) using

locally weighted scatterplot smoothing (Circuit from Fig. 1G, Data based on Fig. 1H).

(A) (B)

(C) (D)

(B) (A)

27

2.4. Model of 𝐀𝐫𝐚𝐂 -based synthetic perceptgene circuit

The PBAD promoter is activated by the AraC -TF when it is induced by arabinose (Arab). The

probability of the PBAD promoter being induced by the arabinose-AraC complex is described by

(4):

𝑃 =

𝐴𝑟𝑎𝐶𝑐
𝐾𝑑3

+𝛽4

1+𝛽4+
𝐴𝑟𝑎𝐶𝑐
𝐾𝑑3

+
𝐴𝑟𝑎𝐶

𝐾𝑑4

 (S2. 21)

where AraCC is the concentration of the Arabinose-AraC complex, AraC is the concentration of

free AraC −TF, 𝐾𝑑3 is the dissociation constant for binding of the Arabinose- AraC complex to

PBAD promoter, 𝐾𝑑4 is the dissociation constant for free AraC binding to PBAD, and 𝛽4 is the basal

level of PBAD promoter. The concentration of the arabinose- AraC complex is given by (4, 16):

𝐴𝑟𝑎𝐶𝑐 = 𝐴𝑟𝑎𝐶𝑇 ∙
(
𝐴𝑟𝑎𝑏

𝐾𝑚3
)
ℎ3

1+(
𝐴𝑟𝑎𝑏

𝐾𝑚3
)
ℎ3

 (S2. 22)

With, AraCT is the total concentration of AraC , 𝐾𝑚3 is the dissociation constant of binding

arabinose to AraC and ℎ 3 is the Hill coefficient (~2.8 (16)). The concentration of the free AraC is

given by:

𝐴𝑟𝑎𝐶 = 𝐴𝑟𝑎𝐶𝑇 − 𝐴𝑟𝑎𝐶𝑐 (S2. 23)

In the perceptgene circuit the AraCT is equal to the output of the power-law and multiplication

function (Y) at steady state:

𝐴𝑟𝑎𝐶𝑇 = 𝑌 (S2. 24)

Fig. S2.11. The computed transfer function of synthetic perceptgene based on AraC system.

Parameters that were used in simulation: AraCT = 30, 𝐾𝑚3 = 0.09, 𝐾𝑑3 = 3, 𝐾𝑑4 = 30, ℎ3 =
2.8 (16), 𝛽4 = 0.002. The ratio between 𝐾𝑑3 and 𝐾𝑑4 fits well to the values that were reported

in the literature (4).

28

2.5. Model of APF, ANF loops and combinatorial promoter

In this section, we present a model that describes the behavior of APF, ANF loops with a

combinatorial promoter (Fig. S2.12A), which results in power-law and multiplication function:

• The Hill coefficient of binding 𝐴 activator to 𝑃1 (promoter within APF) is equal to Hill

coefficient of binding 𝐴 to 𝑃1 2⁄ (combinatorial promoter) and are equal to, 𝑛1

• The Hill coefficient of binding 𝑅 repressor to 𝑃2 (promoter within ANF) is equal to Hill

coefficient of binding 𝑅 to 𝑃1 2⁄ (combinatorial promoter), 𝑛2

• The binding affinity of 𝐴 activator to 𝑃1 (within APF) is equal to binding affinity to 𝑃1 2⁄

(combinatorial promoter), 𝐾𝑑1

• The binding affinity of 𝑅 repressor to 𝑃2 (within ANF) is equal to binding affinity to 𝑃1 2⁄

(combinatorial promoter), 𝐾𝑑2

• The 𝛽 of 𝑃1/2 is very low.

The binding states for 𝑃1 2⁄ combinatorial promoter is shown in Fig. S2.12B. The probability for

𝑃1 2⁄ promoter being in the open complex is described by the following equations:

𝑃1/2 =
(
𝐴

𝐾𝑑1
)
𝑛1

1+(
𝐴

𝐾𝑑1
)
𝑛1
+(

𝑅

𝐾𝑑2
)
𝑛2
+𝜃∙(

𝐴

𝐾𝑑1
)
𝑛1
∙(

𝑅

𝐾𝑑2
)
𝑛2 (S2. 25)

For simplicity, we assumed that 𝑛1 = 1. Then, the expression level of the output protein at a steady

state is given by:

𝑍 = 𝑍𝑚𝑎𝑥 ∙

𝐴

𝐾𝑑1

1+
𝐴

𝐾𝑑1
+(

𝑅

𝐾𝑑2
)
𝑛2
+𝜃∙

𝐴

𝐾𝑑1
∙(

𝑅

𝐾𝑑2
)
𝑛2 (S2. 26)

Where 𝑍𝑚𝑎𝑥 is the maximum protein level achieved by 𝑃1 2⁄ promoter.

A graded Positive feedback model: The first step toward implementation of synthetic power-law

and multiplication function in living cells, is to broaden the input dynamic range of genetic

synthetic parts. It has shown that a graded PF loop increased the input dynamic range by more than

three orders of magnitude (4) (Fig. S2.12C). TFs bindings to promoters are modeled according to

the Shea-Ackers formalism (11, 12). Therefore, the total level of expressed 𝐴 activator (Fig.

S2.12C) in the case of APF loops can be expressed as:

𝐴𝑇 = 𝐴𝑚𝑎𝑥 ∙

𝐴

𝐾𝑑1
+𝛽1

1+𝛽1+
𝐴

𝐾𝑑1

 (S2. 27)

𝑌 = 𝑌𝑚𝑎𝑥 ∙

𝐴

𝐾𝑑2
+𝛽2

1+𝛽2+
𝐴

𝐾𝑑2

 (S2. 28)

Where 𝐴𝑚𝑎𝑥 and 𝑌𝑚𝑎𝑥 are the maximum protein levels achieved by 𝑃1 and 𝑃2 respectively, 𝛽1
and 𝛽2 are the Basal levels of 𝑃1 and 𝑃1 respectively, and 𝐴 is the level of activators that are bound

to 𝑃1 and 𝑃2. The induction of the activator by 𝑥 inducers is given by:

𝐴 = 𝐴𝑇 ∙ 𝑔(𝑥) (S2. 29)

𝑔(𝑥) =
(
𝑥

𝐾𝑚
)
ℎ

1+(
𝑥

𝐾𝑚
)
ℎ (S2. 30)

Where 𝐾𝑚 is the dissociation constant and ℎ the Hill coefficient of binding inducer to activator.

Substituting Eq. S2.29 into Eq. S2.27 we get:

29

𝐴 = 𝐴𝑚𝑎𝑥 ∙

𝐴𝑇∙𝑔(𝑥)

𝐾𝑑1
+𝛽1

1+𝛽1+
𝐴𝑇∙𝑔(𝑥)

𝐾𝑑1

 (S2. 31)

𝐴𝑇 + 𝐴𝑇 ∙ 𝛽1 +
𝐴𝑇

2∙𝑔(𝑥)

𝐾𝑑1
= 𝐴𝑚𝑎𝑥 ∙

𝐴𝑇∙𝑔(𝑥)

𝐾𝑑1
+ 𝐴𝑚𝑎𝑥 ∙ 𝛽1

𝐴𝑇 ∙
𝐾𝑑1

𝑔(𝑥)
+ 𝐴𝑇 ∙ 𝛽1 ∙

𝐾𝑑1

𝑔(𝑥)
+ 𝐴𝑇

2 = 𝐴𝑚𝑎𝑥 ∙ 𝐴𝑇 + 𝐴𝑚𝑎𝑥 ∙ 𝛽1 ∙
𝐾𝑑1

𝑔(𝑥)

𝐴𝑇 ∙ (
𝐾𝑑1

𝑔(𝑥)
+ 𝛽1 ∙

𝐾𝑑1

𝑔(𝑥)
− 𝐴𝑚𝑎𝑥) + 𝐴𝑇

2 = 𝐴𝑚𝑎𝑥 ∙ 𝛽1 ∙
𝐾𝑑1

𝑔(𝑥)

𝐴𝑇 ∙
𝐾𝑑1

𝑔(𝑥)
∙ (1 + 𝛽1 −

𝐴𝑚𝑎𝑥∙𝑔(𝑥)

𝐾𝑑1
) + 𝐴𝑇

2 = 𝐴𝑚𝑎𝑥 ∙ 𝛽1 ∙
𝐾𝑑1

𝑔(𝑥)
 (S2. 32)

In case that Amax/Kd1<1, we can approximate Eq. S2.32 as:

𝐴𝑇 ≈
𝐴𝑚𝑎𝑥∙𝛽1

(1+𝛽1−
𝐴𝑚𝑎𝑥
𝐾𝑑1

∙𝑔(𝑥))
 (S2. 33)

Fig. S2.12. (A) APF and ANF loops combined with a hybrid combinatorial promoter,

CP#=Copy number of plasmids. (B) The binding states of 𝑃1 2⁄ promoter. (C) APF loop circuit.

(D) Simulation results of APF loop circuit using a detailed model 𝐾𝑚 = 100 ,𝑚 = 1.5, 𝐴𝑚𝑎𝑥 =
1000, 𝛽1 = 0.1, 𝐾𝑑2 = 10, 𝑍𝑚𝑎𝑥 = 1, 𝛽2 = 0.01. (E) The detailed and analytical models of APF

(𝐾𝑑 = 3000).

The Simulation results for the exact model of APF (Eq. S2.27-Eq. S2.30) and the approximated

model based on Eq. S2.33 are shown in Fig. S2.12D and 2.12E. When the ratio

𝐴𝑚𝑎𝑥 𝐾𝑑 ⁄ decreases, the input dynamic range increases.

By applying a logarithmic operation to Eq. S2.33, we get:

log (𝐴𝑇) ≈ 𝑙𝑜𝑔(𝐴𝑚𝑎𝑥 ∙ 𝛽1) − 𝑙𝑜𝑔 (1 + 𝛽1 −
𝐴𝑚𝑎𝑥

𝐾𝑑1
∙ 𝑔(𝑥)) (S2. 34)

By substituting Eq. S2.30 into Eq. S2.34, and assuming that 𝛽1"1, we get:

log (𝐴𝑇) ≈ 𝑙𝑜𝑔(𝐴𝑚𝑎𝑥 ∙ 𝛽1) + 𝑙𝑜𝑔 (1 + (
𝑥

𝐾𝑚
)
ℎ

) − 𝑙𝑜𝑔 (1 + (
𝑥

𝐾𝑚
)
ℎ

∙ (1 −
𝐴𝑚𝑎𝑥

𝐾𝑑1
)) (S2. 35)

(A) (B)

(E) (D) (C)

30

In case that 𝑥 𝐾𝑚⁄ >> 1 and (
𝑥

𝐾𝑚
)
ℎ

∙ (1 −
𝐴𝑚𝑎𝑥

𝐾𝑑1
) < 1, we can approximate Eq. S2.35 as:

log (𝐴𝑇) ≈ 𝑙𝑜𝑔(𝐴𝑚𝑎𝑥 ∙ 𝛽1) + ℎ ∙ 𝑙𝑜𝑔 (
𝑥

𝐾𝑚
) − (1 −

𝐴𝑚𝑎𝑥

𝐾𝑑1
) ∙ (

𝑥

𝐾𝑚
)
ℎ

 (S2. 36)

log (𝐴𝑇) ≈ 𝑙𝑜𝑔(𝐴𝑚𝑎𝑥 ∙ 𝛽1) + ℎ ∙ 𝑙𝑜𝑔 (
𝑥

𝐾𝑚
) − (1 −

𝐴𝑚𝑎𝑥

𝐾𝑑1
) ∙ 𝑒

ℎ∙𝑙𝑛(
𝑥

𝐾𝑚
)

log (𝐴𝑇) ≈ 𝑙𝑜𝑔(𝐴𝑚𝑎𝑥 ∙ 𝛽1) + ℎ ∙ 𝑙𝑜𝑔 (
𝑥

𝐾𝑚
) − (1 −

𝐴𝑚𝑎𝑥

𝐾𝑑1
) ∙ (1 + ℎ ∙ 𝑙𝑛 (

𝑥

𝐾𝑚
))

log (𝐴𝑇) ≈ 𝑙𝑜𝑔(𝐴𝑚𝑎𝑥 ∙ 𝛽1) + ℎ ∙ 𝑙𝑜𝑔 (
𝑥

𝐾𝑚
) − 2.3 ∙ (1 −

𝐴𝑚𝑎𝑥
𝐾𝑑1

) ∙ (
1

2.3
+ ℎ ∙ 𝑙𝑜𝑔 (

𝑥

𝐾𝑚
))

log (𝐴𝑇) ≈ 𝑙𝑜𝑔(𝐴𝑚𝑎𝑥 ∙ 𝛽1) − (1 −
𝐴𝑚𝑎𝑥

𝐾𝑑1
) + [1 − 2.3 ∙ (1 −

𝐴𝑚𝑎𝑥

𝐾𝑑1
)] ∙ ℎ ∙ 𝑙𝑜𝑔 (

𝑥

𝐾𝑚
) (S2. 37)

Eq. S2.37 shows that a graded APF loop, when 𝐴𝑚𝑎𝑥 𝐾𝑑 << 1⁄ , can be approximated as a power-

law function. The power-law coefficient is mainly set by Hill coefficient ℎ and the ratio of

𝐴𝑚𝑎𝑥 𝐾𝑑⁄ . The simulation results of Fig. S2.12D show that the power-law coefficient in the case

of strong APF (𝐴𝑚𝑎𝑥 𝐾𝑑⁄ = 10) is 1.5, and for a graded APF (𝐴𝑚𝑎𝑥 𝐾𝑑⁄ = 1) is 1.35.

Experimental Results of APF: To test our approach, we first created various synthetic libraries

that permute the sequence features affecting DNA binding site affinity. This was achieved by

creating random mutations in the TF-DNA binding site sequence within the promoter. The

synthetic Plux promoter was selected due to its simple structure (16). The promoter consists of a

single LuxR binding site upstream to the -35 location. First, we constructed an open-loop gene

circuit consisting of two components: a constitutive promoter regulating the expression of the

LuxR gene, and a Plux promoter regulating the expression of GFP (Fig. S2.13A). Then we ran a

random mutation on the first 7 nucleotides of the LuxR binding site sequence (17), resulting in a

new promoter called (PluxM56). To test the new promoter, we reconstructed an open-loop and APF

circuits with the PluxM56 promoter (Fig. S2.13B). The positive feedback circuit consisting of a

positive feedback loop based on the a mutated Plux promoter regulates the expression of the LuxR

gene and a wild type Plux promoter, which regulates the expression of GFP. As shown in Fig.

S2.13C, the mutated promoters (PluxM56 in open circuit) exhibited weaker TF-DNA binding than

the wild type promoter (Plux in open circuit), with a lower GFP signal and a wider input dynamic

range. In particular, the mutated promoter (PluxM56) gives rise a graded APF transfer function with

a broad region of linearity for more than four orders of magnitude without losing its magnitude.

The measured transfer functions of multiple circuits were fitted using Hill function 𝑎 ∙

(
𝐴𝐻𝐿

𝑘
)
𝑚𝑒𝑓𝑓

(1+(
𝐴𝐻𝐿

𝑘
)
𝑚𝑒𝑓𝑓

)

+ 𝑏 (Fig. S2.13C). The strength of a PF loop, which is set by the dissociation

constant of binding LuxR to Plux or PluxM56, affects the input dynamic range and the effective Hill

coefficient meff, as well as the power-law coefficient. Our experimental results showed that the

influence of dissociation constant on meff is much larger than our theoretical analysis. This is

because our theoretical analysis is based on Michaelis-Menten model, which assumes that the TF

concentration is much larger than promoter concentration. It has been shown that, when these

assumptions are violated, detailed biochemical reaction models can capture the behavior of graded

APF accurately (4). Fig. S2.14 shows the experimental results of AHL − GFP transfer function for

other mutated Plux promoter.

31

Fig. S2.13. (A) The construction of open-loop (OL) and APF circuits based on Plux promoter.

(B) The construction of OL and APF circuits based on mutated Plux promoter (PluxM56). (C)

Measured transfer functions of multiple circuits, dots are experimental data, and dashed-line is

a Hill function fitting with the below parameters:

OL circuit – Wild type Plux: 𝐾 = 30,𝑚𝑒𝑓𝑓 = 1, 𝑎 = 25 × 10
3, 𝑏 = 600

APF circuit – Wild type Plux: 𝐾 = 7,𝑚𝑒𝑓𝑓 = 2, 𝑎 = 30 × 10
3, 𝑏 = 800

OL circuit – Mutated PluxM56: 𝐾 = 500,𝑚𝑒𝑓𝑓 = 0.3, 𝑎 = 5 × 10
3, 𝑏 = 100

APF circuit – Mutated PluxM56: 𝐾 = 500,𝑚𝑒𝑓𝑓 = 0.5, 𝑎 = 30 × 10
3, 𝑏 = 100

Fig. S2.14 shows the experimental results of AHL − GFP transfer function for other mutated Plux
promoter.

Fig. S2.14. AHL − GFP transfer function of mutated Plux promoters (PluxAAT, PluxTGT). Dots are

experimental data, and the dashed line is a Hill function fitting.

Power-law and multiplication function based on ANF and graded APF loops: The

combination of graded APF and ANF loops with a combinatorial promoter is shown in Fig.

S2.12A. A set of equations that describes the behavior of this system at a steady state is given by:

• APF loop equation:

𝐴𝑇1 = 𝐴𝑚𝑎𝑥1 ∙

𝐴

𝐾𝑑1
+𝛽1

1+𝛽1+
𝐴

𝐾𝑑1

 (S2. 38)

• Induction of 𝑋1 (AHL) and 𝑌1 (LuxR) equation (4):

𝐴 ≈ 𝐴𝑇
𝑋1
2

𝑋1
2+2∙𝑋1∙𝐴𝑇+𝐾𝑚1

2 (S2. 39)

• ANF loops equation:

(A) (B) (C)

32

 𝑅𝑇 = 𝑅𝑚𝑎𝑥
1

1+𝛽2+(
𝑅

𝐾𝑑2
)
𝑛2 (S2. 40)

• Induction of 𝑋2 and 𝑅:

 𝑅 = 𝑅𝑇 ∙
1

1+(
𝑥2
𝐾𝑚2

)
ℎ2

 (S2. 41)

• The a ctivity of combinatorial promoter:

𝑃12 =

𝐴

𝐾𝑑ℎ1
+𝛽12

1+𝛽12+
𝐴

𝐾𝑑ℎ1
+(

𝑅

𝐾𝑑ℎ2
)
𝑛2
+𝜃∙

𝐴

𝐾𝑑ℎ1
∙(

𝑅

𝐾𝑑ℎ2
)
𝑛2 (S2. 42)

Where 𝛽12 is the basal level of combinatorial promoter.

• The mass balance between the complex and the promoter; the sum of free TF concentration

and complex concentration is equal to the total concentration of TF (𝐴 + 𝐶𝑜𝑚𝑝𝑙𝑒𝑥 = 𝐴𝑇):

𝐴 + 𝑃𝑇1 ∙

𝐴

𝐾𝑑1
+𝛽1

1+𝛽1+
𝐴

𝐾𝑑1

+ 𝑃𝑇12 ∙

𝐴

𝐾𝑑ℎ1
 +𝜃∙

𝐴

𝐾𝑑ℎ1
∙(

𝑅

𝐾𝑑ℎ2
)
𝑛2

1+
𝐴

𝐾𝑑ℎ1
+(

𝑅

𝐾𝑑ℎ2
)
𝑛2
+𝜃∙

𝐴

𝐾𝑑ℎ1
∙(

𝑅

𝐾𝑑ℎ2
)
𝑛2 = 𝐴𝑇 (S2. 43)

𝑃𝑇1 and 𝑃𝑇12 are the total concentration of 𝑃1 and 𝑃12 promoters. For simplicity, we

assumed that 𝜃 ≈ 1, and 𝑃𝑇12 >> 𝑃𝑇1. Therefore, we can write:

𝐴 + 𝑃𝑇12 ∙

𝐴

𝐾𝑑1ℎ

1+
𝐴

𝐾𝑑1ℎ

= 𝐴𝑇 (S2. 44)

𝐴2 + 𝐴 ∙ (𝐾𝑑1ℎ + 𝑃𝑇12 − 𝐴) = 𝑌𝐴 ∙ 𝐾𝑑1ℎ (S2. 45)

Simulation results of 𝐏𝐥𝐮𝐱/𝐭𝐞𝐭𝐎 -based power-law and multiplication function (Fig. 2C):

Parameters were used: 𝐾𝑚1 = 1, 𝐾𝑚2 = 1, 𝑘𝑑1 = 200, 𝐾𝑑2 = 5,𝐾𝑑1ℎ = 10, 𝑘𝑑2ℎ = 4, ℎ1 =
1, ℎ2 = 1.4, 𝐴𝑚𝑎𝑥 = 200, 𝑅𝑚𝑎𝑥 = 500, 𝑛2 = 2, 𝑛1ℎ = 1, 𝑛2ℎ = 1, 𝜃 = 1, 𝑃𝑇12 = 30, 𝛽12 =
0.001, 𝛽1 = 0.002, 𝛽2 = 0.001.

Now we will show that the experimental results of this circuit fit power law and

multiplication function:

Fitting experimental results of APF, ANF loops and Plux/tetO-based combinatorial promoter to a

power-law and multiplication function.

log(𝑚𝐶ℎ𝑒𝑟𝑟𝑦) = 𝑐 + 𝑛5 ∙ log(𝐴𝐻𝐿) + 𝑛6 ∙ log (𝑎𝑇𝑐)

Fig. S2.15. Matlab surface fits the experimental results of APF (PluxTGT) and ANF (PtetO)

loops and combinatorial promoter (Plux/tetO- mCherry) to power-law and multiplication

function. The data appears in Fig. 2B in the main text and is reproduced here for clarity.

33

Fitting simulation results of APF, ANF loops and Plux/tetO-based combinatorial promoter to a

power-law and multiplication function.

Fig. S2.16. Matlab surface fits the simulation results of APF (PluxTGT) and ANF (PtetO) loops

and combinatorial promoter (Plux/tetO- mCherry) to power-law and multiplication function.

The data appears in Fig. 2C in the main text and is reproduced here for clarity.

Simulation results of 𝐏𝐥𝐮𝐱/𝐭𝐞𝐭𝐎-based perceptgene circuit (Fig. 2D) are shown in Fig. S2.17.

We used the same equations and parameters that describe the PBAD system (Eq. S2.21-S2.24), and

assumed that AraCT is proportional to the output of Plux/tetO-based power-law and multiplication

function.

Fig. S2.17. The computed transfer function of synthetic perceptgene based on AraC system.

Parameters that were used in simulation: 𝐴𝑟𝑎𝐶𝑇 = 8,𝐾𝑑3 = 3,𝐾𝑑4 = 30,𝑚3 = 2.8 (4, 16). The

ratio between 𝐾𝑑3 and 𝐾𝑑4 fits well to the values that were reported on literatures(4, 16).

34

Further analysis of 3D surface plot which compares the power-law and multiplication

circuit based on ANF and APF loop versus perceptgene is provided:

Fig. S.2.18. (A) Fitting experimental results of APF, ANF loops and Plux/tetO -based

combinatorial promoter to non-linear models (Quadratic) using locally weighted scatterplot

smoothing (Circuit from Fig. 2A, Data based on Fig. 2B). (B) Fitting experimental results of

perceptgene based APF, ANF loops and Plux/tetO-based combinatorial promoter to non-linear

models (Quadratic) using locally weighted scatterplot smoothing (Circuit from Fig. 2D, Data

based on Fig. 2E).

Table S2.1 List of parameters used in this section

Symbol Description

𝑅𝑖 The level of repressors which are bound to 𝑃𝑖
𝐴 The level of activator which are bound to 𝑃1

𝑋𝑖 The level of repressors/activator which are bound to 𝑃𝑖
𝑃 𝑖 Promoter within ANF

𝑃 1 2⁄ Vombinatorial promoter

𝛽𝑖 Basal level of promoter

𝑛𝑖 Hill coefficient of binding of repressor/activator to 𝑃 1 & 𝑃 2 promoter

𝐾𝑑𝑖 Dissociation constant of binding repressor/activator to 𝑃 1 & 𝑃 2 promoter

𝑅𝑇𝑖 Total level of expressed 𝑅𝑖
𝑅𝑚𝑎𝑥𝑖 The maximum protein level achieved by 𝑃𝑖

𝐴𝑇 Total level of expressed 𝐴

𝐴𝑚𝑎𝑥 The maximum protein level achieved by 𝑃1

𝑥𝑖 Inducer

𝐾 𝑚𝑖 Dissociation constant of binding 𝑥𝑖 to 𝑌𝑖
ℎ 𝑖 Hill coefficients of binding 𝑥𝑖 to 𝑌𝑖
𝑌 The expression level of the output protein

𝑌𝑚𝑎𝑥 The maximum protein level achieved by 𝑃1 2⁄ promoter

θ Combinatorial promoter binding interfere

𝐾𝑑ℎ Dissociation constant of binding repressors to 𝑃 1 2⁄ combinatorial promoter

𝑛ℎ Hill coefficient of binding repressors to 𝑃 1 2⁄ combinatorial promoter

𝐴𝑟𝑎𝐶𝐶 Concentration of the Arabinose-𝐴𝑟𝑎𝐶 complex

𝐴𝑟𝑎𝐶𝑇 The total concentration of 𝐴𝑟𝑎𝐶

meff Effective Hill coefficient

(A) (B)

35

𝛽12 Basal level of 𝑃 1 2⁄ combinatorial promoter

𝑃𝑇𝑖 Total concentration of 𝑃1

𝑃𝑇12 Total concentration of 𝑃12
Keff Effective dissociation constant

Table S2.2 List of abbreviations used in this section

Symbol Description

TFs transcription factors

ANF auto-negative feedback

𝑃𝐵𝐴𝐷 AraC promoter is activated by the 𝐴𝑟𝑎𝐶 when it is induced by arabinose (Arab)

OL open-loop

APF auto-positive feedback

AHL Free N-(β-Ketocaproyl)-L-homoserine Lactone 3OC6HSL concentration

Arab Free arabinose concentration

IPTG Free Isopropyl 1-β-D-1-thio galactopyranoside concentration

aTc Free anhydrotetracycline

Plux LuxR promoter is activated by the 𝐿𝑢𝑥𝑅 when it is induced by AHL

PlacO LacI promoter is activated by the 𝐿𝑎𝑐𝐼 − 𝐼𝑃𝑇𝐺

PTetO TetR promoter is activated by the 𝑇𝑒𝑡𝑅 − 𝑎𝑇𝑐

36

3. Smooth logical functions

Minimum and maximum functions perform logical operations ("if" loop) to a set of analog/digital

numbers. While smooth minimum and maximum functions perform the analog operation to a set

of analog numbers (𝑥𝑖). To implement smooth logical functions between two analog numbers, we

used rectifier activation functions (Fig. S3.1), which is widely used in artificial neural networks,

and is given by (18, 19):

min(𝑢01, 𝑢) + 𝑓𝑚𝑎𝑥 = {
𝑢 + 𝑓𝑚𝑎𝑥 𝑢 < 𝑢01
𝑓𝑚𝑎𝑥 𝑢 > 𝑢01

 (S3.1.1)

max(𝑢02, 𝑢) + 𝑓𝑚𝑖𝑛 = {
𝑢 + 𝑓𝑚𝑖𝑛 𝑢 > 𝑢02
𝑓𝑚𝑖𝑛 𝑢 < 𝑢02

 (S3.1.2)

We first will prove two mathematical identities:
(1)𝑚𝑖𝑛(𝑢01, 𝑥 + 𝑦) = min(𝑢01 − 𝑦, 𝑥) + 𝑦

Computing the left side:

1. For 𝑢01 − (𝑥 + 𝑦) < 0, we obtain 𝑚𝑖𝑛(𝑢01, 𝑥 + 𝑦) = 𝑢01

2. For 𝑢01 − (𝑥 + 𝑦) > 0, we obtain 𝑚𝑖𝑛(𝑢01, 𝑥 + 𝑦) = 𝑥 + 𝑦

Computing the right side:

1. For 𝑢01 − (𝑥 + 𝑦) < 0, we obtain min(𝑢01 − 𝑦, 𝑥) = 𝑢01 − 𝑦, and, thus

min(𝑢01 − 𝑦, 𝑥) + 𝑦 = 𝑢01

2. For 𝑢01 − (𝑥 + 𝑦) > 0, we obtain min(𝑢01 − 𝑦, 𝑥) = 𝑥, and, thus min(𝑢01 − 𝑦, 𝑥) +
𝑦 = 𝑥 + 𝑦

Therefore, we obtain that the left side and the right side are equal in all the conditions.

(2)𝑚𝑎𝑥(𝑢02, 𝑥 + 𝑦) = max(𝑢02 − 𝑦, 𝑥) + 𝑦

Computing the left side:

3. For 𝑢02 − (𝑥 + 𝑦) < 0, we obtain 𝑚𝑎𝑥(𝑢02, 𝑥 + 𝑦) = 𝑥 + 𝑦

4. For 𝑢02 − (𝑥 + 𝑦) > 0, we obtain 𝑚𝑖𝑛(𝑢02, 𝑥 + 𝑦) = 𝑢02

Computing the right side:

3. For 𝑢02 − (𝑥 + 𝑦) < 0, we obtain min(𝑢02 − 𝑦, 𝑥) = 𝑥, and, thus min(𝑢02 − 𝑦, 𝑥) +

𝑦 = 𝑥 + 𝑦

4. For 𝑢02 − (𝑥 + 𝑦) > 0, we obtain min(𝑢02 − 𝑦, 𝑥) = 𝑢02 − 𝑦, and, thus

min(𝑢02 − 𝑦, 𝑥) + 𝑦 = 𝑢02

Therefore, we obtain that the left side and the right side are equal in all the conditions.

An analytical expression that approximately describes Eqs. S3.1 can be given by (20):

𝑆𝛼(𝑢0𝑖, 𝑢) = (𝑢 − 𝑢0) ∙
𝑒𝛼∙(𝑢−𝑢0)

1+𝑒𝛼∙(𝑢−𝑢0)
+ 𝑓 (S3.2.1)

When 𝛼 < 0, Eq. S3.3.1 finds the smooth minimum between u0 and 𝑢

37

𝑆−|𝛼|(𝑢01, 𝑢) =
(𝑢−𝑢01)

1+𝑒+|𝛼|∙(𝑢−𝑢01)
+ 𝑓𝑚𝑎𝑥 , when 𝛼 → −∞ ➔ 𝑆−|𝛼|(𝑢01, 𝑢) = min (𝑢01, 𝑢)

 (S3.2.2)

When 𝛼 > 0, Eq. S3.3 finds the smooth maximum between u0 and 𝑢

𝑆|𝛼|(𝑢02, 𝑢) =
(𝑢−𝑢02)

1+𝑒−|𝛼|∙(𝑢−𝑢02)
+ 𝑓𝑚𝑖𝑛, when 𝛼 → ∞ ➔ 𝑆|𝛼|(𝑢02, 𝑢) = max (𝑢02, 𝑢) (S3.2.3)

The PBAD promoter can exhibit 𝑆−10 = 𝑚𝑖𝑛{𝑢01, 𝑢} for high Arabinose level, and 𝑆4 =
𝑚𝑎𝑥{𝑢02, 𝑢} for low Arabinose level (Fig. S.3.1C). This data is based on Fig. S.2.9.

Fig. S3.1. (A) negative-rectifier activation function. (B) positive-rectifier activation function. (C)

Fitting the induced PBAD with low Arabinose (0.02mM) to negative rectifier Eq. S3.2.2 (𝛼 =
−10, 𝑢01 = log (40), fmax=0.56, and with high Arabinose (0.2mM) to positive rectifier Eq. S3.2.3

(𝛼 = 4, 𝑢02 = log (3), fmin=0.1. This data is based on Fig. S.2.9.

Analyzing log-transformed negative rectifier:

For simplicity, we assumed that 𝑢0 = 0, 𝑥 = 𝑟, 𝑎𝑛𝑑 𝑦 = −𝑣 . First, we plotted the function

min(0, 𝑢 = 𝑟 − 𝑣) + 𝑐𝑜𝑛𝑡 (Fig. S3.1.1A). Then, we subtracted the function output by the input v

which brings all the plots to the same initial point: min(0, 𝑟 − 𝑣) + 𝑣 + 𝑐𝑜𝑛𝑠𝑡 (Fig. S3.1.1B). In

the next step, we graphed the function min (𝑟, 𝑣) (Fig. S3.1.1C), and by comparing Fig. S3.1.1B

to Fig. S3.1.1C, we concluded that these two graphs are equivalent. Therefore, eventually, the

function min(0, 𝑟 − 𝑣) + 𝑐𝑜𝑛𝑡 , which can be implemented by a negative rectifier with a threshold

that is controlled by the second analog input can be used to compute the minimum between two

analog numbers. For further study of the relation between perceptron and minim function, we

(A) (B)

(C)

38

plotted a 2-input perceptron using a sigmoid function
𝑒𝑤∙(𝑟+𝑣−𝑐)

1+𝑒𝑤∙(𝑟+𝑣−𝑐)
 (Fig. S3.1.1.D), and a 2-input

perceptron that is normalized by second input (
𝑒𝑤∙(𝑟+𝑣−𝑐)

1+𝑒𝑤∙(𝑟+𝑣−𝑐)
− 𝑣) that brings all the curves to the

same initial point. In our simulation, we designed the sigmoid to act as a negative rectifier in the

operating dynamic range 𝑤 = 7 and large 𝑐 = 7 . We obtained that min(0, 𝑟 − 𝑣) + 𝑐𝑜𝑛𝑡 and

perceptron have similar behaviors, however, in an opposite dependency concerning the second

input.

Then, we plotted the perceptgene of two inputs
𝑏𝑎𝑖𝑠∙𝑟𝑛3 ∙𝑣𝑛4+𝛽

1+𝑏𝑎𝑖𝑠∙𝑟𝑛1 ∙𝑣𝑛2
 (Fig. S3.1.1D, only in this case we

assumed that 𝑛3 = 𝑛4 = 1.5, 𝑏𝑎𝑖𝑠 = 0.001, 𝛽 = 0.01).

For operating in partial swing, the perceptgene can be approximated as shifted and biased log-

transformed negative rectifier (NR). The NF receives the collective analog signal 𝑘1 ∙ log(𝑟) +
𝑘2 ∙ log(𝑣) + log (𝐴𝑟𝑎𝐶𝑚𝑎𝑥) , where AraCmax is the maximum AraC level. Using Eq. S3.2.2, when

the bias depends linearly on the v level,

the output of the NR:

𝑓𝑁𝑅 =
𝑘1∙log(𝑟)+𝑘2∙log(𝑣)+log(𝐴𝑟𝑎𝐶𝑚𝑎𝑥)−log (𝑈𝑜1)

1+(
𝑏

𝑈𝑜1
∙𝑟𝑘1 ∙𝑣𝑘2)

|𝛼| + 2 ∙ 𝑤1 ∙ log(𝑣) + 𝑐𝑜𝑛𝑠𝑡 (S3.3.3)

Where 𝑢01 = log (𝑈𝑜1),

(1) when: 𝛼 ≪ −1 , and
𝐴𝑟𝑎𝐶𝑚𝑎𝑥

𝑈𝑜1
∙ 𝑟𝑘1 ∙ 𝑣𝑘2 ≪ 1 ➔ 𝑓𝑁𝑅 = 𝑘1 ∙ log(𝑟) + 𝑘2 ∙ log(𝑣) +

log(𝐴𝑟𝑎𝐶𝑚𝑎𝑥) − log (𝑈𝑜1) + 2 ∙ 𝑤1 ∙ log(𝑣) + 𝑐𝑜𝑛𝑠𝑡 . In this case, we can claim that the

𝑓𝑁𝑅 is equal to the analog argument 𝑏𝑖𝑎𝑠 ∙ 𝑟𝑛3 ∙ 𝑣𝑛4 at the log-scale, where 𝑛3 and 𝑛4 are

the weights of the two inputs as calculated by the power-law and multiplication function.

(2) when: 𝛼 ≪ −1, and
𝐴𝑟𝑎𝐶𝑚𝑎𝑥

𝑈𝑜1
∙ 𝑟𝑘1 ∙ 𝑣𝑘2 ≫ 1 ➔ 𝑓𝑁𝑅 = 2 ∙ 𝑤1 ∙ log(𝑣) + 𝑐𝑜𝑛𝑠𝑡

In the case of the PBAD as shown in Fig. S3.1C, since the promoter activity is approximated

as twice the negative rectifier, we expect that

 2 ∙ 𝑘1 = 𝑛3,

 2 ∙ (𝑘2 +𝑤1) = 𝑛4

 log(𝑏𝑖𝑎𝑠) = log(𝐴𝑟𝑎𝐶𝑚𝑎𝑥) − log (𝑈𝑜1)

39

Fig. S3.1.1. Calculations of several functions related to smooth minimum calculations

First, we normalized the measured data of three circuits from Fig. 1H and Fig. 2E, and Fig. 2H, by

the minimum level achieved for each circuit. Second, we transformed Eq. S3.3 operates in the

linear-scale, to the logarithmic-scale, by a logarithmic operation to the normalized data. Then, we

normalized the inputs for every circuit by its input dynamic range value (𝑥𝑖 𝐼𝐷𝑅𝑖⁄).

1. Smooth minimum function – PlacO/tetO-based Perceptgene circuit. Fig. S3.2A shows the

experimental data of Fig. 1H in the linear-scale, which is well matched to Eq. S3.3:

Where:

𝑢 = 0.4 ∙ 𝑥1 + 0.2 ∙ 𝑥2 − 1

𝑏 = 0.3 ∙ 𝑥2 + 0.6

𝛼 = −10 < 0 ➔ Soft minimum

𝑥1 = log(𝐼𝑃𝑇𝐺/𝐼𝐷𝑅3), 𝑥2 = log (𝑎𝑇𝑐/𝐼𝐷𝑅4)

We can also build the model that that 𝑏 depends on 𝑥1 (𝐼𝑃𝑇𝐺)

𝑓1 = 𝑆−10(0,0.4 ∙ 𝑥1 + 0.2 ∙ 𝑥2 − 1) + 0.3 ∙ 𝑥2 + 0.6 (S3.4.1)

Where f1 is the normalized data of Fig. 1H. We can write:

𝑓1 = 𝑚𝑖𝑛(0,0.4 ∙ 𝑥1 + 0.2 ∙ 𝑥2 − 1) + 0.3 ∙ 𝑥2 + 0.6 (S3.4.2)

= {
0.4 ∙ 𝑥1 + 0.5 ∙ 𝑥2 − 0.4 0.4 ∙ 𝑥1 + 0.2 ∙ 𝑥2 − 1 < 0
0.3 ∙ 𝑥2 + 0.6 0.4 ∙ 𝑥1 + 0.2 ∙ 𝑥2 − 1 > 0

A general formula to Eq. S3.4 is:

𝑓1 = 𝑚𝑖𝑛(0, 𝑘1 ∙ 𝑥1 + 𝑘2 ∙ 𝑥2 − 𝛾) + 2 ∙ 𝑤1 ∙ 𝑥2 + 𝑎2 (S3.5)

= {
𝑘1 ∙ 𝑥1 + 𝑘2 ∙ 𝑥2 − 𝛾 + 2 ∙ 𝑤1 ∙ 𝑥2 + 𝑎2 𝑘1 ∙ 𝑥1 + 𝑘2 ∙ 𝑥2 − 𝛾 < 0
2 ∙ 𝑤1 ∙ 𝑥2 + 𝑎2 𝑘1 ∙ 𝑥1 + 𝑘2 ∙ 𝑥2 − 𝛾 > 0

We can write Eq. S3.5 as:

40

 𝑓2 = 𝑓1 − 2 ∙ 𝑤1 ∙ 𝑥2 + 𝑎2) = {
𝑘1 ∙ 𝑥1 + 𝑘2 ∙ 𝑥2 − 𝛾 𝑘1 ∙ 𝑥1 + 𝑘2 ∙ 𝑥2 − 𝛾 < 0
0 𝑘1 ∙ 𝑥1 + 𝑘2 ∙ 𝑥2 − 𝛾 > 0

𝑓3 = 𝑓1 − (𝑘2 ∙ 𝑥2 − 𝛾) − (2 ∙ 𝑤1 ∙ 𝑥2 + 𝑎2) = {
𝑘1 ∙ 𝑥1 𝑘1 ∙ 𝑥1 < 𝛾 − 𝑘2 ∙ 𝑥2
𝛾 − 𝑘2 ∙ 𝑥2 𝑘1 ∙ 𝑥1 > 𝛾 − 𝑘2 ∙ 𝑥2

 (S3.6)

Eq. S3.6 can be viewed as a smooth minimum logical function between two analog numbers that

are proportional to system inputs 𝑥1 and 𝑥2 (Fig. S3.2B):

𝑓3 = min (𝛾 − 𝑘2 ∙ 𝑥2, 𝑘1 ∙ 𝑥1) = {
𝑘1 ∙ 𝑥1 𝑘1 ∙ 𝑥1 < 𝛾 − 𝑘2 ∙ 𝑥2
𝛾 − 𝑘2 ∙ 𝑥2 𝑘1 ∙ 𝑥1 > 𝛾 − 𝑘2 ∙ 𝑥2

 (S3.7)

Fig. S3.2B and Table in Fig, S3.2C give similar results with a little bit of difference, and this is

because that each one is calculated in a different way.

The IPTG weight 𝑛3 = 0.75 (Table S.4.2), and 𝑘1 = 0.4 ➔ 𝑛3 = 1.875 ∙ 𝑘1 as we expected

The aTc weight 𝑛4 = 1 (Table S.4.2), and 𝑘2 = 0.2, 𝑤1 = 0.3 ➔ 𝑛4 = 2 ∙ (𝑘2 + 𝑤1) as we

expected.

For a more general case: an ideal minimum function is observed when 𝑚𝑖𝑛(𝑟, 𝑣) =
𝑚𝑖𝑛(0, 𝑟 − 𝑣) + 𝑣. Thus, if we assume that 𝑟 = 𝑘1 ∙ 𝑥1 and 𝑣 = 𝛾 − 𝑘2 ∙ 𝑥2, we can find that the

perceptgene computes:

𝑚𝑖𝑛(0, 𝑟 − 𝑣) + 𝑣 + 0.5 ∙ 𝑥2 − 0.4 ==>𝑚𝑖𝑛(𝑟, 𝑣) + 0.5 ∙ 𝑥2 − 0.4 (S3.7.1)

Fig. S3.2. The perceptgene circuit calculates the smooth minimum between the analog inputs

(log(𝐼𝑃𝑇𝐺) 𝑎𝑛𝑑 log(𝑎𝑇𝑐)). (A) the raw data, Where 𝛾 = 0.5 ∙ log (𝐵2), 𝑘2 = 0.5 ∙ (𝑛4 − 𝑤1).
(B) the raw data after bringing all the curves to the same initial minimum point, Similar to Fig.

S3.1.1. (C) Raw data using Eq. S3.7.

(C)

(A) (B)

41

We then calculated the errors between the transformed data of the perceptgene circuit and the ideal

data of smooth functions.

Table S3.1. Transformed experimental data (𝐷𝑒𝑥𝑝) of Fig. 1H (Fig. S3.2)

Experimental

Results 0.58 0.64 0.70 0.76 0.82 0.88

0.84 0.58 0.69 0.76 0.85 0.87 0.86

0.72 0.60 0.67 0.70 0.75 0.75 0.74

0.60 0.57 0.60 0.61 0.57 0.59 0.57

0.48 0.54 0.46 0.45 0.44 0.46 0.47

0.36 0.37 0.34 0.30 0.32 0.30 0.34

0.24 0.26 0.23 0.19 0.21 0.20 0.27

Table S3.2. Ideal (Expected) data for minimum function (𝐷𝑚𝑖𝑛−1) based on Table S3.1

Expected MIN 0.58 0.64 0.70 0.76 0.82 0.88

0.84 0.58 0.64 0.70 0.76 0.82 0.84

0.72 0.58 0.64 0.70 0.72 0.72 0.72

0.60 0.58 0.60 0.60 0.60 0.60 0.60

0.48 0.48 0.48 0.48 0.48 0.48 0.48

0.36 0.36 0.36 0.36 0.36 0.36 0.36

0.24 0.24 0.24 0.24 0.24 0.24 0.24

Table S3.3. Calculation of the error between measurement data (Table S3.1) and Ideal data for the minimum

function (Table S3.2) using:

𝐸𝑟𝑟𝑜𝑟𝑖 = 𝑎𝑏𝑠 (
(𝐷𝑒𝑥𝑝−𝐷𝑚𝑖𝑛−1)

𝐷𝑚𝑖𝑛−1
)

Error(i) 0.58 0.64 0.70 0.76 0.82 0.88

0.84 0.001622052 0.086931 0.089926 0.122127 0.06111 0

0.72 0.040504146 0.054275 0.007044 0.036687 0.037627 0.029814

0.60 0.017410123 0.007701 0.015816 0.050489 0.011948 0.049949

0.48 0.127994603 0.031549 0.059475 0.077629 0.042186 0.025321

0.36 0.441393616 0.312972 0.158067 0.219982 0.163661 0.317077

0.24 0.013971729 0.124459 0.282187 0.205529 0.217792 0.038107

The error for the experiment is calculated as the:

𝐸𝑟𝑟𝑜𝑟 = 100 ×
1

𝑁
∑ 𝐸𝑟𝑟𝑜𝑟𝑖
𝑁
𝑖=1

➔ 10%

42

Table S3.4. Ideal data for maximum function (𝐷𝑚𝑎𝑥−1) based on Table S3.1

Expected MAX 0.58 0.64 0.70 0.76 0.82 0.88

0.84 0.84 0.84 0.84 0.84 0.84 0.88

0.72 0.72 0.72 0.72 0.76 0.82 0.88

0.60 0.60 0.64 0.70 0.76 0.82 0.88

0.48 0.58 0.64 0.70 0.76 0.82 0.88

0.36 0.58 0.64 0.70 0.76 0.82 0.88

0.24 0.58 0.64 0.70 0.76 0.82 0.88

Table S3.5. Calculation of the error between measurement data (Table S3.1) and Ideal data for the maximum

function (Table S3.4) using:

𝐸𝑟𝑟𝑜𝑟𝑖 = 𝑎𝑏𝑠 (
(𝐷𝑒𝑥𝑝−𝐷𝑚𝑎𝑥−1)

𝐷𝑚𝑖𝑛−1
)

Error(i) 0.58 0.64 0.70 0.76 0.82 0.88

0.84 0.310123265 0.173461 0.093065 0.014157 0.035065 0.019391

0.72 0.163899995 0.064676 0.02237 0.017875 0.088913 0.157425

0.60 0.050163119 0.067919 0.128017 0.250386 0.277035 0.352238

0.48 0.066487225 0.272256 0.354118 0.41745 0.439328 0.468357

0.36 0.353858034 0.465573 0.569227 0.582638 0.631034 0.610863

0.24 0.557987327 0.643623 0.732991 0.728207 0.751983 0.693287

The error for the experiment is calculated using Eq. S3.25 ➔ 32%

Table S3.6. Ideal data for the average function (𝐷𝑎𝑣𝑒−1) based on Table S3.1

Expected

Average 0.58 0.64 0.70 0.76 0.82 0.88

0.84 0.71 0.74 0.77 0.80 0.83 0.86

0.72 0.65 0.68 0.71 0.74 0.77 0.80

0.60 0.59 0.62 0.65 0.68 0.71 0.74

0.48 0.53 0.56 0.59 0.62 0.65 0.68

0.36 0.47 0.50 0.53 0.56 0.59 0.62

0.24 0.41 0.44 0.47 0.50 0.53 0.56

43

Table S3.7. Calculation the error between measurement data (Table S3.1) and Ideal data for average function

 (Table S3.6) using:

𝐸𝑟𝑟𝑜𝑟𝑖 = 𝑎𝑏𝑠 (
(𝐷𝑒𝑥𝑝−𝐷𝑎𝑣𝑒−1)

𝐷𝑚𝑖𝑛−1
)

Error(i) 0.58 0.64 0.70 0.76 0.82 0.88

0.84 0.1846358 0.06281 0.011806 0.063495 0.046108 0.001974

0.72 0.074591661 0.010556 0.009607 0.007547 0.030918 0.074359

0.60 0.034569811 0.040348 0.063066 0.162957 0.165873 0.230545

0.48 0.021381523 0.170205 0.235228 0.28638 0.293251 0.312616

0.36 0.202458539 0.317255 0.432002 0.433788 0.487469 0.448044

0.24 0.374242173 0.482392 0.602825 0.586875 0.61635 0.518199

The error for the experiment is calculated using Eq. S3.25 ➔ 22%

Table S3.8. summarized the data

Std err

(experimental vs. expected)

Smooth Min

(expected)

Smooth Avg

(expected)

Smooth Max

(expected)

Smooth Min (experimental) 10% 22% 32%

Analyzing log-transformed positive rectifier:

For simplicity, we assumed that 𝑢0 = 0, 𝑥 = 𝑟, 𝑎𝑛𝑑 𝑦 = −𝑣 . First, we plotted the function

max(0, 𝑢 = 𝑟 − 𝑣) + 𝑐𝑜𝑛𝑠𝑡 (Fig. S3.3.1A). Then, we subtracted the function output by the input

𝑣 which brings all the plots to the same initial point: max(0, 𝑟 − 𝑣) + 𝑣 + 𝑐𝑜𝑛𝑠𝑡 (Fig. S3.3.1B).

In the next step, we graphed the function max (𝑟, 𝑣) (Fig. S3.3.1C), and by comparing Fig. S3.3.1B

to Fig. S3.3.1C, we concluded that these two graphs are equivalent. Therefore, eventually, the

function max(0, 𝑟 − 𝑣) + 𝑐𝑜𝑛𝑠𝑡 , which can be implemented by a positive rectifier with a

threshold that is controlled by the second analog input, can be used to compute the maximum

between two analog numbers. For further study of the relation between perceptron and maximum

function, we plotted a 2-input perceptron using a sigmoid function
𝑒𝛼∙(𝑟+𝑣−𝑐)

1+𝑒𝛼∙(𝑟+𝑣−𝑐)
 (Fig. S3.3.1D), and

a 2-input perceptron that is normalized by second input (
𝑒𝛼∙(𝑟+𝑣−𝑐)

1+𝑒𝛼∙(𝑟+𝑣−𝑐)
− 𝑣) that brings all the curves

to the same initial point. In our simulation, we designed the sigmoid to act as a positive rectifier in

the operating dynamic range 𝛼 = 7 and large 𝑐 = 1.5. We obtained that max(0, 𝑟 − 𝑣) + 𝑐𝑜𝑛𝑠𝑡
and perceptron have similar behavior, however, in an opposite relation with the second input.

Then, we plotted the perceptgene of two inputs
𝑏𝑖𝑎𝑠∙𝑟𝑛1 ∙𝑣𝑛2+𝛽

1+𝑏𝑖𝑎𝑠∙𝑟𝑛1 ∙𝑣𝑛2
 (Fig. S3.1.1D, only in this case we

assumed that 𝑛1 = 𝑛2 = 1.5, 𝑏𝑖𝑎𝑠 = 0.00005, 𝛽 = 0.01).

44

For operating in partial swing, the perceptgene can be approximated as shifted and biased log-

transformed positive rectifier (PR). The PF receives the collective analog signal 𝑘1 ∙ log(𝑟) + 𝑘2 ∙
log(𝑣) + log (𝐴𝑟𝑎𝐶𝑚𝑎𝑥), where AraCmax is the maximum AraC level. Using Eq. S3.2.3, when the

bias depends linearly on the v level, the output of the PR:

𝑓𝑁𝑅 =
𝑘1∙log(𝑟)+𝑘2∙log(𝑣)+log(𝐴𝑟𝑎𝐶𝑚𝑎𝑥)−log (𝑈𝑜2)

1+(
𝐴𝑟𝑎𝐶𝑚𝑎𝑥
𝑈𝑜2

∙𝑟𝑘1 ∙𝑣𝑘2)
−|𝛼| + 2 ∙ 𝑤2 ∙ log(𝑟) + 𝑐𝑜𝑛𝑠𝑡 (S3.8)

Where 𝑢02 = log (𝑈𝑜2),

(3) when: 𝛼 ≫ 1 , and
𝐴𝑟𝑎𝐶𝑚𝑎𝑥

𝑈𝑜2
∙ 𝑟𝑘1 ∙ 𝑣𝑘2 ≫ 1 𝑓𝑃𝑅 = 𝑘1 ∙ log(𝑟) + 𝑘2 ∙ log(𝑣) +

log(𝐴𝑟𝑎𝐶𝑚𝑎𝑥) − log (𝑈𝑜2) + 2 ∙ 𝑤2 ∙ log(𝑟) + 𝑐𝑜𝑛𝑠𝑡 . In this case, we can claim that the

𝑓𝑃𝑅 is equal to the analog argument 𝑏𝑖𝑎𝑠 ∙ 𝑟𝑛5 ∙ 𝑣𝑛6 at the log-scale., where n5 and n6 are

the are the weights of the two inputs as calculated by the power-law and multiplication

function.

(4)
 𝑘1 = 𝑛1,

 𝑘2 + 𝑘3 = 𝑛2

(5) 𝐵 = 𝑏when: 𝛼 ≫ 1, and
𝐴𝑟𝑎𝐶𝑚𝑎𝑥

𝑈𝑜2
∙ 𝑟𝑘1 ∙ 𝑣𝑘2 ≪ 1 ➔ 𝑓𝑃𝑅 = 2 ∙ 𝑤2 ∙ log(𝑟) + 𝑐𝑜𝑛𝑠𝑡

In case of the PBAD as shown in Fig. S3.1C, since the promoter activity is approximated

as twice the positive rectifier, we expect that

 2 ∙ 𝑘2 = 𝑛6,

 2 ∙ (𝑘1 + 𝑤2) = 𝑛5

 log(𝑏𝑖𝑎𝑠) = log(𝐴𝑟𝑎𝐶𝑚𝑎𝑥) − log (𝑈𝑜2)

Smooth maximum function – 𝐏𝐥𝐮𝐱/𝐭𝐞𝐭𝐎 -based Perceptgene circuit. Fig. S3.3A. shows the

experimental data of Fig. 2E in the linear-scale, is well matched to Eq. S3.3, where

𝑢1 = 0.25 ∙ 𝑥1 + 0.38 ∙ 𝑥2 − 0.2

𝑏 = 0.25 ∙ 𝑥1 + 0.1

𝛼 = 4 > 0 ➔ soft maximum

𝑥1 = log(𝐴𝐻𝐿 𝐼𝐷𝑅5⁄), 𝑥2 = log(𝑎𝑇𝑐 𝐼𝐷𝑅6⁄)

We can also build the model that b depends on x2 (aTc)

𝑓1 = 𝑆4(0.25 ∙ 𝑥1 + 0.38 ∙ 𝑥2 − 0.2) + 0.22 ∙ 𝑥1 + 0.1 (S3.8.1)

Where f1 is the normalized data of Fig. 2E. We can write:

𝑓1 = 𝑚𝑎𝑥(0,0.25 ∙ 𝑥1 + 0.38 ∙ 𝑥2 − 0.2) + 0.22 ∙ 𝑥1 + 0.1 (S3.8.2)

= {
0.25 ∙ 𝑥1 + 0.38 ∙ 𝑥2 − 0.2 0.25 ∙ 𝑥1 + 0.38 ∙ 𝑥2 − 0.2 > 0
0.22 ∙ 𝑥1 + 0.1 0.25 ∙ 𝑥1 + 0.38 ∙ 𝑥2 − 0.2 < 0

Similar to Eq. S3.7 we can write Eq. S3.8 as:

45

𝑓1 = max(𝑘2 ∙ 𝑥2, 𝛾 − 𝑘1 ∙ 𝑥1) = 𝑓1 − (𝑘1 ∙ 𝑥1 − 𝛾) − (2 ∙ 𝑤2 ∙ 𝑥1 + 𝑎2)

= {
𝑘1 ∙ 𝑥1 𝑘1 ∙ 𝑥1 > 𝛾 − 𝑘2 ∙ 𝑥2
𝛾 − 𝑘2 ∙ 𝑥2 𝑘1 ∙ 𝑥1 < 𝛾 − 𝑘2 ∙ 𝑥2

 (S3.9)

Eq. S3.9 can be viewed as a smooth maximum logical function between two analog numbers that

are proportional to system inputs 𝑥1 and 𝑥2 (Fig. S3.3B).

The aTc weight 𝑛6 = 0.8, and 𝑘2 = 0.38 ➔ 𝑛6 ≈ 2 ∙ 𝑘2

The AHL weigh 𝑛5 = 1, and 𝑘1 = 0.25, 𝑤2 = 0.22 ➔ 𝑛5 ≈ 2 ∙ (𝑘1 + 𝑤2)

For a more general case: an ideal maximum function is observed when 𝑚𝑎𝑥(𝑟, 𝑣) =
𝑚𝑎𝑥(0, 𝑟 − 𝑣) + 𝑣. Thus, if we assume that 𝑟 = 𝑘2 ∙ 𝑥2 and 𝑣 = 𝛾 − 𝑘1 ∙ 𝑥1, we can find that the

perceptgene computes:

𝑚𝑎𝑥(0, 𝑟 − 𝑣) + 𝑣 + 0.47 ∙ 𝑥1 − 0.1 ➔ 𝑚𝑎𝑥(𝑟, 𝑣) + 0.47 ∙ 𝑥1 − 0.1 (S3.9.1)

Fig. S3.3.1. Calculations of several functions related to smooth maximum calculations.

46

Fig. S3.3.2. The perceptgene circuit calculates the smooth maximum between the analog inputs

(log(𝐴𝐻𝐿) , log(𝑎𝑇𝑐)). (A) the raw data, where 𝛾 = 0.5 ∙ log (𝐵3), 𝑘2 = 0.5 ∙ (𝑛5 − 𝑤2 (B) the raw

data after bringing all the curves to same maximum point, Similar to Fig. S3.3.1. (C) Raw data

using Eq. S3.9.

Similar calculations of error were performed to the maximum circuit.

Table S3.9. summarized our results

Std err

(experimental vs.

expected)

Smooth Min

(expected)

Smooth Avg

(expected)

Smooth Max

(expected)

Smooth Max

(experimental)

470% 256% 23%

(A)

(B) (C)

47

A simple model for the average function:

The output of the power-law and multiplication circuit (Fig. S3.4A) is given by:

𝑌 = 𝑌𝑁 (
𝐴𝐻𝐿

𝐼𝐷𝑅1
)
𝑛7
∙ (
𝐼𝑃𝑇𝐺

𝐼𝐷𝑅2
)
𝑛8

 (S3.10)

Where 𝑌𝑁 is a normalized parameter with a unit of concentration, 𝐼𝐷𝑅𝑖 are the input dynamic

ranges. Applying log operation, we get:

log(𝑌) = log(𝑌𝑁) + 𝑛7 ∙ 𝑙𝑜𝑔 (
𝐴𝐻𝐿

𝐼𝐷𝑅1
) + 𝑛8 ∙ 𝑙𝑜𝑔 (

𝐼𝑃𝑇𝐺

𝐼𝐷𝑅2
) (S3.11)

In case that n7=n8=0.5, we get:

𝑂𝑢𝑡 = log(𝑌) − log(𝑌𝑁) =
𝑙𝑜𝑔(

𝐴𝐻𝐿

𝐼𝐷𝑅1
)+𝑙𝑜𝑔(

𝐼𝑃𝑇𝐺

𝐼𝐷𝑅2
)

2
 (S3.12)

Therefore, conceptually, we can implement average only with the power-law and multiplication,

without the need for activation function. However, it is challenging to obtain IPTG weight around

0.5. We can solve this challenge by applying a linear activation function using AraC, PBAD and

Arabinose (Fig. S3.4B). Equations that describe circuit from Fig. S3.4B are:

𝐴𝑟𝑎𝐶𝑇 = 𝐴𝑟𝑎𝐶𝑁 (
𝐴𝐻𝐿

𝐼𝐷𝑅1
)
𝑛7
∙ (
𝐼𝑃𝑇𝐺

𝐼𝐷𝑅2
)
𝑛8

 (S3.13.1)

𝐺𝐹𝑃 = 𝐺𝐹𝑃𝑚𝑎𝑥

𝐴𝑟𝑎𝐶𝑇
𝐾𝑑3

+𝛽4

1+
𝐴𝑟𝑎𝐶𝑇
𝐾𝑑3

 (S3.13.2)

Eq. S3.13.2 is driven from Eq. S2.21, and Eq. S2.22, where the arabinose concentration is very

high (Arab>>Km3), β4 <<1, is the basal level of PBAD promoter, 𝐺𝐹𝑃𝑚𝑎𝑥 is the maximum

GFP achieved by PBAD promoter, 𝐴𝑟𝑎𝐶𝑁 is corresponding to 𝑌𝑁 . The Eq. S3.13.2, or the PBAD

promoter can operate in two linear ranges:

1.
𝐴𝑟𝑎𝐶𝑇

𝐾𝑑3
≪ 1, in this range, we can approximate Eq. S3.13.2 as:

𝐺𝐹𝑃 = 𝐺𝐹𝑃𝑚𝑎𝑥 (
𝐴𝑟𝑎𝐶𝑇

𝐾𝑑3
+ 𝛽4) (S3.13.3)

Substituting Eq. S3.13.1 into Eq. S3.13.3, we get:
𝐺𝐹𝑃

𝐺𝐹𝑃𝑚𝑎𝑥
= (

𝐴𝑟𝑎𝐶𝑁

𝐾𝑑3
) ∙ (

𝐴𝐻𝐿

𝐼𝐷𝑅1
)
𝑛7
∙ (
𝐼𝑃𝑇𝐺

𝐼𝐷𝑅2
)
𝑛8
+ 𝛽4 (S3.14)

Applying a log-operation into 3.14 and in case that 𝑛 = 𝑛7 = 𝑛8, we get:

𝑙𝑜𝑔 (
𝐺𝐹𝑃

𝐺𝐹𝑃𝑚𝑎𝑥
− 𝛽4) − 𝑙𝑜𝑔 (

𝐴𝑟𝑎𝐶𝑁

𝐾𝑑3
) = 𝑛 (𝑙𝑜𝑔 (

𝐴𝐻𝐿

𝐼𝐷𝑅1
) + 𝑙𝑜𝑔 (

𝐼𝑃𝑇𝐺

𝐼𝐷𝑅2
)) (S3.15)

In this working range, the linear activation function based on PBAD could not solve the challenge

of achieving low weights. These are two solutions, (1) working with an activation function with

very low hill coefficient, which is not simple to create. (2) working with another working range:

2. Second analog working range: 𝛽4 <
𝐴𝑟𝑎𝐶𝑇

𝐾𝑑3
< 1. For simplicity, in this analysis, we neglect the

basal level, and applying a log operation to Eq. S3.13.2, we get:

log (
𝐺𝐹𝑃

𝐺𝐹𝑃𝑚𝑎𝑥
) = log (

𝐴𝑟𝑎𝐶𝑇

𝐾𝑑3
) − log (1 +

𝐴𝑟𝑎𝐶𝑇

𝐾𝑑3
) (S3.16)

The slope in the log-log is equal:

𝑚𝑒𝑓𝑓 ≡
𝑑[log(

𝐺𝐹𝑃

𝐺𝐹𝑃𝑚𝑎𝑥
)]

𝑑[𝑙𝑜𝑔(
𝐴𝑟𝑎𝐶𝑇
𝐾𝑑3

)]
= 1 −

𝐴𝑟𝑎𝐶𝑇
𝐾𝑑3

1+
𝐴𝑟𝑎𝐶𝑇
𝐾𝑑3

 (S3.17)

Our goal now is to approximate Eq. S3.17 when 𝛽4 <
𝐴𝑟𝑎𝐶𝑇

𝐾𝑑3
< 1.

By applying Taylor series around
𝐴𝑟𝑎𝐶𝑇

𝐾𝑑3
≈ 1, we get (Fig. S3.5):

48

𝐴𝑟𝑎𝐶𝑇
𝐾𝑑3

1+
𝐴𝑟𝑎𝐶𝑇
𝐾𝑑3

≈
1

2
+
1

4
∙ 𝑙𝑛(

𝐴𝑟𝑎𝐶𝑇

𝐾𝑑3
) (S3.18)

Substituting Eq. S3.18 into Eq. S3.17, we get

𝑚𝑒𝑓𝑓 =
1

2
−
1

4
∙ 𝑙𝑛(

𝐴𝑟𝑎𝐶𝑇

𝐾𝑑3
) (S3.19.1)

𝐺𝐹𝑃 = 𝐺𝐹𝑃𝑚𝑎𝑥 ∙ (
𝐴𝑟𝑎𝐶𝑇

𝐾𝑑3
)
𝑚𝑒𝑓𝑓

 (S3.19.2)

Substituting Eq. S3.13.1 into Eq. S3.19.2, we get:
𝐺𝐹𝑃

𝐺𝐹𝑃𝑚𝑎𝑥
= 𝐺𝐹𝑃𝑚𝑎𝑥 ∙ (

𝐴𝑟𝑎𝐶𝑁

𝐾𝑑3
)
𝑚𝑒𝑓𝑓

∙ (
𝐴𝐻𝐿

𝐼𝐷𝑅1
)
𝑛7∙𝑚𝑒𝑓𝑓

∙ (
𝐼𝑃𝑇𝐺

𝐼𝐷𝑅2
)
𝑛8∙𝑚𝑒𝑓𝑓

 (S3.20)

Applying log operation, we get:

log (
𝐺𝐹𝑃

𝐺𝐹𝑃𝑚𝑎𝑥
) − 𝑚𝑒𝑓𝑓 ∙ 𝑙𝑜𝑔 (

𝐴𝑟𝑎𝐶𝑁

𝐾𝑑3
) = 𝑛7 ∙ 𝑚𝑒𝑓𝑓 ∙ 𝑙𝑜𝑔 (

𝐴𝐻𝐿

𝐼𝐷𝑅1
) + 𝑛8 ∙ 𝑚𝑒𝑓𝑓 ∙ 𝑙𝑜𝑔 (

𝐼𝑃𝑇𝐺

𝐼𝐷𝑅2
)

 (S3.21)

So that Eq. S3.21 computes the average, we require:

1. 𝑛7 = 𝑛8 ≡ 𝑛

2. 𝑛 ∙ 𝑚𝑒𝑓𝑓 = 0.5 (Substituting from Eq. S3.19.1)

 𝑛 ∙ (
1

2
−
1

4
∙ 𝑙𝑛(

𝐴𝑟𝑎𝐶𝑇

𝐾𝑑3
)) = 0.5

 log (
𝐴𝑟𝑎𝐶𝑇

𝐾𝑑3
) = 2 ∙ (1 −

1

𝑛
)


𝐴𝑟𝑎𝐶𝑇

𝐾𝑑3
= 𝑒2∙(1−

1

𝑛
)
 (S3.22)

Numbers: 𝒏 = 𝟏. 𝟔𝟓,𝒎 = 𝟏 (These numbers are based on our measurements Fig. S4.6)

➔ 𝐀𝐫𝐚𝐂 ≈ 𝟐𝐊,𝑚𝑒𝑓𝑓 = 0.33 .Under these conditions:

log (
𝐺𝐹𝑃

𝐺𝐹𝑃𝑚𝑎𝑥
) − 𝐶𝑜𝑛𝑠𝑡 = 0.5 ∙ 𝑙𝑜𝑔 (

𝐴𝐻𝐿

𝐼𝐷𝑅1
) + 0.5 ∙ 𝑙𝑜𝑔 (

𝐼𝑃𝑇𝐺

𝐼𝐷𝑅2
) (S3.23)

49

(A)

(B)

Fig. S3.4. (A) APF (PluxAAT), ANF (PlacO1), and Plux/lacO-based Combinatorial promoter.

(B) Preceptgene based on linear activation function to implement average.

Fig. S3.5. The approximation of Eq. S3.18, the inset Fig S3.5. is a representation in the log-log

scale.

50

Experimental results of APF (𝑷𝒍𝒖𝒙𝑨𝑨𝑻), ANF (𝑷𝒍𝒂𝒄𝑶𝟏) and 𝑷𝒍𝒖𝒙/𝒍𝒂𝒄𝑶-based Combinatorial

promoter:

Fig. S3.6. Experimental results of circuit Fig. S3.4. The data represent means calculated from

three experiments.

Fitting experimental results of PluxAAT-based APF, PlacO1-based ANF loops and Plux/lacO-based

combinatorial promoter to power-law and multiplication function (log(𝐺𝐹𝑃) = 𝑐 + 𝑛7 ∙
log(𝐴𝐻𝐿) + 𝑛8 ∙ log (𝐼𝑃𝑇𝐺))

Fig. S3.7. Matlab surface fits the experimental results of APF (PluxAAT) and ANF (PlacO1)
loops and combinatorial promoter (Plux/lacO-GFP) to power-law and multiplication function.

2. Average function – Plux/lacO-based Perceptgene circuit. To implement the average function

between two analog numbers, we used a linear activation function (Fig. S3.8A). A linear

activation function is a special case of Eq. S3.3 with 𝛼 ≈ 0 . Fig. S3.8B shows the

experimental data of Fig. 2H in the linear-scale, which is well matched to Eq. S3.3 with

𝛼 ≈ 0 (Fig. S3.6B):

𝑓1 = 0.55 ∙ 𝑥1 + 0.51 ∙ 𝑥2 − 0.25

 𝑓1 + 0.25 ≅
𝑥1+𝑥2

2

The power-law and multiplication functions set the input dynamic range of the smooth logic

functions. For example, the average function has an 𝐼𝐷𝑅 of log(32) order of magnitude for IPTG

and the multiplication function has a 𝐼𝐷𝑅 of log(16) order of magnitude for AHL.

51

Fig. S3.8. The perceptgene circuit calculates the average between the analog inputs

(log(𝐴𝐻𝐿), log(𝐼𝑃𝑇𝐺)).

Similar calculations of error were performed on the average circuits.

Table S3.10 summarized our results

Std err

(experimental vs.

expected)

Smooth Min

(expected)

Smooth Avg

(expected)

Smooth Max

(expected)

Smooth Avg

(experimental)

66% 8.5% 24%

Table S3.11 summarized all the results

Std err

(experimental vs.

expected)

Smooth

Min

(expected)

Smooth

Avg

(expected)

Smooth

Max

(expected)

Circuits

Smooth Min

(experimental)

10% 22% 32% Inputs: IPTG, aTc

ANF (PlacO1), ANF (𝑃𝑡𝑒𝑡𝑂),

combinatorial promoter

(PlacO/𝑡𝑒𝑡𝑂), AraC /PBAD-GFP

Arabinose-low

Circuit – Fig. 1G

Results: Fig. 1H

Transformed results: Fig. 1J

52

Smooth Max

(experimental)

470% 256% 23% Inputs: AHL, aTc

APF (PluxTGT), ANF (𝑃𝑡𝑒𝑡𝑂),

combinatorial promoter

(Plux/tetO), AraC /PBAD-GFP

Arabinose-high

Circuit – Fig. 2D

Results: Fig. 2E

Transformed results: Fig. 2F

Smooth Avg

(experimental)

66% 8.5% 24% Inputs: AHL, IPTG

APF (PluxAAT), ANF (PlacO),

combinatorial promoter

(Plux/tetO), AraC /PBAD-GFP

Arabinose-high

Circuit – Fig. 2G

Results: Fig. 2H

Transformed results: Fig. 2I

Table S3.12 List of abbreviations used in this section

Symbol Description

𝑥𝑖 Analog numbers

𝑃𝑙𝑎𝑐𝑂/𝑡𝑒𝑡𝑂 combinatorial promoter

IPTG Free Isopropyl 1-β-D-1-thio galactopyranoside concentration

aTc Free anhydrotetracycline

IDR Input dynamic range

𝑃𝑙𝑢𝑥/𝑡𝑒𝑡𝑂 combinatorial promoter

𝑃𝑙𝑢𝑥/𝑙𝑎𝑐𝑂 combinatorial promoter

53

4. Calculations of parameters for a single perceptgene

Fig. S4.1. Basic structure of perceptgenes.

The output of power-law and multiplication circuit can be approximated as:

𝑌 = ∏ 𝑌𝑚 ∙ (
𝑋𝑖

𝐾𝑚𝑖
)
𝑛𝑖𝑁

𝑖=1 (S4.1)

Where 𝑋𝑖 is the input concentration, 𝐾𝑚𝑖 is the dissociation constant or scalar normalization or

input dynamic range. 𝑌𝑚 has units of concentration, and it equals the maximum level of produced

transcription factors. 𝑛𝑖 is Hill-coefficient of the input 𝑋𝑖. The operation range of the circuit is

defined 𝑋𝐿𝑖 < 𝑋𝑖 < 𝑋𝐻𝑖, where𝐼𝐷𝑅 = log (
𝑋𝐻𝑖

𝑋𝐿𝑖
). Then we can rewrite Eq. S4.1 as:

𝑌 = ∏ 𝑌𝑚 ∙ (
𝑋𝑖

𝑋𝐿𝑖
)
𝑛𝑖
∙ (

𝑋𝐿𝑖

𝐾𝑚𝑖
)
𝑛𝑖𝑁

𝑖=1 (S4.2)

Assuming that 𝑋𝐿𝑖 ≈ 𝐾𝑚𝑖 , relevant parameters used in models are listed in Table S4.1

System [Inpu1, Input2] [IPTG, aTc] [AHL, aTc] [AHL, IPTG]

𝑋𝐿1 1 𝜇𝑀 90 𝑛𝑀 90 𝑛𝑀

𝐾𝑚1 1 𝜇𝑀 (21) 125 𝑛𝑀 (16) 125 𝑛𝑀

𝑋𝐿2 0.4 𝑛𝑔/𝑚𝐿 0.4 𝑛𝑔/𝑚𝐿 1 𝜇𝑀

𝐾𝑚2 1.7 𝑛𝑔/𝑚𝐿 (16) 1.7 𝑛𝑔/𝑚𝐿 1 𝜇𝑀

Table S4.1. The Lowest input values were used in our circuits, and the dissociation constants for binding IPTG -

LacI, AHL -LuxR, and aTc -TetR

The measured signal of the power-law and multiplication circuit is given:

𝐺𝐹𝑃 ≈ 𝜉 ∙ ∏ 𝑌𝑚 ∙ (
𝑋𝑖

𝑋𝐿𝑖
)
𝑛𝑖𝑁

𝑖=1 (S4.3)

Where 𝜉 is the efficiency of converting GFP molecules to optical signals. The minimum measured

signal achieved is when 𝑋𝑖 = 𝑋𝐿𝑖:

𝐺𝐹𝑃𝑚𝑖𝑛 = 𝜉 ∙ ∏ 𝑌𝑚 ∙ (
𝑋𝐿𝑖

𝐾𝑚𝑖
)
𝑛𝑖𝑁

𝑖=1 (S4.4)

Then, the normalized signal of the power-law and multiplication circuit is given by:

𝐺𝐹𝑃𝑁 =
𝐺𝐹𝑃

𝐺𝐹𝑃𝑚𝑖𝑛
= ∏ (

𝑋𝑖

𝑋𝐿𝑖
)
𝑛𝑖𝑁

𝑖=1

log(𝐺𝐹𝑃𝑁) = 𝑛𝑖 ∙ ∑ [log (
𝑥𝑖

𝑥𝐿𝑖
)]𝑁

𝑖=1 (S4.5)

The promoter activity is initiated when the transcription factor 𝑌 binds and is given by:

54

𝑃𝑟 =
(
𝑌

𝐾𝑑
)
𝑚

+𝛽

1+𝛽+(
𝑌

𝐾𝑑
)
𝑚 (S4.6)

𝛽 is the basal level of the promoter, 𝐾𝑑 is the dissociation constant of binding 𝑌 to promoter, and

𝒎 is the Hill-coefficient (number of binding sites within the promoter). Substituting Eq. S4.2 into

Eq. S4.6 gives:

𝑃𝑟 =

(
∏ 𝑌𝑚∙(

𝑋𝑖
𝑋𝐿𝑖

)
𝑛𝑖𝑁

𝑖=1

𝐾𝑑
)

𝑚

+𝛽

1+𝛽+(
∏ 𝑌𝑚∙(

𝑋𝑖
𝑋𝐿𝑖

)
𝑛𝑖𝑁

𝑖=1

𝐾𝑑
)

𝑚

𝑃𝑟 =
(∏

𝑌𝑚
𝐾𝑑
∙(
𝑋𝑖
𝑋𝐿𝑖
)
𝑛𝑖𝑁

𝑖=1)
𝑚

+𝛽

1+𝛽+(∏
𝑌𝑚
𝐾𝑑
∙(
𝑋𝑖
𝑋𝐿𝑖
)
𝑛𝑖𝑁

𝑖=1)
𝑚

𝑦 = (∏ 𝐵 ∙ 𝑥𝑖
𝑛𝑖𝑁

𝑖=1)𝑚 (S4.7)

𝑃𝑟 =
𝑦+𝛽

1+𝛽+𝑦
 (S4.8)

where 𝑥𝑖 = 𝑋𝑖 𝑋𝐿𝑖⁄ , and 𝐵 = 𝑌𝑚 𝐾𝑑⁄

The minimum promoter activity is 𝑃𝑚𝑖𝑛 ≈ 𝛽, and the maximum promoter activity is 𝑃𝑚𝑎𝑥 ≈ 1.

The perceptgene is designed as a modular, meaning that the output of the first layer acts as the

input of the second layer. Also, the decision at the perceptgene output should be made at the

logarithmic-scale. Therefore, we normalized the promoter activity by the basal level:

1 ≤ 𝑃𝑟 ≤ 1/𝛽 ➔ linear-scale/log transform: 0 ≤ log (𝑃𝑟) ≤ −log (𝛽) (S4.9)

In analogy to perceptron, we approximated the activation function as a step function:

𝑚 ∙ 𝑛𝑖 ∙ ∑ 𝑥𝑖
𝑁
𝑖=1 −𝑚 ∙ 𝐵 ≥ log (𝑇ℎ) log (𝑃𝑟) = −log (𝛽) (S4.10)

Otherwise log (𝑃𝑟) = 0

We define the Th is the effective threshold of the activation function and is set by the Basel level

(Fig. S4.2):

10𝑙𝑜𝑔(𝛽)/2 =
𝑇ℎ+𝛽

1+𝑇ℎ+𝛽
 (S4.11)

𝑇ℎ =
10𝑙𝑜𝑔(𝛽)/2 − 𝛽

1 − 10𝑙𝑜𝑔(𝛽)/2

The measured signal of the perceptgene circuit in steady state is given:

𝐺𝐹𝑃 = 𝜉 ∙ 𝐺𝐹𝑃𝑚𝑎𝑥 ∙ 𝑃𝑟 (S4.12)

where GFPmax is the maximum GFP achieved by the promoter. Then the normalized signal of the

preceptgene circuit is given by:

𝐺𝐹𝑃𝑁 =
𝐺𝐹𝑃

𝐺𝐹𝑃𝑚𝑖𝑛
= 1 +

𝜉∙𝐺𝐹𝑃𝑚𝑎𝑥∙𝑃𝑟

𝜉∙𝐺𝐹𝑃𝑚𝑎𝑥∙(𝐵𝑁+𝑚+𝛽)
 (S4.13)

Here GFPmin is the minimum GFP achieved by the perceptgene (𝑥𝑖 = 1). The maximum fold

change of the perceptgene (GFPN_max) is achieved when the normalized inputs equal to 𝐼𝐷𝑅 (input

dynamic range), then we can assume that the promoter activity is approximately 1. Therefore, the

maximum fold change is given by:

 𝐺𝐹𝑃𝑁_𝑚𝑎𝑥 =
1

𝐵𝑚+𝛽

55

𝐵𝑚 =
1−𝛽

𝐺𝐹𝑃𝑁_𝑚𝑎𝑥
≈

1

𝐺𝐹𝑃𝑁_𝑚𝑎𝑥
 (S4.14)

Fig. S4.2. Description of the perceptgene model in the (A) logarithmic-domain and (B) linear-

domain.

In this work, we used the fundamental properties of ANNs to create genetic circuits that

encoded the calculations of smooth maximum, the smooth minimum, and the average of two

analog inputs (Supplementary analysis, Section 3). In our implementation the cooperativity,

represented by the Hill coefficient, acts as a weight (𝒎,𝒏𝒊), and the node threshold is set by

the basal level. Additionally, the bias is set by a linear function of the

translation/transcription rates, the mRNA/protein half-life and cell growth rate divided by

the binding affinities of protein-protein/protein-DNA reactions (Supplementary

Information, BOX1). Correspondingly, the logarithmic equivalent product of 𝒎 ∙ ∑ 𝒏𝒊 ∙𝒊

(𝑿𝒊/𝑰𝑫𝑹𝒊) + 𝑩𝒊𝒂𝒔 > 𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅 sets the operation type shown in Table S7 (e.g., the

maximum function uses a positive rectifier activation, the minimum function uses a negative

rectifier function, and the average function uses a linear activation function; Supplementary

Figs. 3.1, 3.4). To enable different operation types, we controlled the Hill coefficient of the

𝐏𝐁𝐀𝐃 promoter (m) by adjusting the arabinose concentration (Supplementary Fig. S2.11).

Table S4.2. shows the calculations used to define the operation of each perceptgene circuit

System [IPTG, aTc] [aTc, AHL] [AHL, IPTG]

𝑛1 0.75 0.8 1.9

𝑛2 1 1 1.65

𝐼𝐷𝑅1 at log-scale log(128) = 2.1 log(64) = 1.8 log(16) = 1.2

𝐼𝐷𝑅2 at log-scale log(128) = 2.1 log(32) = 1.5 log(32) = 1.5

𝑀 2 1 1

Maximum Fold Change 16 10 14

(A)

(B)

56

Bias at log-scale (B) log(1 161 2⁄⁄)

= −0.6

log(1 10⁄)
= −1

log(1 14⁄)
= −1.1

𝛽 – Basal level 0.001 0.001 0.001

log(Th) −1.5 −1.5 −1.5

𝐵 ∙ 𝑚 − 𝑇ℎ -2.7 -2.5 -2.6

𝑛1 ∙ 𝑚1 ∙ 𝐼𝐷𝑅1 + 𝐵 ∙ 𝑚 − 𝑇ℎ 0.45 -1 -0.3

𝑛2 ∙ 𝑚2 ∙ 𝐼𝐷𝑅2 + 𝐵 ∙ 𝑚 − 𝑇ℎ 1.5 -1 -0.2

𝑛1 ∙ 𝑚1 ∙ 𝐼𝐷𝑅1 + 𝑛2 ∙ 𝑚2 ∙ 𝐼𝐷𝑅2 + 𝐵
∙ 𝑚 − 𝑇ℎ

 4.5 0.45 2.2

Operation type Minimum Maximum Average

Fig. S4.3. Operation type of perceptgene. (A) Maximum, (B) average, and (C) minimum.

(A)

(B)

(C)

57

Fitting experimental results of the power-law and multiplication functions with respect to

their input dynamic ranges (𝑰𝑫𝑹𝒔):

Fig. S4.4. Matlab surface fits the experimental results of PlacO1 and PtetO ANF loops and

combinatorial promoter (PlacO/tetO-GFP) to power-law and multiplication function with respect

to 𝐼𝐷𝑅 axis.

Fig. S4.5. Matlab surface fits the experimental results of APF (PluxTGT) and ANF (PtetO) loops

and combinatorial promoter (Plux/tetO- mCherry) to power-law and multiplication function with

respect to 𝐼𝐷𝑅 axis.

Fig. S4.6. Matlab surface fits the experimental results of APF (PluxAAT) and ANF (PlacO1) loops

and combinatorial promoter (Plux/lacO-GFP) to power-law and multiplication function with

respect to 𝐼𝐷𝑅 axis.

58

Circuits that calculate minimum and maximum input values can be used to construct conjunction

and disjunction logic functions (Fig. S4.7). For example, the minimum between {“0”, “1”} is 0,

i.e., “0” AND “1”; the maximum between {“0”, “1”} is 1, i.e., “0” OR “1”. Therefore, we can

apply maximum/minimum perceptgene-based circuits to implement logical computation functions

in living cells. Controlling the weights can be achieved via processes such as splitting proteins

(22–25).

Fig. S4.7. Truth table of AND/OR logic gates demonstrate minimum/maximum functions,

respectively.

59

5. Design and model of multilayer perceptgene networks

In this section we present a biophysical model that describes the behavior of multilayer

perceptgene network at steady state. We show that biophysical models can be described in a similar

fashion to neural networks with three components: (1) weights that are represented by Hill-

coefficients and cooperativity, (2) bias constants that are proportional to the ratio of the total

synthesized proteins and promoter binding affinities and (3) activation functions that are

represented by a promoter activity and are described by Michaelis-Menten kinetics

(Supplementary information, Section 1, Box1).

Fig. S5.1. Multilayer perceptgene network accepts three analog inputs (AHL, IPTG and aTc).

In the first layer, the AraC protein is regulated by a circuit consists of a graded APF, an ANF loop

and a combinatorial promoter (Plux/lacO). The first layer circuit displays a power-law and

multiplication function (Fig. S.5.5-5.7). The APF loop is induced by AHL and the ANF loop is

induced by IPTG. A weak mutated PluxM56 promoter was used in the APF part to broaden the 𝐼𝐷𝑅

of AHL (Fig. S2.13). The activity of AraC protein upon inducers AHL and IPTG is described by:

𝑦1 = 𝑦𝑚1 ∙ (
𝐴𝐻𝐿

𝐾𝑚1
)
𝑛1
∙ (
𝐼𝑃𝑇𝐺

𝐾𝑚2
)
𝑛2

 (S5.1)

Where 𝑦𝑚1 has units of concentration, and it depends on the binding affinity between transcription

factors and the corresponding promoter, as well as the maximum level of transcription factor (Eq.

S2.13). The experimental results of Plux/lacO-based power-law and multiplication circuit are shown

in Fig. S.5.5-5.7, which are well fitted using Eq. S5.1.

The AraC proteins are expressed as the output of the first layer. Subsequently, they interact with

the PBAD promoter, which further regulates the T7-RNA polymerase. The activity of the T7-RNA

can be modeled in the following way

𝑧1 = 𝑧𝑚1
(𝑦1/𝐾1)

𝑚1+𝛽1

1+𝛽1+(𝑦1/𝐾1)𝑚1
 (S5.2)

𝐾1 = 𝑎 ∙ 𝑚1
−𝑏 (S5.3)

Where 𝐾1 is the dissociation constant of Arabinose- AraC complex binding to PBAD promoter, 𝛽1
is the basal level of PBAD, and 𝑚1 is the effective Hill-coefficient. We have shown that 𝐾1 and 𝑚1

can be tunable by the Arabinose concentration level (Fig. S2.9) with a power-law relation.

60

The amber suppressor tRNA 𝑠𝑢𝑝𝐷 is regulated by PtetO-based ANF, and is given by:

𝑦2 = 𝑦𝑚2 ∙ (
𝑎𝑇𝑐

𝐾𝑚3
)
𝑛3

 (S5.4)

where 𝑦𝑚2 has units of concentration. The experimental results of PtetO-based ANF are shown in

Fig. S.5.8, which are fitted well to a power-law function using Eq. S5.1. The biochemical binding

reaction between T7 RNA polymerase and 𝑠𝑢𝑝𝐷 is given by(26):

𝑇7𝑅𝑁𝐴 + 𝑠𝑢𝑝𝐷 ↔ 𝑇7𝑅𝑁𝐴𝑆𝑢𝑝𝐷 (S5.5.1)

𝑇7𝑅𝑁𝐴𝑆𝑢𝑝𝐷 + 𝑠𝑢𝑝𝐷 ↔ 𝑇7𝑅𝑁𝐴𝑆𝑢𝑝𝐷2 (S5.5.2)

A simple solution to the set of Eq. S5.5.1 and Eq. S5.5.2 at the steady-state gives:

𝑦3 = 𝑦𝑚3 ∙
(𝑦2/𝐾2)

𝑚2 ∙𝐾3∙(𝑧1/𝐾3)
𝑚3

𝐾4
 (S5.5.3)

Here we assumed that there are two amber stop codons in the open reading frame, which should

lead to 𝑚2 = 2 (26). However, as the first biochemical reaction in Eq. S5.5 (𝑇7𝑅𝑁𝐴 + 𝑠𝑢𝑝𝐷 ↔
𝑇7𝑅𝑁𝐴𝑆𝑢𝑝𝐷) can also bind to T7 promoter with a probability larger than zero, the effective value

of 𝑚2 can be reduced to less than 2. 𝑚3 depends on the protein quaternary structure (the number

of subunits that interact with each other and arrange themselves to form a final structure of the

protein). Since the T7 RNA polymerase is a single subunit (26, 27), 𝑚3 = 1. 𝐾2, 𝐾3 and 𝐾4 are

the dissociation constants of biochemical reactions in Eq. S5.5. The T7 RNA polymerase was

regulated by a ribosome binding sequence with a very low binding affinity (BBa_B0031) (4, 28).

The binding of 𝑇7𝑅𝑁𝐴𝑆𝑢𝑝𝐷2 complex to T7 promoter, actives it and expresses 𝐺𝐹𝑃. This process

demonstrates the output of the second perceptgene layer, and is given by:

𝑧2 = 𝑧𝑚2
(𝑦3/𝐾5)

𝑚4+𝛽2

1+𝛽2+(𝑦3/𝐾5)𝑚4
 (S5.6)

Where 𝐾5 is the dissociation constant 𝑇7𝑅𝑁𝐴𝑆𝑢𝑝𝐷2 complex to 𝑃𝑇7 , 𝛽2 is the basal level of 𝑃𝑇7,

and 𝑚4 is the effective Hill-coefficient. Rewriting the set of Eq. S5.1-Eq. S5.6, gives:

𝑦1 = (𝐵1 ∙ (
𝐴𝐻𝐿

𝐾𝑚1
)
𝑛1
∙ (
𝐼𝑃𝑇𝐺

𝐾𝑚2
)
𝑛2
)
𝑚1

 (S5.7)

𝑧1 =
𝑦1+𝛽1

1+𝛽1+𝑦1
 (S5.8)

𝑦2 = (𝐵2 ∙ (
𝑥3

𝐾𝑚3
)
𝑛3
)
𝑚2

 (S5.9)

𝑦3 = (𝐵4 ∙ 𝑦2 ∙ (𝐵3 ∙ 𝑧1)
𝑚3)𝑚4 (S5.10)

𝑧2 =
𝑦3+𝛽2

1+𝛽2+𝑦3
 (S5.11)

Where: 𝐵4 ≡
𝑦𝑚3

𝐾5
∙
𝐾3

𝐾4
 , 𝐵3 ≡

𝑧𝑚1

𝐾3
 , 𝐵2 ≡

𝑦𝑚2

𝐾2
 , 𝐵1 ≡

𝑦𝑚1

𝑎
∙ 𝑚1

𝑏

An abstract model of the set of Eq. S5.7-Eq. S5.11 is shown in Fig. S5.2, and is built from three

computational components:

(1) Network Weights (𝑛𝑖 and 𝑚𝑖): are represented by effective Hill-coefficients, which depend

on biological cooperativities of protein interactions and protein quaternary structure (the

number of subunits that interact with each other and arrange themselves to form a final

protein).

(2) Bias constants (𝐵𝑖): are represented by translation/transcription rates, mRNA/protein half-

lives, rates of cell growth, binding affinities in protein-protein or protein-DNA interactions.

Bias constant is unit-less.

61

(3) Activation functions or network nodes (𝑧𝑖 - the output of each perceptgene) which are

represented by a promoter activity and is given by a normalized Michaelis-Menten model

𝑦𝑖 (1 + 𝑦𝑖)⁄ .

As in Fig. S5.2, each input is normalized and fed into a power-law function with an exponent 𝑛𝑖.
Then the product is multiplied with a bias constant, giving rise to an analog signal (𝑦𝑖). Applying

a logarithmic operation to the signal, we get: 𝑙𝑜𝑔(𝑦𝑖) = 𝑚𝑙 ∙ 𝑙𝑜𝑔(𝐵𝑖) + 𝑚𝑙 ∙ ∑ 𝑛𝑗𝑗 ∙ 𝑙𝑜𝑔(𝐼𝑛𝑖) (𝐼𝑛𝑖

is the normalized input). The bias acts as a reference level.

Fig. S5.2. Abstract model of Multilayer perceptgene in analogy to abstract models of artificial

neural networks. Comparing to Fig. 3B, the only difference is that B3 is included in B4.

5.1. Design of 3-input majority function

The 3-input majority function (also called the median operator) describes a logic function from

three inputs to one output. The output is a high- “1” if and only if the majority of the inputs are

high- “1”. Otherwise, the output is a low- “0”. The majority function can be found in various

applications such as adders and subtractors (29). The truth table and the implementation of the 3-

input majority function using a logic gate design are shown in Fig. S5.3A and B. The early works

with artificial neural networks were based on a linear threshold unit (LTU) and were targeted to

serve as a computational model that can implement any Boolean logic function (30). The

implementation of a 3-input majority function (Fig. S5.1) using a two-layer perceptgene network

is based on using principles of artificial neural networks (Fig. S5.2). First, we solved the set of Eq.

S5.7-Eq. S5.11, and then converted them to the linear domain using a logarithmic transformation.

Subsequently, an activation function was applied to the transformed output. For simplicity, we

approximated the activation function of the last layer as a step function in the log-scale:

𝑧2 = {
10 𝑦3 ≥ 1
1 𝑦3 < 1

 (S5.12)

And the activation function [(𝑦1 + 𝛽1) (1 + 𝑦1 + 𝛽1)⁄] in the hidden layer was approximated (e.g.

Fig. S5.3C) as:

𝑧1 = {

1 𝑦1 ≥ 𝛼
𝛽1 < 𝑧1 < 1 1/𝛼 ≤ 𝑦1 < 𝛼
𝛽1 𝑦1 < 1/𝛼

 (S5.13)

• We assumed that the normalized input (𝑥𝑖) is between 1 and 10

• We define:

𝑥1 ≡
𝐴𝐻𝐿

𝐾𝑚1
 , 𝑥2 ≡

𝐼𝑃𝑇𝐺

𝐾𝑚2
, 𝑥3 ≡

𝑎𝑇𝑐

𝐾𝑚3

𝐴1 ≡ 𝑙𝑜𝑔 (
𝑦𝑚1

𝑎
) , 𝛾 ≡ log (𝛼) , 𝑏1 ≡ log(𝛽1)

𝐴5 ≡ log(𝐵4) + 𝑚2 ∙ log(𝐵2) + 𝑚3 ∙ log(𝐵3)
𝐵5 ≡ 10

𝐴5 = 𝐵4 ∙ 𝐵2
𝑚2 ∙ 𝐵3

𝑚3

62

𝐵1 ≡ 10
𝐴1 ∙ 𝑚1

𝑏

A simplified model of the set of equations shows that the network consists of two-layers

perceptgene, as shown in Fig. S5.3D.

State 0: 𝑥1 = 1, 𝑥2 = 1, 𝑥3 = 1, 𝑧2 = 1;

We require that 𝑦1 = 𝐵1
𝑚1 < 1/𝛼

➔ 𝑚1 ∙ log(𝐵1) < −log (𝛼)

➔ 𝑚1 ∙ (log (
𝑦𝑚1

𝑎
) + 𝑏 ∙ log(𝑚1)) < −log (𝛼)

 𝑚1 ∙ (𝐴1+𝑏 ∙ log (𝑚1)) < −𝛾 (S5.14.1)

We require that 𝑧1 = 𝛽1
𝑦2 = 𝐵2

𝑚2

𝑦3 = (𝐵4 ∙ 𝐵2
𝑚2 ∙ (𝐵3 ∙ 𝛽1)

𝑚3)𝑚4 < 1

➔ 𝑚4 ∙ (log(𝐵4) + 𝑚2 ∙ log(𝐵2) + 𝑚3 ∙ log(𝐵3) + 𝑚3 log(𝛽1)) < 0

 𝑚4 ∙ (𝐴5 +𝑚3 ∙ 𝑏1) < 0 (S5.14.2)

State 1: 𝑥1 = 1, 𝑥2 = 1, 𝑥3 = 10, 𝑧2 = 1;

We require that 𝑦1 = 𝐵1
𝑚1 < 1/𝛼

 𝑚1 ∙ (𝐴1+𝑏 ∙ log (𝑚1)) < −𝛾

We require that 𝑧1 = 𝛽1
𝑦2 = 𝐵2

𝑚2 ∙ 10𝑛3𝑚2
𝑦3 = (𝐵4 ∙ 𝐵2

𝑚2 ∙ 10𝑛3𝑚2 ∙ (𝐵3 ∙ 𝑧1)
𝑚3)𝑚4 < 1

➔ 𝑚4 ∙ (log(𝐵4) + 𝑚2 ∙ log(𝐵2) + 𝑚3 ∙ log(𝐵3) + 𝑚2 ∙ 𝑛3+𝑚3 log(𝛽1)) < 0

 𝑚4 ∙ (𝐴5 +𝑚2 ∙ 𝑛3 +𝑚3 ∙ 𝑏1) < 0 (S5.14.3)

State 2: 𝑥1 = 1, 𝑥2 = 10, 𝑥3 = 1, 𝑧2 = 1;

We require that 1/α<y1<α:

𝑦1 = (𝐵1 ∙ (10)
𝑛2)𝑚1

è 1/𝛼 < (𝐵1 ∙ (10)
𝑛2)𝑚1 < 𝛼

➔ −log(𝛼) < 𝑚1 ∙ (log(𝐵1) + 𝑛2) < log (𝛼)

 −𝛾 < 𝑚1 ∙ (𝐴1+𝑏 ∙ log(𝑚1) + 𝑛2) < 𝛾 (S5.14.4)

We require that: 𝛽1 < 𝑧1 < 1

𝑦2 = 𝐵2
𝑚2

𝑦3 = (𝐵4 ∙ 𝐵2
𝑚2 ∙ (𝐵3 ∙ 𝑧1)

𝑚3)𝑚4 < 1

➔𝑚4 ∙ (log(𝐵4) + 𝑚2 ∙ log(𝐵2) + 𝑚3 ∙ log(𝐵3) + 𝑚3 log(𝑧1)) < 0

 𝑚4 ∙ (𝐴5 +𝑚3 log(𝑧1)) < 0 (S5.14.5)

State 3: 𝑥1 = 1, 𝑥2 = 10, 𝑥3 = 10, 𝑧2 = 10;

We require that 1/α<y1<α:

𝑦1 = (𝐵1 ∙ (10)
𝑛2)𝑚1

−𝛾 < 𝑚1 ∙ (𝐴1+𝑏 ∙ log(𝑚1) + 𝑛2) < 𝛾

We require that: 𝛽1 < 𝑧1 < 1

𝑦2 = 𝐵2
𝑚2 ∙ 10𝑛3𝑚2

𝑦3 = (𝐵4 ∙ 𝐵2
𝑚2 ∙ 10𝑛3𝑚2 ∙ (𝐵3 ∙ 𝑧1)

𝑚3)𝑚4 ≥ 1

➔ 𝑚4 ∙ (log(𝐵4) + 𝑚2 ∙ log(𝐵2) + 𝑚3 ∙ log(𝐵3) + 𝑚2 ∙ 𝑛3+𝑚3 log(𝑧1)) ≥ 0

 𝑚4 ∙ (𝐴5 +𝑚2 ∙ 𝑛3 + 𝑚3 log(𝑧1)) ≥ 0 (S5.14.6)

State 4: 𝑥1 = 10, 𝑥2 = 1, 𝑥3 = 1, 𝑧2 = 1;

We require that 1/α<y1<α:

𝑦1 = (𝐵1 ∙ (10)
𝑛1)𝑚1

➔ 1/𝛼 < (𝐵1 ∙ (10)
𝑛1)𝑚1 < 𝛼

63

➔ − log(𝛼) < 𝑚1 ∙ (log(𝐵1) + 𝑛1) < log (𝛼)

 −𝛾 < 𝑚1 ∙ (𝐴1+𝑏 ∙ log(𝑚1) + 𝑛1) < 𝛾 (S5.14.7)

We require that: 𝛽1 < 𝑧1 < 1

𝑦2 = 𝐵2
𝑚2

𝑦3 = (𝐵4 ∙ 𝐵2
𝑚2 ∙ (𝐵3 ∙ 𝑧1)

𝑚3)𝑚4 < 1

 𝑚4 ∙ (𝐴5 +𝑚3 log(𝑧1)) < 0

State 5: 𝑥1 = 10, 𝑥2 = 1, 𝑥3 = 10, 𝑧2 = 10;

We require that 1/α<y1<α:

𝑦1 = (𝐵1 ∙ (10)
𝑛1)𝑚1

 −𝛾 < 𝑚1 ∙ (𝐴1+𝑏 ∙ log(𝑚1) + 𝑛1) < 𝛾

We require that: 𝛽1 < 𝑧1 < 1

𝑦2 = 𝐵2
𝑚2 ∙ 10𝑛3𝑚2

𝑦3 = (𝐵4 ∙ 𝐵2
𝑚2 ∙ 10𝑛3𝑚2 ∙ (𝐵3 ∙ 𝑧1)

𝑚3)𝑚4 ≥ 1

➔ 𝑚4 ∙ (log(𝐵4) + 𝑚2 ∙ log(𝐵2) + 𝑚3 ∙ log(𝐵3) + 𝑚2 ∙ 𝑛3+𝑚3 log(𝑧1)) ≥ 0

 𝑚4 ∙ (𝐴5 +𝑚2 ∙ 𝑛3 +𝑚3 log(𝑧1)) ≥ 0 (S5.14.8)

State 6: 𝑥1 = 10, 𝑥2 = 10, 𝑥3 = 1, 𝑧2 = 10;

We require that y1>α

➔ 𝑦1 = (𝐵1 ∙ (10)
𝑛1 ∙ (10)𝑛2)𝑚1 > 𝛼

➔ 𝑚1 ∙ (log(𝐵1) + 𝑛1 + 𝑛2) > log (𝛼)
 𝑚1 ∙ (𝐴1+𝑏 ∙ log(𝑚1) + 𝑛1 + 𝑛2) > 𝛾 (S5.14.9)

We require that 𝑧1 = 1

𝑦2 = 𝐵2
𝑚2

𝑦3 = (𝐵4 ∙ 𝐵2
𝑚2 ∙ (𝐵3)

𝑚3)𝑚4 ≥ 1

➔ 𝑚4 ∙ (log(𝐵4) + 𝑚2 ∙ log(𝐵2) + 𝑚3 ∙ log(𝐵3)) ≥ 0

 𝑚4 ∙ (𝐴5) ≥ 0 (S5.14.10)

State 7: 𝑥1 = 10, 𝑥2 = 10, 𝑥3 = 10, 𝑧2 = 10;

We require that y1>α

𝑦1 = (𝐵1 ∙ (10)
𝑛1 ∙ (10)𝑛2)𝑚1 ≥ 𝛼

 𝑚1 ∙ (𝐴1+𝑏 ∙ log(𝑚1) + 𝑛1 + 𝑛2) > 𝛾

We require that 𝑧1 = 1

𝑦2 = 𝐵2
𝑚2 ∙ 10𝑛3𝑚2

𝑦3 = (𝐵4 ∙ 𝐵2
𝑚2 ∙ 10𝑛3𝑚2 ∙ (𝐵3)

𝑚3)𝑚4 ≥ 1

➔ 𝑚4 ∙ (log(𝐵4) + 𝑚2 ∙ log(𝐵2) + 𝑚3 ∙ log(𝐵3) + 𝑚2 ∙ 𝑛3) ≥ 0

 𝑚4 ∙ (𝐴5 +𝑚2 ∙ 𝑛3) ≥ 0 (S5.14.11)

Summary: The design conditions of 𝐴1 are set by:

I. 𝐴1 < −
𝛾

𝑚1
− 𝑏 ∙ log(𝑚1)

II. −
𝛾

𝑚1
− 𝑏 ∙ log(𝑚1) − 𝑛2 < 𝐴1 <

𝛾

𝑚1
− 𝑏 ∙ log(𝑚1) − 𝑛2

III. 𝐴1 >
𝛾

𝑚1
− 𝑏 ∙ log(𝑚1) − 𝑛1 − 𝑛2

Therefore, 𝐴1𝑚𝑖𝑛 < 𝐴1 < 𝐴1𝑚𝑎𝑥 (S5.15.1)

where:

𝐴1𝑚𝑎𝑥 = 𝑚𝑖𝑛 {−
𝛾

𝑚1
− 𝑏 ∙ log(𝑚1) ,

𝛾

𝑚1
− 𝑏 ∙ log(𝑚1) − max (𝑛1, 𝑛2) } (S5.15.2)

𝐴1𝑚𝑖𝑛 = 𝑚𝑎𝑥 {
𝛾

𝑚1
− 𝑏 ∙ log(𝑚1) − 𝑛1 − 𝑛2, −

𝛾

𝑚1
− 𝑏 ∙ log(𝑚1) − min (𝑛1, 𝑛2) } (S5.15.3)

64

We require that 𝐴𝑚𝑖𝑛 < 𝐴𝑚𝑎𝑥. To gain deeper insights into the effects of 𝐴1 on the behavior of

the network, we consider two asymptotic cases:

1. 𝛾 ≪ 0; a step function is used as the activation function in the hidden layer

𝐴1𝑚𝑎𝑥 = −𝑏 ∙ log(𝑚1) − max (𝑛1, 𝑛2)
𝐴1𝑚𝑖𝑛 = −𝑏 ∙ log(𝑚1) − min (𝑛1, 𝑛2) (S5.16.1)

 𝐴1𝑚𝑎𝑥 < 𝐴1𝑚𝑖𝑛, unachievable condition. Therefore, we cannot implement a majority

function using two perceptgene layers with a step function in the hidden layer

2. 𝛾 ≫ 0, an analog function is used as the activation function in the hidden layer

𝐴1𝑚𝑎𝑥 = −
𝛾

𝑚1
− 𝑏 ∙ log(𝑚1)

𝐴1𝑚𝑖𝑛 =
𝛾

𝑚1
− 𝑏 ∙ log(𝑚1) − 𝑛1 − 𝑛2

 𝐴1𝑚𝑎𝑥 > 𝐴1𝑚𝑖𝑛, which is achievable when:

𝛾

𝑚1
<
𝑛1+𝑛2

2
 (S5.16.2)

We now continue with the first condition in Eq. S5.15.1, we assume that:

 −
𝛾

𝑚1
− 𝑏 ∙ log(𝑚1) <

𝛾

𝑚1
− 𝑏 ∙ log(𝑚1) − max (𝑛1, 𝑛2)

 2 ∙ 𝛾 > max (𝑛1, 𝑛2) ∙ 𝑚1 (S5.17.1)

Under these conditions, we get:

 → 𝑨𝟏𝒎𝒂𝒙 = −
𝛾

𝑚1
− 𝑏 ∙ log(𝑚1) (S5.17.2)

According to the second condition in Eq. S5.15.2, we should require:
𝛾

𝑚1
− 𝑏 ∙ log(𝑚1) − 𝑛1 − 𝑛2 > −

𝛾

𝑚1
− 𝑏 ∙ log(𝑚1) − min (𝑛1, 𝑛2)

 2 ∙ 𝛾 > (𝑛1 + 𝑛2 −min (𝑛1, 𝑛2)) ∙ 𝑚1 (S5.17.3)

The conditions in Eq. S5.18.1 and Eq. S5.18.3 are similar

Under these conditions we get:

 → 𝑨𝟏𝒎𝒊𝒏 =
𝛾

𝑚1
− 𝑏 ∙ log(𝑚1) − 𝑛1 − 𝑛2 (S5.17.4)

As a summary, we get:
𝛾

𝑚1
− 𝑏 ∙ log(𝑚1) − 𝑛1 − 𝑛2 < 𝐴1 < −

𝛾

𝑚1
− 𝑏 ∙ log(𝑚1) (S5.18)

Summary; The design conditions of 𝐴5 are set by:

I. 𝐴5 < −𝑚3 ∙ 𝑏1
II. 𝐴5 < −𝑚2 ∙ 𝑛3 −𝑚3 ∙ 𝑏1

III. 𝐴5 < −𝑚3 log(𝑧1)
IV. 𝐴5 ≥ 0

V. 𝐴5 ≥ −𝑚2 ∙ 𝑛3

VI. 𝐴5 ≥ −𝑚2 ∙ 𝑛3 − 𝑚3 log(𝑧1)
Therefore 𝐴5𝑚𝑖𝑛 < 𝐴5 < 𝐴5𝑚𝑎𝑥 (S5.19.1)

where

𝐴5𝑚𝑎𝑥 = 𝑚𝑖𝑛{−𝑏1, −𝑚2 ∙ 𝑛3 − 𝑏1, −𝑚3 log(𝑧1) }
𝐴5𝑚𝑖𝑛 = 𝑚𝑎𝑥{0,−𝑚2 ∙ 𝑛3, −𝑚2 ∙ 𝑛3 − 𝑚3 log(𝑧1) }

The Basal level of promoter often is 𝛽1 < 1, and therefore 𝑏1 < 0, and log(𝑧1) ≤ 0, therefor:

0 < 𝐴5 < −𝑚2 ∙ 𝑛3 − 𝑏1 (S5.19.2)

65

The simulation results as in Fig. S5.4A show that for 𝑚1 = 2, a 3-input majority function can be

implemented by a two-layer perceptgene network. Parameters used: 𝑏 = 0.73, 𝛼 = 10, 𝑛1 =
1, 𝑛2 = 1.5, 𝑛3 = 0.7,𝑚4 = 1,𝑚2 = 1.5,𝑚3 = 1 (T7 RNA polymerase is a single subunit), 𝐵1 =
0.05(0.006 < 𝐵1 < 0.2, margin of two orders), 𝐵5 = 1.25, 𝛽1 = 0.001, 𝛽2 = 0.002. We used a

Michaelis-Menten model to model the activity of 𝑧1. The simulation results also show that for low

𝑚1 (e.g. 𝑚1 = 1), it is challenging to implement a 3-input majority function using a two-layer

peceptgene network, because the design parameters do not satisfy the conditions in Eq. S5.18-Eq.

S5.19 (𝐵1 = 0.05, 0.03 < 𝛽1 < 0.1, with a very small margin).

Compared with a one-layer network, a two-layer perceptgene network design has the

following advantages:

• Use less number of parts compared to digital design. In our design we used 7 proteins

and 8 promoters, total of 15 parts to implement a 3-input majority function in E. coli.

In digital design, the same circuit has been implemented in E. coli using 10 proteins

and 12 promoters (total of 22 parts) (6).

• Sigmoid functions can have benefits. For example, the state [1,1,0], which displays a

“1” logic state in the output, requires that the hidden layer acts as AND logic gate

with a very low value of 𝑩𝟏. Simultaneously, the state [1,0,1], which displays a “1”

logic state in the output, requires that the hidden layer acts as OR logic gate with a

high value of 𝑩𝟏 . By contrast, sigmoid functions can solve such conditions very

smoothly.

(B) (A) (C)

(D)

66

Fig. S5.3. (A) Truth table of 3-input majority function. (B) The implementation of 3-input

majority function by digital design. (C) The approximation of Michaelis-Menten model by a

linear function in the log-scale. (D) A simplified abstract model based on two-layer perceptgene

to implement a 3-input majority function. (E) Simulation results for majority function based on

Fig. S5.3D. The error function for the asymmetric weights is 12% and for the symmetric weights

is 11%. The other parameters are shown at right side. We used a quadric Error function at the

log-domain: 𝐸 = (log(𝑍2) − log(𝑍𝐷))
2/2. 𝑍𝐷 is the expected data and equal to 𝑍𝐷𝐿 = 1, and

𝑍𝐷𝐻 = 100.

Fig. S5.4. (A) Simulation results for the analog output (𝑦3) of 3-input majority function based

on the two-layer perceptgene network. The threshold was calculated as 10−log (𝛽2)/2 (B)

Simulation results for the output (𝑧2) of 3-input majority function based on perceptgene network.

The simulation were performed with Xi =[1-16]

5.2. Experimental results of 3-input majority circuit

First, we showed the experimental results of PluxM56-based APF, PlacO1-based ANF loops and

Plux/lacO -based combinatorial promoter circuit and fitted the data to power-law and

multiplication function (log(𝐺𝐹𝑃) = 𝑐 + 𝑛9 ∙ log(𝐴𝐻𝐿) + 𝑛10 ∙ log (𝐼𝑃𝑇𝐺)). This circuit (Fig.

S5.5) is used as the majority function's first layer (Fig. S5.1).

(A) (B)

For Xi=[1,16], n3=0.7, m1=1.75, m2=1.5,

m3=1, m4=1, B1=4.5×10-3, B5=1, β1=0.001

(E)

67

Fig.S5.5. 𝑃𝑙𝑢𝑥𝑀56-based APF, PlacO1-based ANF loops and 𝑃𝑙𝑢𝑥/𝑙𝑎𝑐𝑂-based combinatorial

promoter circuit.

Fig. S5.7. Matlab surface fits the experimental results of APF (PluxM56) and ANF (PlacO1)
loops and combinatorial promoter (Plux/lacO-GFP) to power-law and multiplication function.

Second, we showed the experimental results of PtetO-based ANF loop and fitted the data to

power-law function (log(𝐺𝐹𝑃) = 𝑐 + 𝑛11 ∙ log(𝑎𝑇𝑐)). This circuit (Fig. S5.8) is used to

regulate the third inputs aTc of the majority function.

Fig. S5.8. Experimental results of PtetO-based ANF loop circuit, that fits to a power-law

function.

68

Each input (e.g., inducer-transcription factor) has its input dynamic range (𝑰𝑫𝑹). However,

occasionally when multiple inputs are aggregated at the same computational node,

transcription factor binding interference can effectively reduce the dynamic range for

neuromorphic computation. Since this disturbance affects the final computation, we

characterize every synthetic part separately and combine it with other inputs. For example,

we characterized 𝐓𝐞𝐭𝐑 alone and with hybrid promoters TetR/LacI and

TetR/LuxR. The 𝑰𝑫𝑹 for 𝐓𝐞𝐭𝐑 was observed to be 2.1 orders of magnitude (Fig. S5.8),

remained the same for TetR/LacI (Fig. S2.1, Fig. S2.6), and was reduced to 1.8 orders of

magnitude for TetR/LuxR (Fig. S2.15).

The 3-input majority function accepts AHL [0.1875-0.3 μM], IPTG [7.8125-125 μM] and aTc
[1.5625-25 ng/mL]. The three inputs have a dynamic input range from 1 to 16. The simulation

results of the two-layer perceptgene network are shown in Fig. S5.4B. We used a Michaelis-

Menten model as an activation function to calculate the activities of 𝑧1 (the hidden layer) and 𝑧2

(the final layer). We used a consistent set of model parameters as in Fig. S5.4A and Fig. S5.4B

except that 𝐵1 is changed to 0.0025 and 𝐵5 is changed to 1. We normalized each measurement by

the minimum activity of [0,0,0] state. The experimental results of the 3-input majority circuit (Fig.

S5.1 and Fig. S5.9). To keep 𝐵1 very low, we located AraC on a low-copy-number plasmid and

added an ssrA degradation tag(15) (LAA) to AraC. To keep 𝐵5 very low, a ribosome binding

sequence with a low binding affinity (BBa_B0031(28)) was used to regulate the T7 RNA

polymerase. A low Arabinose concentration was set as 0.03125 mM, and a high Arabinose was

set as 0.25 mM. Based on biochemical reactions described in Eq. S5.7-Eq. S5.11, our model could

capture well the experimental results.

Fig. S5.9. Experimental results of majority circuit for various Arabinose concentrations (0.250,

0.125, 0.062, 0.031, 0.015, 0.007 mM).

69

Table S5.1: Truth table of the linear-domain perceptron-based 3-input majority function and

evaluation of constraints on the design parameters. B1 and B1 are the biases of the first layer and

second layer perceptgenes, respectively. The three input weights are n1, n2, and n3, while m is the

weight of the first layer perceptegene output (Z1) that serves as an input to the second layer

perceptgene. γL1, γL2 and γH1 and γH2 are the low and high thresholds of the piecewise-linear first

and the second activation functions fA1 and fA2. The γH2- γL2, and γH1- γL1 are defined as the input

dynamic ranges of the activation functions.

In1 In2 In3 Out Y1 Z1 Y2
Constraints on Design

parameters

0 0 0 0 Design constraints subsumed by 001 case

0 0 1 0 B1 0 B2+n3
B1 < γL1

B2+n3 < γL2

0 1 0 0 B1+n2 0≤fA1(B1+n2)<1 B2+m×fA1(B1+n2) B2+m×fA1(B1+n2) < γL2

0 1 1 1 B1+n2 0<fA1(B1+n2)≤1 B2+n3+m× fA1(B1+n2)
B1+n2 > γL1

B2+n3+m×fA1(B1+n2) > γH2

1 0 0 0 B1+n1 0≤fA1(B1+n1)<1 B2+m× fA1(B1+n1) B2+m× fA1(B1+n1)< γL2

1 0 1 1 B1+n1 0<fA1(B1+n1) ≤1 B2+n3+m× fA1(B1+n1)
B1+n1 > γL1

B2+n3+m× fA1(B1+n1) > γH2

1 1 0 1 B1+n1+n2 1 B2+m
B1+n1+n2 > γH1

B2+m > γ22

1 1 1 1 Design constraints subsumed by 110, 101, 011 cases

Majority analysis for the first activation function:

To satisfy state [001], we require B1 < γL1

To satisfy state [011], we require B1+n2 > γL1 ➔ B1 > γL1- n2

To satisfy state [101], we require B1+n1 > γL1 ➔ B1 > γL1- n1

The last three conditions yield to γL1-min(n1,n2)<B1 < γL1

To satisfy state [110], we require B1+n1+n2 > γH1 ➔ B1 > γH1- n1-n2

The last and first conditions yield γH1-n1-n2<B1 < γL1

Thus, the input dynamic range of the first activation function should be γH1-γL1<n1+n2

70

Majority analysis for the second activation function:

To satisfy state [110], we require B2+m > γH2 ➔ B2 > γH2-m

To satisfy state [011], we require B2+n3+m×fA1(B1+n2) > γH2 ➔ B2 > γH2-n3-m×fA1(B1+n2)

To satisfy state [101], we require B2+n3+m×fA1(B1+n1) > γH2 ➔ B2 > γH2-n3-m×fA1(B1+n1)

The last three conditions yield to B2 > γH2-min(m,n3+ m×fA1(B1+n2), n3+ m×fA1(B1+n1))

To satisfy state [001], we require B2+n3 < γL2 ➔ B2 < γL2- n3

To satisfy state [010], we require B2+m×fA1(B1+n2) < γ12➔ B2< γ12-m×fA1(B1+n2)

To satisfy state [101], we require B2+m×fA1(B1+n1) < γ12➔ B2< γ12-m×fA1(B1+n1)

The last three conditions yield to:

 γH2- min(m,n3+ m×fA1(B1+n2), n3+ m×fA1(B1+n1))<B2< γL2-max(n3, m×fA1(B1+n2), m× fA1(B1+n1))

Thus, the input dynamic range of the second activation function should be

γH2- γL2 < min(m,n3+ m×fA1(B1+n2), n3+ m×fA1(B1+n1))-max(n3, m×fA1(B1+n2), m× fA1(B1+n1))

The analysis of the last condition yields that: m>n3

There are three cases: (for simplicity, we assumed that n1<n2):

1. When m<n3, the last equation yields that γH2- γL2 <m-n3<0

2. When m=n3, the last equation yields that γH2- γL2 <0

3. When m>n3, the last equation yields that γH2- γL2 <m-n3, or γH2- γL2 < m×(1-fA1(B1+n2))

The condition of [001] and [010] yields for n3>γH2- γL2; thus we obtain m>n3>γH2-γL2.

Table S5.2: Truth table of perceptgene-based majority function and evaluation of the design

parameters. D.C. = Don’t care.

𝑚 = 𝑚3 ×𝑚4 = 1 × 1 = 1

𝑛′1 = 𝑛1 ×𝑚1 = 1 × 2 = 2

𝑛′2 = 𝑛2 ×𝑚1 = 1.5 × 2 = 3

𝑛′3 = 𝑛3 ×𝑚2 ×𝑚4 = 0.7 × 1.75 × 1 = 1.25

𝐵1 × 4.5 × 10
−3, = 𝐵2 × 1, 𝛾1 = −1, 𝛾2 = 1

In1 In2

In3
Out Y1 Z1 Y2

Constraints on Design

parameters

log(1)

 log(1)

log(1)

“1”

B1

log(4.5×10-3)=-

2.3

D.C.

B2+m×Z1

log(1)+1×log(

Z1)

B2+m×Z1 < γ1

log(1)+1×log(Z1)< -1

log(Z1)<-1

Z1<0.79

log(1)

 log(1)

log(10)

“0”

B1

log(4.5×10-3)=-

2.3

0
B2+n3’

 log(1)+1.25

(1) B1 < γ1

log(4.5×10-3)<1

(2) B2+n3’+m×log(Z1) < γ1

log(1)+1.25+1×log(Z1) < -1

log(Z1)<-2.25

Z1<0.005

log(1)

 log(10)

log(1)

“0”

B1+n2’

log(4.5×10-3)+3

-2.3+3=0.7

D.C

B2+m×Z1

log(1)+1×log(

Z1)

B2+m×Z1 < γ1

log(1)+1×log(Z1)< -1

log(Z1)<-1

Z1<0.79

71

log(1)

 log(10)

log(10)

“1”

B1+n2’

log(4.5×10-3)+3

-2.3+1.5=0.7

Interme

d

B2+n3’+m

log(1)+1.25+1

(1) B1+n2’ > γ1

1og(4.5×10-3)+3 > -1

(2) B2+n3’+m×log(Z1) > γ2

1og(1)+1.25+ log(Z1) >1

Z1>0.56

log(10)

 log(1)

log(1)

0

B1+n2’

log(4.5×10-3)+3

-2.3+3=0.7

D.C.

B2+m×Z1

log(1)+1×log(

Z1)

B2+m×Z1< γ1

log(1)+1×log(Z1)< -1

log(Z1)<-1

Z1<0.79

log(10)

 log(1)

log(10)

“1”

B1+n1’

log(4.5×10-3)+2

-2.3+2=-0.3

Interme

d

B2+n3’+m

log(1)+1.25+1

(1) B1+n1’ > γ1

1og(0.004)+2 >-1

 (2) B2+n3’+m×log(Z1) > γ2

1og(1)+1.25+log(Z1)>1

Z1>0.56

log(10)

 log(10)

log(1)

“1”

B1+n1’+n2’

log(4.5×10-

3)+2+3

-2.3+5=2.7

1
B2+m

log(1)+1

(1) B1+n1’+n2’ > γ2

log(4.5×10-3)+2+3>1

(2) B2+m > γ2

log(1)+1>1

log(10)

 log(10)

log(10)

“1”

B1+n1’+n2’

log(4.5×10-

3)+2+3

-2.3+5=2.7

1
B2+n3’+m

log(1)+1.25+1

(1) B1+n1’+n2’ > γ2

log(4.5×10-3)+2+3>1

 (2) B2+n3’+m > γ2

log(1)+1.25+1>1

Table S5.3 List of parameters used in this section

Symbol Description

𝑦𝑖 The power law and multiplication signal (analog signal)

𝑌𝑚𝑖 Fitting parameter that has concentration units

𝐾 𝑚𝑖 Dissociation constant of binding 𝑥𝑖 to 𝑌𝑖
𝑛𝑖,𝑚𝑖 Hill coefficient

𝑧𝑖 The expression level of the output protein proportional to the promoter activity

𝑧𝑚𝑖 The maximum expression level of the output protein

𝛽𝑖 The basal level of the promoter

𝐾𝑖 Dissociation constant of complex binding to promoter

a Dissociation constant of binding Arabinose–AraC complex to PBAD

b Fitting parameter to the effective dissosciation constant of binding Arabinose–

AraC complex to PBAD

𝐵𝑖 Bias

𝐼𝑛𝑖 Normalized input

72

Table S5.4 List of abbreviations used in this section

Symbol Description

ANF Auto-negative feedback

APF Auto-positive feedback

IDR Input Dynamic range

LTU linear threshold unit

AHL Free N-(β-Ketocaproyl)-L-homoserine Lactone 3OC6HSL concentration

IPTG Free Isopropyl1-β-D-1-thiogalactopyranside concentration

aTc Free anhydrotetracycline

𝐴𝑟𝑎𝐶 𝐴𝑟𝑎𝐶 protein

LAA ssrA degradation tag

𝑇7𝑅𝑁𝐴 T7 RNA Polymerase

tRNA 𝑠𝑢𝑝𝐷 Amber suppressor tRNA

𝑃𝑙𝑢𝑥𝑀56 Mutated LuxR promoter is activated by the 𝐿𝑢𝑥𝑅 when it is induced by AHL

𝑃𝑙𝑢𝑥/𝑙𝑎𝑐𝑂 Combinatorial promoter

𝑃𝑇7 T7 promoter

PTetO TetR promoter is activated by the 𝑇𝑒𝑡𝑅 − 𝑎𝑇𝑐
𝑃𝑙𝑢𝑥𝑀56/𝑡𝑒𝑡𝑂 Combinatorial promoter

𝑃𝑙𝑢𝑥𝑀56 𝑙𝑎𝑐𝑂1⁄ Combinatorial promoter

𝑃𝑙𝑢𝑥 𝑡𝑒𝑡𝑂⁄ Combinatorial promoter

73

6. Gradient descent and backpropagation algorithms in living cells

The perceptron weights can be adjusted in small steps through iterations, following a first-order

optimization algorithm known as a gradient descent (31). This process converges to the global

minimum of the gradient descent of the mean square error metric function or cost function (𝐶).

Typically, this ensures that a high resolution of weight adjustments in tradeoff with training time

and number of samples (32). Likewise, we developed a perceptgene-based rule that minimizes the

output error, following log-linear domain's gradient descent. We defined a logarithmically

quadratic cost function for each state or sample 𝑖 as:

𝐶𝑖 =
1

2
(log (𝑍𝐷𝑖) − log (𝑍𝑖))

2 (S6.1)

𝑍𝐷𝑖 is the desired output of every state, and 𝑍𝑖 is the actual network output for every state. The

cost function of network is the average of cost functions over individual samples:

< 𝐶 >=
1

𝑁
∑ 𝐶𝑖
𝑁
𝑖=1 (S6.2)

𝑁 is the number of samples and is also called the batch size. Substituting Eq. S6.1 into Eq. S6.2,

we get:

< 𝐶 >=
1

2∙𝑁
∑ (log (𝑍𝐷𝑖/𝑍𝑖))

2𝑁
𝑖 (S6.3)

We call 𝐶 the logarithmically (average) quadratic cost function of the network, and it is a function

of the weights and biases. We can see that < 𝐶 > function is non-negative, since every term in

the sum is non-negative. Following the gradient descent, at every iteration, the network output is

adjusted toward the desired value and accordingly, the average-cost function decreases (the cost

function becomes small when the output is approximately equal to the desired value for all the

samples 𝑖 (< 𝐶 >≈ 0 𝑤ℎ𝑒𝑛 𝑧𝑖 ≈ 𝑧𝐷𝑖). Fig. S6.1 shows the average-cost function of a perceptgene

network for two inputs and one output. In this case, there are four input states. We attempted to

find an algorithm that minimizes the cost function on average with respect to the weights (𝜕 <
𝐶 >/𝜕𝑚𝑖 or 𝜕 < 𝐶 >/𝜕𝑛𝑖 (𝑚𝑖 and 𝑛𝑖 are network weights). In this work, we optimized the 𝑚1 of

the majority circuit, which consists of two layers (Fig. S5.1 and Fig. S5.2). Therefore, we used a

chain-rule in addition to gradient-descent to update the 𝑚1.In particular at every iteration, we

calculated the average error or cost at the output and distributed it back through the network layers

which is essentially backpropagation algorithm (7):
𝜕<𝐶>

𝜕𝑚1
=

1

𝑁
∑

𝜕𝐶𝑖

𝜕𝑚1

𝑁
𝑖=1 (S6.4)

We can write the set of equations that describe the majority circuit as: (we assumed that, the Basal

levels are much lower than 1 (𝛽1,2 << 1):

𝑦1 = (𝐵1 ∙ (
𝐴𝐻𝐿

𝐾𝑚1
)
𝑛1
∙ (
𝐼𝑃𝑇𝐺

𝐾𝑚2
)
𝑛2
)
𝑚1

 (S6.5)

𝑧1 ≅
𝑦1

1+𝑦1
+ 𝛽1 (S6.6)

𝑦2 = (𝐵2 ∙ (
𝑥3

𝐾𝑚3
)
𝑛3
)
𝑚2

 (S6.7)

𝑦3 = (𝐵4 ∙ 𝑦2 ∙ (𝐵3 ∙ 𝑧1)
𝑚3)𝑚4 (S6.8)

𝑧2 ≅
𝑦3

1+𝑦3
+ 𝛽2 (S6.9)

Where 𝐵4 ≡
𝑌𝑚3

𝐾5
∙
𝐾3

𝐾4
 , 𝐵3 ≡

𝑍𝑚1

𝐾3
 , 𝐵2 ≡

𝑌𝑚2

𝐾2
 , 𝐵1 ≡

𝑌𝑚1

𝑎
∙ 𝑚1

𝑏

Using a chain rule, for every state we can get:
𝜕𝐶𝑖

𝜕𝑚1
=
𝜕𝐶𝑖

𝜕𝑧2
∙
𝜕𝑧2

𝜕𝑦3
∙
𝜕𝑦3

𝜕𝑧1
∙
𝜕𝑧1

𝜕𝑦1
∙
𝜕𝑦1

𝜕𝑚1
 (S6.10)

74

𝜕𝐶𝑖

𝜕𝑧2
= log (

𝑧𝐷

𝑧2
) ∙

1

𝑧2
 (S6.11)

𝜕𝑧2

𝜕𝑦3
≅ (𝑧2 − 𝛽2) ∙ (1 − 𝑧2) ∙

1

𝑦3
 (S6.12)

𝜕𝑦3

𝜕𝑧1
= 𝑦3 ∙

𝑚3∙𝑚4

𝑧1
 (S6.13)

𝜕𝑧1

𝜕𝑦1
≅ (𝑧1 − 𝛽1) ∙ (1 − 𝑧1) ∙

1

𝑦1
 (S6.14)

𝜕𝑦1

𝜕𝑚1
= 𝑦1 ∙ (log (

𝑌𝑚1

𝑎
∙ 𝑥1

𝑛1 ∙ 𝑥2
𝑛2) + 𝑏 ∙ (log(𝑚1) + 1)) (S6.15)

The partial derivative of the average-cost function of every sample or input state with respect to

𝑚1 is:
𝜕𝐶𝑖

𝜕𝑚1
= 𝑚3 ∙ 𝑚4 ∙ log (

𝑧2

𝑧𝐷
) ∙ (

𝑧2−𝛽2

𝑧2
) ∙ (1 − 𝑧2) ∙ (

𝑧1−𝛽1

𝑧1
) ∙ (1 − 𝑧1) ∙ (log (

𝑌𝑚1

𝑎
∙ 𝑥1

𝑛1 ∙ 𝑥2
𝑛2) + 𝑏 ∙

(log(𝑚1) + 1)) (S6.16.1)

We normalized the partial derivative by log (
𝑧𝑚𝑎𝑥2

𝑧𝑚𝑖𝑛2
) term, because the output dynamic range

depends on the Arabinose level:

𝜕𝐶𝑖

𝜕𝑚1
= 𝑚3 ∙ 𝑚4 ∙

log (
𝑧2
𝑧𝐷
)

log (
𝑧𝑚𝑎𝑥2
𝑧𝑚𝑖𝑛2

)
∙ (
𝑧2−𝛽2

𝑧2
) ∙ (1 − 𝑧2) ∙ (

𝑧1−𝛽1

𝑧1
) ∙ (1 − 𝑧1) ∙ (log (

𝑌𝑚1

𝑎
∙ 𝑥1

𝑛1 ∙ 𝑥2
𝑛2) + 𝑏 ∙

(log(𝑚1) + 1)) (S6.16.2)

The weights adjustment in 𝑚1 to minimize the average-cost function is:

∆𝑚1 = −𝜁 ∙
1

𝑁
∑

𝜕𝐶𝑖

𝜕𝑚1

𝑁
𝑖=1 (S6.17)

Where 𝜁 is a scalar and it determines the rate of 𝑚1 being updated (also known as learning/training

rate). The direction of the update is opposite to the partial derivative of a cost function, which

guarantees that the weights adjustment is in the direction of a minimum, not a maximum, of the

average-cost function. This technique calculates the average error at the output and distributes it

back through the network layers. Therefore, it is also called “backward propagation of errors”.

Fig. S6.1. Logarithmically quadratic cost function of the perceptgene-based network.

Eq. S6.16 and Eq. S6.17 have two important implications:

• The cost function of the network can be written as an average over cost functions for

individual samples or input states.

75

• The cost function can be written as a function of the outputs of each layer independent on

the analog signals of the network.

6.1. Calculation the experimental average (normalized) cost function

First, we calculated the average-cost function of the majority circuit based on Eq. S6.1-Eq. S6.3

using experimental results and compared the outcome of Eq. S6.16-Eq. S6.17. Subsequently, we

changed 𝑚1 by inducing the circuit with varying Arabinose concentrations (0.250, 0.125, 0.062,

0.031, 0.015, 0.007 mM). The relation between arabinose concentration and the weigh 𝑚1 , was

calculated based on the experiment in Fig. S2.9A, and is shown in Fig. S6.2A. Since the maximum

level is measured strongly depends on the arabinose concertation (Fig. S6.2B), we defined a

normalized average cost function. In this way, we can compare the average cost functions for the

different Arabinose concentrations compatible. The process that describing the calculation of

average normalized cost function is given by:

1. Given and eights measured outputs: 𝑍𝑥𝑥𝑥 = {𝑍000, 𝑍001, 𝑍010, 𝑍011, 𝑍100, 𝑍101, 𝑍110, 𝑍111}.

Here each element of Zxxx is average of three experiments.

2. Find the minimum between

𝑍𝑚𝑖𝑛 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 {𝑍000, 𝑍001, 𝑍010, 𝑍011, 𝑍100, 𝑍101, 𝑍110, 𝑍111}.

3. Normalized the measured outputs by 𝑍𝑚𝑖𝑛

𝑍𝑛𝑥𝑥𝑥 = {
𝑍000

𝑍𝑚𝑖𝑛
,
𝑍001

𝑍𝑚𝑖𝑛
,
𝑍010

𝑍𝑚𝑖𝑛
,
𝑍011

𝑍𝑚𝑖𝑛
,
𝑍100

𝑍𝑚𝑖𝑛
,
𝑍101

𝑍𝑚𝑖𝑛
,
𝑍110

𝑍𝑚𝑖𝑛
,
𝑍111

𝑍𝑚𝑖𝑛
} .

4. The lowest desired value 𝑍𝑛𝑚𝑖𝑛 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 {𝑍𝑛𝑥𝑥𝑥} = 1.

5. The highest desired value 𝑍𝑛𝑚𝑎𝑥 = maximum {𝑍𝑛𝑥𝑥𝑥}.

6. Define normalized signal in the linear domain as
log(

𝑍𝑥𝑥𝑥
𝑍𝑚𝑖𝑛

)

𝑍𝑛𝑚𝑎𝑥
 .

7. < 𝐶𝑛 >=
1

2∙𝑁
∑ (𝑍𝐷𝑖 −

log(
𝑍𝑥𝑥𝑥
𝑍𝑚𝑖𝑛

)

𝑍𝑛𝑚𝑎𝑥
)

2

, 𝑍𝐷𝑖 = {0,1}
𝑁
𝑖 . (S6.18)

Then, we simulated the process of updating 𝑚1 by applying the backpropagation algorithm (Eq.

S6.16-Eq. S6.17), as shown in Fig. S6.3. We used desired values (𝑧𝐷𝑖) that are similar to

experimental results: “0” =1 a.u., “1” = maximum normalized GFP (𝑧𝐷111) for each Arabinose

concentration. Therefore, we fitted the maximum normalized 𝐺𝐹𝑃 (𝑧𝐷111) to polynomial function

as shown in Fig. S6.2B. Hypothetically the relationship between maximum normalized 𝐺𝐹𝑃 and

Arabinose affects the partial derivative of the cost function (𝜕𝐶/𝜕𝑚1).

76

The cost function in Fig. 3 in the main text are based on the experimental results in Fig. S5.9

Eq. S6.18.

(A)

(B)

Fig. S6.2. (A) The relation between Arabinose concentration and the weigh 𝑚1, and which was

calculated with new Arabinose values based on the experiment Fig. S2.9A. (B) The maximum

normalized signal achieved for each Arabinose concentration, was used as the “1” logic desired

value for calculating the cost function.

Fig. S6.3. An algorithm for estimating and simulating cost function.

6.2. Backpropagation algorithm for two weights

Our next step is to use the backpropagation algorithm for programming two weights (𝑚1 for

PBAD/AraC and 𝑛1 for Plux/LuxR) within the majority function. To control the Plux/LuxR

weight, we introduce random mutations to the operator sequence of a LuxRtranscription factor.

Fig. S8.8 describes seven modulations of transcription factor LuxR’s DNA binding affinity via

Lux operator sequence changes. Here, our backpropagation described in the following equations

shows that it was enough to use less than four mutations TCTA, GTTG, GAGC and TGGG

(PluxM56) for the APF loop of the first layer (Fig. S6.4) to reach a majority function.

W
ei

gh
t/

H
ill

-c
o

ef
fi

ci
en

t

Arabinose (mM)

y = 1.3775x-0.211

R² = 0.9998

y = 1.1841x-0.168

R² = 0.9935
0

1

2

3

4

0.01 0.1 1

Weight

Hill-coefficient

77

Fig. S6.4. (A) 𝑃𝑙𝑢𝑥𝑁𝑁𝑁𝑁 -based APF, PlacO1 -based ANF loops, and 𝑃𝑙𝑢𝑥/𝑙𝑎𝑐𝑂 -based

combinatorial promoter circuit, similar to circuit in Fig. S5.5. (B) AHL − GFP transfer function

for four different mutations (TCTA, GTTG, GAGC, and TGGG (PluxM56)) within Plux promoter

regulating LuxR by APF loop. IPTG = 0.125mM . (C) Matlab surface fits the experimental

results of APF (PluxTCTA) and ANF (PlacO1) loops and combinatorial promoter (Plux/lacO-GFP)

to power-law and multiplication function,the weight of AHL is 0.228, and the weight of IPTG is

2.8. (D) Matlab surface fits the experimental results of APF (PluxGTTG) and ANF (PlacO1) loops

and combinatorial promoter (Plux/lacO -GFP) to power-law and multiplication function, the

weight of AHL is 0.45, and the weight of IPTG is 2.8. (E) Matlab surface fits the experimental

results of APF (PluxGAGC) and ANF (PlacO1) loops and combinatorial promoter (Plux/lacO-GFP)

to power-law and multiplication function, the weight of AHL is 0.61, and the weight of IPTG is

(A) (B)

(C)

(D)

(E)

78

2.8. The results of PluxM56 and ANF (PlacO1) loops and combinatorial promoter (Plux/lacO-GFP)

are presented in Fig. S5.7.

Next, we modified the three-input perceptgene network from Fig. S5.1 in the APF loop by

changing the first four nucleutides in the Plux promoter sequence as followed; TCTA ,GTTG,

GAGC (Fig. S6.5). Then, we measured the GFP signal for all the four different circuits

including PluxM56 across (Fig. S5.1) the eight states of the inputs [AHL, IPTG, aTc]=[0,0,0],

[0,0,1], [0,1,0], [0,1,1], [1,0,0], [1,0,1], [1,1,0], [1,1,1].The measured signals are presented in

their absolute values (without normalization) and normalized values (Fig. S6.5).

(A)

(B) (C)

(D) (E)

79

Fig. S6.5. (A) Three-input perceptgene network accepts three analog inputs (AHL, IPTG and

aTc) including four Plux mutations (TCTA, GTTG, GAGC, TGGG (PluxM56)) within the APF in

similar to Fig. S5.1. (B) and (C) Experimental results of 3-input perceptgene network with

TCTA for various Arabinose concentrations (0.250, 0.125, 0.062, 0.031, 0.015, 0.007 mM). The

data is presented by absolute signals as measured by the Flow analyzer (B) and normalized

signals (C). (D) and (E) Experimental results of 3-input circuit with GTTG for various Arabinose

concentrations (0.250, 0.125, 0.062, 0.031, 0.015, 0.007 mM). The data is presented by absolute

signals as measured by the Flow analyzer (D) and normalized signals (E). (F) and (G)

Experimental results of 3-input circuit with GAGC for various Arabinose concentrations (0.250,

0.125, 0.062, 0.031, 0.015, 0.007 mM). The data is presented by absolute signals as measured

by the Flow analyzer (F) and normalized signals (G). (H) and (I) Experimental results of 3-input

circuit with TGGG for various Arabinose concentrations (0.250, 0.125, 0.062, 0.031, 0.015,

0.007 mM). The data is presented by absolute signals as measured by the Flow analyzer (H) and

normalized signals (I).

The AHL − GFP transfer functions for the four Plux mutations show that each modification has

its slope (i.e., weight) and bias. Thus, there is a disturb between weight programming and bias

levels. The AHL-GFP transfer functions for the four mutations can be written as:

𝐺𝐹𝑃 ∝ 𝐵 ∙ 𝑛1
−𝑑 ∙ 𝑥1

𝑛1 (S6.19)

Where = 3.7 . Fig. S6.6 shows the dependency of the bias on the weight based on the data from

Fig. S6.4B. The next step is to calculate the derivative of Eq. S6.19:

(F) (G)

(H) (I)

TGGG TGGG

80

𝑑𝐺𝐹𝑃

𝑑𝑛1
∝ 𝐵 ∙ 𝑛1

−𝑑 ∙ 𝑥1
𝑛1 ∙ (𝑙𝑜𝑔(𝑥1) −

𝑑

𝑛1
) (S6.20)

Eq. S.620 shows that update in the weight also changes the bias. Based on that, we modified

Eq. S6.5 to 𝐵1 =
𝑌𝑚1

𝑎
∙ 𝑚1

𝑏 ∙ 𝑛1
−𝑑 . The partial derivative of average-cost function of every

sample or input state with respect to 𝑛1 is:

𝜕<𝐶>

𝜕𝑛1
=

1

𝑁
∑

𝜕𝐶𝑖

𝜕𝑛1

𝑁
𝑖=1



𝜕𝐶𝑖

𝜕𝑛1
= −𝑚3 ∙ 𝑚4 ∙

log (
𝑧2
𝑧𝐷
)

log (
𝑧𝑚𝑎𝑥2
𝑧𝑚𝑖𝑛2

)
∙ (
𝑧2−𝛽2

𝑧2
) ∙ (1 − 𝑧2) ∙ (

𝑧1−𝛽1

𝑧1
) ∙ (1 − 𝑧1) ∙ 𝑚1 ∙ (𝑙𝑜𝑔(𝑥1) −

𝑑

𝑛1
)

 (S6.21)

In Eq. S6.21, we normalized the error log (
𝑧𝑚𝑎𝑥2

𝑧𝑚𝑖𝑛2
), by output dynamic range log (

𝑧𝑚𝑎𝑥2

𝑧𝑚𝑖𝑛2
), and this

is because the output dynamic range depends on the Arabinose level. The partial derivative of

average-cost function of every sample or input state with respect to 𝑚1 is similar to Eq. S.6.18

with a one modification; we included the −𝑑 ∙ log(𝑛1):

𝜕𝐶𝑖

𝜕𝑚1
= −𝑚3 ∙ 𝑚4 ∙

log (
𝑧2
𝑧𝐷
)

log (
𝑧𝑚𝑎𝑥2
𝑧𝑚𝑖𝑛2

)
∙ (
𝑧2−𝛽2

𝑧2
) ∙ (1 − 𝑧2) ∙ (

𝑧1−𝛽1

𝑧1
) ∙ (1 − 𝑧1) ∙ (𝑏 ∙ log(𝑚1) + 𝑛2 ∙

log(𝑥2)+log (
𝑌𝑚1

𝑎
) + 𝑛1 ∙ (−𝑑 ∙ log(𝑛1) + log(𝑥1)) + 𝑏)

 (S6.22)

To calculate the update weights, based on Eq. S6.21 ad Eq. S6.22, we measured the output

signals of the first layer (𝑍1) as shown in Fig. S6.7 and the output signals of the Three-input

perceptgene network (𝑍2) as shown in Fig. S6.5. We also measured the basal level of each

activation function (β1 and β2) by measuring 𝑍1 and 𝑍2 when no inducers (AHL, IPTG and aTc)

were added to the networks (Table S6.1). The parameters (b=0.37,
𝑌𝑚1

𝑎
= 0.0001) are estimated

from the data shown in Fig. S2.9, 𝑑 = 3.7 is estimated from Fig. S.6.6, 𝑛1 and 𝑛2 are estimated

from Fig. S6.4 and Fig. S5.7 (TCTA: 0.23, 2.8, GTTG: 0,45, 2.8, GAGC: 0.65, 2.8, TGGG:

0.95, 1.85), 𝑚3 = 𝑚4 = 1. The first layer is the perceptgene of two inputs (AHL and IPTG)

with four Plux mutations of the APF loop; TCTA, GTTG, GAGC and TGGG (PluxM56) (Fig.

S6.7A). The experimental results of backpropagation algorithms based on Eq. S6.21 and Eq.

S6.22 are presented in Table S6.2. Based on these results, we built an optimized pathway to

reach the best majority results. We first update 𝑚1 and then 𝑛1, which reach a minimum cost

function. We marked the optimized pathway in Table S6.2.

81

Fig. S6.6. (A) Experimental results of 𝑃𝑙𝑢𝑥𝑁𝑁𝑁𝑁 -based APF, PlacO1 -based ANF loops, and

𝑃𝑙𝑢𝑥/𝑙𝑎𝑐𝑂-based combinatorial promoter circuit fit power-law function for 𝐼𝑃𝑇𝐺 = 0.125 𝑚𝑀.

(B) The scalar number in the power-law fitting from (A), which is proportional to bias, is also a

function of the power-law coefficient. The power-law coefficient is proportional to weight.

(A) (B)

(A)

(B) (C)

82

Fig. S6.7. (A) The first perceptgene layer from the three-input perceptgene network (Fig. S6.5).

The layer accepts two analog inputs (AHL, IPTG) including four 𝑃𝑙𝑢𝑥 mutations (TCTA, GTTG,

GAGC, TGGG (PluxM56)) within the APF. (B) and (C) Experimental results of 2-input circuit

with TCTA for various Arabinose concentrations (0.250, 0.125, 0.062, 0.031, 0.015, 0.007 mM).

The data is presented by absolute signals as measured by the Flow analyzer (B) and normalized

signals (C). (D) and (E) Experimental results of 2-input circuit with GTTG for various Arabinose

(G) (F)

(D) (E)

(H) (I)

TGGG TGGG

83

concentrations (0.250, 0.125, 0.062, 0.031, 0.015, 0.007 mM). The data is presented by absolute

signals as measured by the Flow analyzer (D) and normalized signals (E).

(F) and (G) Experimental results of 2-input circuit with GAGC for various Arabinose

concentrations (0.250, 0.125, 0.062, 0.031, 0.015, 0.007 mM). The data is presented by absolute

signals as measured by the Flow analyzer (F) and normalized signals (G). (H) and (I)

Experimental results of 2-input circuit with TGGG for various Arabinose concentrations (0.250,

0.125, 0.062, 0.031, 0.015, 0.007 mM). The data is presented by absolute signals as measured

by the Flow analyzer (H) and normalized signals (I).

 Arabinose(mM)

 0.2500 0.1250 0.0625 0.0313 0.0156 0.0078

TCTA β2 Average 1573 1739 1506 1651 1484 1603

 STDEV 97 78 37 49 76 47

 β1 Average 2403 2003 1722 1453 1629 2512

 STDEV 33 430 97 159 311 1490

GTTG β2 Average 1469 1435 1491 1488 1530 1499

 STDEV 1 53 75 17 6 3

 β1 Average 2185 1886 1643 1645 1378 1314

 STDEV 122 161 12 40 0 131

GAGC β2 Average 1443 1453 1448 1501 1504 1581

 STDEV 108 174 95 70 114 134

 β1 Average 2317 2105 1743 1507 1505 1362

 STDEV 24 300 169 13 66 1

TGGG β2 Average 1466 1444 1912 1538 1522 1563

 STDEV 26 68 641 35 129 141

 β1 Average 1609 1481 1184 1457 1264 1187

 STDEV 26 68 641 35 129 141

Table S6.1. Measured values of β1 (basal level of the first layer, Fig. S6.7A) and β2 (basal level of the second

layer, Fig. S6.5A) for the four mutations. The measurements were performed when no inducers (AHL,

IPTG, aTc) were added.

84

TCTA mutation, n1 =0.23 weight

Arabinose

(mM)

m1

weight

Experimental cost

function

Digital cost

function

𝜕 < 𝐶 >

𝜕𝑚1

𝜕 < 𝐶 >

𝜕𝑛1

(1) 0.2500 1 0.061 0.1250 -0.36 -7.34

(2) 0.1250 1.25 0.057 0.0625 -0.31 -6.91

0.0625 1.5 0.051 0.0625 -0.31 -7.03

0.0312 1.75 0.051 0.0625 -0.27 -3.21

0.0156 2 0.047 0.0625 -0.68 6.13

0.0078 2.25 0.033 0.0625 -0.50 5.48

GTTG mutation, n1 =0.45 weight

Arabinose

(mM)

m1

weight

Experimental cost

function

Digital cost

function

𝜕 < 𝐶 >

𝜕𝑚1

𝜕 < 𝐶 >

𝜕𝑛1

0.2500 1 0.056 0.1250 -0.50 -2.90

(3) 0.1250 1.25 0.054 0.1250 -0.36 -2.65

(4) 0.0625 1.5 0.046 0.0625 -0.20 -0.74

0.0312 1.75 0.044 0.0625 -0.11 1.70

0.0156 2 0.051 0.1250 -0.02 1.27

0.0078 2.25 0.044 0.0625 -0.18 2.53

GTTG mutation, n1 =0.65 weight

Arabinose

(mM)

m1

weight

Experimental cost

function

Digital cost

function

𝜕 < 𝐶 >

𝜕𝑚1

𝜕 < 𝐶 >

𝜕𝑛1

0.2500 1 0.058 0.1250 -0.66 -2.70

0.1250 1.25 0.052 0.0625 -0.51 -2.87

(5) 0.0625 1.5 0.046 0.0625 -0.28 -2.55

(6) 0.0312 1.75 0.035 0 0.03 -0.75

0.0156 2 0.042 0.0625 0.08 0.60

0.0078 2.25 0.045 0.1250 0.05 0.38

TGGG mutation, n1 =0.95 weight

Arabinose

(mM)

m1

weight

Experimental cost

function

Digital cost

function

𝜕 < 𝐶 >

𝜕𝑚1

𝜕 < 𝐶 >

𝜕𝑛1

0.2500 1 0.052 0.1250 -0.66 -1.38

0.1250 1.25 0.052 0.1250 -0.50 -1.54

0.0625 1.5 0.038 0.0625 -0.22 -1.24

0.0312 1.75 0.039 0 -0.003 -0.42

0.0156 2 0.061 0.1250 0.12 0.68

0.0078 2.25 0.056 0.1250 0.10 0.75
Table S6.2. The experimental results of backpropagation algorithms based on Eq. S6.21 and Eq. S22.

85

Fig. S6.8. (A) The experimental results of the three-input perceptgene network accept three analog

inputs (AHL, IPTG and aTc) to reach a minimum cost function. This data is based on Fig. S6.5.

(B) Normalized.

(A)

(B)

86

Table S6.3 List of parameters used in this section

Symbol Description

𝐶 Cost function of network

𝐶𝑖 logarithmically quadratic cost function for each state or sample 𝑖
mi network weights

ni network weights

𝛽 Basal level

𝜁 Scalar that determines the rate of 𝑚1 being updated (also known as

learning/training rate)

𝑍𝑖 the network actual output for every state

𝑍𝐷𝑖 the desired output of every state

𝐾𝑚𝑖 Effective dissociation constant

𝑧1, 𝑧2 the output of every perceptgene layer in the biophysical model

𝑦𝑖 the analog signal of every perceptgene layer in the biophysical model

N the number of samples and is also called the batch size

87

7. Synthetic Data converters

In this work, we designed and built two types of data converters that operate in logarithmic domain:

1. Analog-to-Digital converter (ADC) which converts analog signals on a logarithmic scale to

digital outputs, as shown in Fig. S7.1A. Namely, each decade is encoded to one discrete level

(33).

2. Analog-to-multilevel (Fuzzy) converter which converts analog signals on a logarithmic scale

to multi-discrete levels as shown in Fig. S7.1B. Specifically, we built a ternary converter.

Fig. S7.1. A 2-bit data converters operating on the logarithmic domain: (A) ADC-Analog-to-

Digital converter. (B) Analog-to-multilevel (Fuzzy) converter. LSB: Least Significant Bit,

MSB: Most Significant Bit.

7.1. Design I: Design and implementation of 2-bit log-ADC

There are several architectures and concepts to design ADC systems (34). we used design

principles of feed-forward neural networks (35, 36) that can provide reliable results with a minimal

number of synthetic parts (Fig. S7.2A). First, we designed a 2-bit ADC in the linear domain

(equivalent to a perceptron model), and then we transformed it to the logarithmic domain. In the

proposed design, a bit comparison is equivalent to neural activation in the proposed design, and

each reference scale during the successive binary search algorithm is equivalent to a binary-

weighted synapse. For simplicity, we approximated the activation function as a step function:

 𝑦1 = 𝑛1 ∙ 𝑥 + 𝐴1 (S7.1)

𝑍1 = {
1 𝑦1 ≥ 0
0 𝑦1 < 0

 (S7.2)

𝑦0 = 𝑛0 ∙ 𝑥 + 𝑚0 ∙ 𝑧1 + 𝐴0 (S7.3)

𝑍0 = {
1 𝑦2 ≥ 0
0 𝑦2 < 0

 (S7.4)

Fig. S7.2B shows the output signals of 2-bit ADC in the linear domain. We divided the dynamic

input range (𝐼𝐷𝑅) to 22 = 4 intervals. Therefore, the set of equations that describes the design of

2-bit ADC based on perceptron (Fig. S7.2A) is given by:

Interval 1: 0 ≤ 𝑥 <
𝐼𝐷𝑅

4
 – 𝑍1 = 0, 𝑍0 = 0:

𝑦1 = 𝑛1 ∙
𝐼𝐷𝑅

4
+ 𝐴1 ≤ 0 ➔ 𝐴1 ≤ −𝑛1 ∙

𝐼𝐷𝑅

4

 (S7.5)

𝑦0 = 𝑛0 ∙
𝐼𝐷𝑅

4
+ 𝐴0 ≤ 0 ➔ 𝐴0 ≤ −𝑛0 ∙

𝐼𝐷𝑅

4
 (S7.6)

(A) (B)

88

Interval 2:
𝐼𝐷𝑅

4
≤ 𝑥 <

𝐼𝐷𝑅

2
 – 𝑍1 = 0, 𝑍0 = 1:

𝑦1 = 𝑛1 ∙
𝐼𝐷𝑅

2
+ 𝐴1 < 0 ➔ 𝐴1 < −𝑛1 ∙

𝐼𝐷𝑅

2
 (S7.7)

𝑦0 = 𝑛0 ∙
𝐼𝐷𝑅

2
+ 𝐴0 > 0 ➔ 𝐴0 > −𝑛0 ∙

𝐼𝐷𝑅

2
 (S7.8)

Interval 3:
𝐼𝐷𝑅

2
≤ 𝑥 <

3∙𝐼𝐷𝑅

4
 – 𝑍1 = 1, 𝑍0 = 0:

𝑦1 = 𝑛1 ∙
3∙𝐼𝐷𝑅

4
+ 𝐴1 > 0 ➔ 𝐴1 > −𝑛1 ∙

3∙𝐼𝐷𝑅

4
 (S7.9)

𝑦0 = 𝑛0 ∙
3∙𝐼𝐷𝑅

4
+𝑚0+𝐴0 < 0 ➔ 𝐴0 < −𝑛0 ∙

3∙𝐼𝐷𝑅

4
−𝑚0 (S7.10)

Interval 4:
3∙𝐼𝐷𝑅

4
≤ 𝑥 ≤ 𝐼𝐷𝑅 – 𝑍1 = 1, 𝑍0 = 1:

𝑦1 = 𝑛1 ∙ 𝐼𝐷𝑅 + 𝐴1 ≥ 0 ➔ 𝐴1 ≥ −𝑛1 ∙ 𝐼𝐷𝑅 (S7.11)

𝑦0 = 𝑛0 ∙ 𝐼𝐷𝑅 +𝑚0 + 𝐴0 ≥ 0 ➔ 𝐴0 ≥ −𝑛0 ∙ 𝐼𝐷𝑅 −𝑚0 (S7.12)

In summary, the conditions on the weights and biases to implement a 2-bit ADC in the linear

domain:

−𝑛1 ∙
3∙𝐼𝐷𝑅

4
< 𝐴1 < −𝑛1 ∙

𝐼𝐷𝑅

2
 (S7.13)

−𝑛0 ∙
𝐼𝐷𝑅

2
< 𝐴0 ≤ −𝑛0 ∙

𝐼𝐷𝑅

4
 (S7.14)

−𝑛0 ∙ 𝐼𝐷𝑅 − 𝐴0 ≤ 𝑚0 < −𝑛0 ∙
3∙𝐼𝐷𝑅

4
− 𝐴0 ➔ 𝑚0 = −𝑛0 ∙

𝐼𝐷𝑅

2
 (S7.15)

The simulation results of Fig. S7.2C suggest that 2-bit ADC can be implemented by a feedforward

neural network when the design parameters (weights and biases) satisfy Eq. S7.13-Eq. S7.15. The

simulation parameters are 𝐼𝐷𝑅 = 5, 𝑛0 = 𝑛1 = 4,𝑚0 = −10, 𝐴1 = −12.5, 𝐴0 = −7.5 . In our

simulation, we used a sigmoid function to calculate 𝑧𝑖 (𝑧𝑖 =
1

1+𝑒−𝑦𝑖
 , the output of each perceptron),

instead of step function as was done in the analysis, where all the outputs above 0.5 as a “1” logic

and those below 0.5 as “0” logic. To implement such a design in living cells, we must convert the

design parameters to the logarithmic domain. However, these parameters cannot be achieved in

living cells directly, and thus the ADC design needs to be modified. In the proposed design, the

MSB dynamically controls the LSB threshold through a negative regulation (inhibitory weight)

(Fig. S7.2D). The molecular 2-Bit ADC consists of two reactions (𝑍0 and 𝑍1) which are regulated

by the same input (𝑥) (Fig. S7.3A). Each reaction represents a digital bit, and 𝑍1 enhances the

reverse reaction of 𝑍0. So that the amount of 𝑍1* changes and accordingly the amount of 𝑍0 is

affected. The set of biochemical reactions that describe the reaction network is given by:
𝑑𝑍1

∗

𝑑𝑡
= 𝑘𝑓1 ∙ 𝑥

𝑛1 ∙ 𝑍1 − 𝑘𝑟1 ∙ 𝑍1
∗ (S7.16)

𝑑𝑍0
∗

𝑑𝑡
= 𝑘𝑓0 ∙ 𝑥

𝑛0 ∙ 𝑍0 − 𝑘10 ∙ 𝑍1
∗𝑚0 ∙ 𝑍0

∗−𝑘𝑟0 ∙ 𝑍0
∗ (S7.17)

𝑍𝑇1 = 𝑍1
∗ + 𝑍1 (S7.18)

𝑍𝑇0 = 𝑍0
∗ + 𝑍0 (S7.19)

Where 𝑍0, and 𝑍1are the product concentrations of biochemical reactions. 𝑘𝑓0 and 𝑘𝑓1 are the

rates for the forward reactions from 𝑍0 to 𝑍0 and 𝑍1 to 𝑍1, respectively. Likewise, 𝑘𝑟0 and 𝑘𝑟1 are

the rates for the corresponding backward reactions. The rate 𝑘10 describes the regulation of 𝑍1 on

the activation of 𝑍0. 𝑍𝑇0 and 𝑍𝑇1 are the total concentration of molecules 𝑍0 and 𝑍1. At the steady-

state:

𝑍1
∗ = 𝑍𝑇1 ∙

(
𝑥

𝐾𝑛1
)
𝑛1

1+(
𝑥

𝐾𝑛1
)
𝑛1 (S7.20)

89

𝑍0
∗ = 𝑍𝑇0 ∙

(
𝑥

𝐾𝑛0
)
𝑛0

1+(
𝑥

𝐾𝑛0
)
𝑛0
+(

𝑍1
∗

𝐾𝑚0
)
𝑚0 (S7.21)

Where 𝑛0 , 𝑛1 and 𝑚0 are Hill Coefficients. 𝐾𝑛0 , 𝐾𝑛1 and 𝐾𝑚0 are the dissociation constants

(𝐾𝑛0 = (𝑘𝑟0 𝑘𝑓0⁄)
1 𝑛0⁄

, 𝐾𝑛1 = (𝑘𝑟1 𝑘𝑓1⁄)
1 𝑛1⁄

, 𝐾𝑚0 = (𝑘𝑟0 𝑘10⁄)1 𝑚0⁄). The reaction activity is

defined as ratio of the product and the total concentration of molecules. Thus, we can rewrite Eq.

S7.20 and Eq. S7.21 as:

𝑃1 =
𝑍1
∗

𝑍𝑇1
=

(
𝑥

𝐾𝑛1
)
𝑛1

1+(
𝑥

𝐾𝑛1
)
𝑛1 (S7.22)

𝑃0 =
𝑍0
∗

𝑍𝑇0
=

(
𝑥

𝐾𝑛0
)
𝑛0

1+(
𝑥

𝐾𝑛0
)
𝑛0
+(

𝑃1
𝐾𝑚0/𝑍𝑇1

)
𝑚0 (S7.23)

𝑃0 =
𝑍0
∗

𝑍𝑇0
=

(
𝑥

𝐾𝑛0
)
𝑛0
∙(

𝑃1
𝐾𝑚0/𝑍𝑇1

)
−𝑚0

(
𝑃1

𝐾𝑚0/𝑍𝑇1
)
−𝑚0

+(
𝑥

𝐾𝑛0
)
𝑛0
∙(

𝑃1
𝐾𝑚0/𝑍𝑇1

)
−𝑚0

+1
 (S7.24)

In case that 𝑍𝑇1 >> 𝐾𝑚0, we can approximate Eq. S7.23:

𝑃0 ≈
(
𝑥

𝐾𝑛0
)
𝑛0
∙(

𝑃1
𝐾𝑚0/𝑍𝑇1

)
−𝑚0

(
𝑥

𝐾𝑛0
)
𝑛0
∙(

𝑃1
𝐾𝑚0/𝑍𝑇1

)
−𝑚0

+1
 (S7.25)

Fig. S7.3B shows a schematic model of the set of reactions based on Eq. S7.24 and Eq. S7.25. The

schematic model consists of two perceptgenes that are connected in feedforward neural networks

through a negative weight, similar to the ADC design (Fig. S7.2A), where:

 𝐵1 = 𝐾𝑛1
−𝑛1 (S7.26)

𝐵0 = 𝐾𝑛0
−𝑛0 ∙ (

𝐾𝑚0

𝑍𝑇1
)
𝑚0

 (S7.27)

𝐵1 = 10
𝐴1 (S7.28)

𝐵0 = 10
𝐴2 (S7.29)

To estimate the weights and biases parameters, which operates in the log-domain, we transformed

Eq. S7.13-Eq. S7.15 from the linear scale to the logarithmic scale using Eq. S7.26-Eq. S7.29:

(1) −𝑛1 ∙
3∙𝐼𝐷𝑅

4
< log (𝐵1) < −𝑛1 ∙

𝐼𝐷𝑅

2

−
3∙𝐼𝐷𝑅

4
< −log (𝐾𝑛1) < −

𝐼𝐷𝑅

2
 (S7.30)

(2) −𝑛0 ∙
𝐼𝐷𝑅

2
< log (𝐵0) ≤ −𝑛0 ∙

𝐼𝐷𝑅

4

−
𝐼𝐷𝑅

2
< − log(𝐾𝑛0) +

𝑚0

𝑛0
∙ log (

𝐾𝑚0

𝑍𝑇1
) ≤ −

𝐼𝐷𝑅

4
 (S7.31)

(m0>0)

(3) −𝑛0 ∙ 𝐼𝐷𝑅 − log (𝐵0) ≤ −𝑚0 < −𝑛0 ∙
3∙𝐼𝐷𝑅

4
− log (𝐵0)

−𝐼𝐷𝑅 ≤ − log(𝐾𝑛0) +
𝑚0

𝑛0
∙ log (

𝐾𝑚0

𝑍𝑇1
) −

𝑚0

𝑛0
< −

3∙𝐼𝐷𝑅

4
 (S7.32)

90

Fig. S7.2. (A) Design of 2-bit ADC based on feedforward neural networks. (B) Digital outputs

of 2-bit ADC operate in the linear domain. (C) Simulation results of 2-bit neural-network ADC

design. (D) Most Significant Bit (MSB) dynamically controls the Least Significant Bit (LSB)

of 2-bit ADC via varying the value of 𝑚0.

The simulation results as shown in Fig. S7.3C suggest that a 2-bit molecular ADC that operates in

the log domain can be implemented using a feedforward neural network when the parameters

(weights and biases) satisfy Eq. S7.30-Eq. S7.32. In the particular simulation, 𝐼𝐷𝑅 = 5, 𝑛0 = 𝑛1 =
2,𝑚0 = 4,𝐾𝑛0 = 25,𝐾𝑛1 = 800, 𝐾𝑚0 = 40, 𝑍𝑇1 = 800, 𝐵0 = 2.4 × 10

−11, 𝐵1 = 1.56 ×
10−6, 𝐴0 = −10.5, 𝐴1 = −5.8.Notably, operating in the log domain allows parameter values to be

compressed, comparing with the ADCs in the linear domain with similar features (𝐼𝐷𝑅 =
5, 2 𝑏𝑖𝑡𝑠). That means the design parameters required to implement molecular ADC in living cells

are achievable by contrast to linear ADC. Furthermore, varying 𝑚0 (Hill coefficient) affects the

LSB (Fig. S7.3D), in particular, the behavior of LSB is qualitatively changed. As in Fig. S7.3E

when 𝑛0 ≈ 𝑚0 , LSB acts as ternary logic (𝐼𝐷𝑅 = 5, 𝑛0 = 𝑛1 = 1.5, 𝐾𝑛0 = 25,𝐾𝑛1 = 500,
𝐾𝑚0 = 40, 𝑍𝑇1 = 700,𝑚0 = 1.5 (for ternary logic, the blue curve) and 𝑚0 = 2.5 (for quaternary

logic, the red curve).

(B) (A)

(D) (C)

91

Fig. S7.3. (A) Design of 2-bit molecular ADC by controlling LSB via MSB. (B) An abstract

model of 2-bit molecular ADC based on the perceptgene feedforward network. (C) Simulation

results of 2-bit molecular ADC. (D) The influence of m0 on the LSB behavior. (E) 2-bit

Molecular ADC displays ternary logic by programming the 𝑚0 weight.

7.1.1. Optimization process of 2-bit ADC

In this process, we changed the original mathematical model (Fig. S7.3) to be suitable for genetic

networks. Fig. S7.4A is built based on Fig. S7.3B, including:

1. Positive feedback loop for linearization.

2. AraC as a new wire to implement the LSB.

3. Transcriptional interference promoter to implement the subtraction.

Fig. S7.4B is built based on Fig. S7.4A, including:

1. 𝑚0 = −1, since there is only one binding site of LuxR in the transcriptional interference

promoter.

2. Inhibition to PBAD, which is achieved by the transcriptional interference of Plux promoter.

(A)

(C) (D)

(B)

(E)

92

Fig. S7.4C is the final construct which is built based on Fig. S7.4B, including the TetR repressor

to reduce the disturb of the inhibition.

X

B1

MSB
(mCherry)

LSB
(GFP)

n0

X

B0
n1 B1’

X

n1’

Plux

(MCP)
Plux*-transcriptional

interference (HCP)

AraC

Plux(LCP)

PluxM56

(LCP)

AHL-LuxR

AHL

PBAD

(HCP)

Arab

-m0AHL-LuxR

Kd_Plux*

f
AHL-LuxR

Kd_Plux

f

Positive
feedback

Arab-AraC

Kd_Plux

f

(A)

(B)

93

Fig. S7.4. Process optimization of 2-bit ADC.

To implement the 2-bit Molecular ADC in living cells, we first constructed a genetic circuit with

an effective tunable threshold. To that end, we utilized two competitive promoters (PBAD vs Plux)
that are located in opposite orientation to each other, which Plux produces transcriptional

interference with PBAD (Fig. S7.5A). For PBAD we call forward promoter and for Plux we call

reverse promoters. Oppositely oriented promoters relative to a gene have been reported in previous

studies (37–39) to tune gene expression (40), control the input threshold of genetic switches (41,

42), and reduce the leaky expression of toxic proteins (43). A RiboJ (44) was used to cleave the

5′‐UTR of GFP mRNA, a computationally designed RBS, the GFP -coding sequence and a

transcriptional terminator. A reverse complementary terminator was cloned upstream to PBAD to

disturb the activity of RNA polymerase for Plux. Adetailed biophysical model was developed (40)

to describe such systems, in our work, for simplicity. Because the two opposite promoters are

located close to each other, we treat the system as one statistical thermodynamic model (Fig.

S7.5B). The model describes 5 different statistical states, (1) promoters are empty, (2) RNA

polymerases (RNAp) with transcription factors are bound on both promoters, leading to a basal

level, (3) the complex activator (Y1)-RNAp is bound to the forward promoter, leading to active the

output signal, (4) the complex activator (Y2)-RNAp is bound to the reverse promoter, leading to

inhibit the output signal, and (5) the complex activator (Y1)-RNAp is bound to the forward

promoter, and the complex activator (Y2)-RNAp is bound to the reverse promoter. In our model,

we also assume that the collision interference is large and thus the probability that the forward and

the reverse RNA polymerases can simultaneously bind to the DNA is very low (𝜃 << 1).

Therefore, the level of gene expression is proportional to the probability (𝑃) that RNA polymerase

is bound to the forward promoter at the equilibrium:

(C)

 Repression

IhibRepression in

94

𝑃 =
(
𝑌1
𝐾𝑑1

)
𝑛1
+𝛽

1+(
𝑌1
𝐾𝑑1

)
𝑛1
+(

𝑌2
𝐾𝑑2

)
𝑛2 (S7.33)

𝑌1 is the concentration of Arab-𝐴𝑟𝑎𝐶 complex. 𝑌2 is the concentration of AHL -LuxR complex.

These variables are given by the following set of equations:

𝑔(𝑥𝑖) =
(
𝑥𝑖
𝐾𝑚𝑖

)
𝑚𝑖

1+(
𝑥𝑖
𝐾𝑚𝑖

)
𝑚𝑖

 (S7.34)

𝑌1 = 𝐴𝑟𝑎𝐶𝑇 ∙ 𝑔(𝐴𝑟𝑎𝑏) (S7.35)

𝑌2 = 𝐿𝑢𝑥𝑅𝑇 ∙ 𝑔(𝐴𝐻𝐿) (S7.36)

We can rewrite the promoter activity (Eq. S7.33) as follows:

𝑃 =

𝐴𝑟𝑎𝐶𝑇∙𝑔(𝐴𝑟𝑎𝑏)

𝐾𝑑𝑒𝑓𝑓
+𝛽𝑒𝑓𝑓

1+
𝐴𝑟𝑎𝐶𝑇∙𝑔(𝐴𝑟𝑎𝑏)

𝐾𝑑𝑒𝑓𝑓

 (S7.37)

𝛽𝑒𝑓𝑓 =
𝛽

1+
𝐿𝑢𝑥𝑅𝑇∙𝑔(𝐴𝐻𝐿)

𝐾𝑑2

 (S7.38)

𝐾𝑑𝑒𝑓𝑓 = 𝐾𝑑1 ∙ (1 +
𝐿𝑢𝑥𝑅𝑇∙𝑔(𝐴𝐻𝐿)

𝐾𝑑2
) (S7.39)

Where we assume that 𝑛1 = 1, 𝑛2 = 1. Fig. S7.5C shows the experimental and simulation results

of the normalized signals for the forward (PBAD) promoter and reverse promoter (Plux) using the

set of Eq. S7.37- Eq. S7.39. For each AHL concentration, we normalized the measured GFP by the

maximum achieved GFP level. Assuming that Arabinose>>𝐾𝑚1, the fold-change of GFP can be

given by:
𝑃𝑚𝑎𝑥

𝑃𝑚𝑖𝑛
=

𝐴𝑟𝑎𝐶𝑇

𝐾𝑑𝑒𝑓𝑓+𝐴𝑟𝑎𝐶𝑇
∙
1

𝛽𝑒𝑓𝑓
 (S7.40)

The experimental results show that varying the concentration of AHL affects the Arabinose-to-GFP

transfer function. When AHL concentration increases, the fold-change of GFP decreases, which is

consistent with Eq. S7.40. The experimental results can be well captured by the simulation results.

Also, our experimental and simulation results imply that there is interference between the PBAD

promoter and Plux, leading to a shift in the threshold or effective dissociation constant by 1.5

magnitudes of orders. Parameters that were used in the simulation are 𝐾𝑚1 = 1000,𝑚1 =
1.5, 𝐾𝑚2 = 0.3,𝑚2 = 1, 𝐴𝑟𝑎𝐶𝑇 𝐾𝑑1 = 11⁄ , 𝐿𝑢𝑥𝑅𝑇 𝐾𝑑2⁄ = 10, 𝛽 = 0.0055 . To fit the absolute

GFP signals to our simulation results, we modified Eq. S7.37 by including a repression term:

𝐺𝐹𝑃 = 𝐺𝐹𝑃𝑚𝑎𝑥 ∙

𝐴𝑟𝑎𝐶𝑇∙𝑔(𝐴𝑟𝑎𝑏)

𝐾𝑑𝑒𝑓𝑓
+𝛽𝑒𝑓𝑓

1+
𝐴𝑟𝑎𝐶𝑇∙𝑔(𝐴𝑟𝑎𝑏)

𝐾𝑑𝑒𝑓𝑓

∙ (
1

1+𝜌∙
𝐿𝑢𝑥𝑅𝑇∙𝑔(𝐴𝐻𝐿)

𝐾𝑑2

+ 𝛽2) (S7.41)

Fig. S7.5D shows that Eq. S7.41 captures well the behavior of the absolute GFP signals (𝐺𝐹𝑃𝑚𝑎𝑥 =
5.5 × 105, 𝛽2 = 0.04, 𝜌 = 0.8). The repression term takes effect when 𝜃 > 0 in Eq. S7.33. In

conclusion, the competition between the two promoters increases the threshold, and decreases the

promoter activity (signal).

95

Fig. S7.5. (A) Genetic circuit with a tunable effective threshold based on a forward (PBAD)

promoter and a reverse (Plux) promoter that is oriented in opposite direction to PBAD. The Pluxis

having a transcriptional interference with PBAD. (B) The binding states of the forward promoter

and the reverse Plux. (C) Experimental and simulation (based on Eq. S7.37-Eq. S7.39) results of

normalized measured GFP signal. (D) Experimental and simulation (Eq. S7.38-Eq. S7.39, Eq.

S7.41) results of absolute measured GFP signal. The control experiment is shown in Fig. S7.5A

inset and the experimental results are shown in Fig. S7.5D.

Second approach: The optimization process of implementing a 2-bit Molecular ADC in living cells

(Fig. S7.6) consists of three steps:

1. Open loop circuit: AHL is the input signal. The AHL -LuxR complex binds to the mutated

promoter PluxM56 . The latter promoter regulates AraC and 𝐴 (another activator) in analog

fashion. AraC affects the LSB by binding to PBAD, and 𝐴 affects the MSB by binding to 𝑃1.

The transcription factor 𝐵, which is regulated by 𝑃1, regulates the PBAD promoter.

2. PF circuit: we replaced the open loop with a positive feedback circuit.

3. We replaced the transcription factor 𝐵 with LuxR. We used mutations of Plux that has a

different strength.

(A) (B)

(C) (D)

96

Fig. S7.6. Optimization process of implementation 2-bit molecular ADC in living cells.

Based on our optimization, we created two circuits that implement LSB and MSB (Fig. S7.7A and

B), and another two control circuits (Fig. S7.7C and D). The LSB and MSB circuits accept AHL

as an analog input and include a graded PF (PluxM56), which regulates LuxR in an analog fashion.

The Plux of LSB circuit is located on LCP and regulates AraC in an analog manner (Fig. S2.13).

In particular, we kept a low expression level of AraC by altering the binding between RNA

polymerase and the promoter Plux (45). Subsequently, the Arabinose- AraC complex binds to the

forward PBAD the promoter, while the LuxR − AHL complex binds to the reverse Plux promoter.

The binding reaction of LuxR − AHL complex, causes the RNA polymerase to reverse Plux
dynamically increases the PBAD threshold and decreases the GFP expression (Fig. S7.8A). The

MSB circuit that locates on MCP (Fig. S7.7B), regulates the output signal in a digital fashion.

Following the previous Eq. S7.34 to Eq. S7.41, a set of empirical models are used to describe the

LSB and MSB signals:

𝑀𝑆𝐵 ∝
(
𝐴𝐻𝐿

𝐾1
)
𝑟1
+𝛽1

1+(
𝐴𝐻𝐿

𝐾1
)
𝑟1 (S7.42)

 𝐿𝑆𝐵 ∝
(
𝐴𝐻𝐿

𝐾0
)
𝑟0
+𝛽0

1+(
𝐴𝐻𝐿

𝐾0
)
𝑟0
+𝛼∙(

𝑀𝑆𝐵

𝐾2
)
𝑟2 ∙ (

1

1+(
𝐴𝐻𝐿

𝐾3
)
𝑟3) + 𝛽2 (S7.43)

To find the model parameters, we first fitted the control experimental results (Fig. S7.8A) to a Hill-

function (Eq. S7.42). Both control circuits contain a graded PF (PluxM56) and PBAD promoter. As a

side note, control 1 appears similar to the circuit in Fig. S2.9, except that a degradation tag was

added to AraC. In control 2 circuit, the transcriptional interference is controlled by a constitutive

promoter Pconst to PBAD , which reduced the basal level and increased the threshold of PBAD

activation (Fig. S7.8A). The data was normalized by the maximum achieved level. The circuits

were modeled as follows:

Control 1: 𝑟1 = 0.5, 𝐾1 = 20

Control 2: 𝑟1 = 0.7, 𝐾1 = 50

MSB: 𝑟1 = 1.5, 𝐾1 = 500, 𝛽1 = 0.1

LSB: 𝑟0 = 0.8, 𝐾0 = 40, 𝛽0 = 0.001, 𝛼 = 200, 𝑟2 = 1.5, 𝐾2 = 10, 𝑟3 = 1,𝐾3 = 500, 𝛽2 = 0.04

(C) (B) (A)

97

As in Fig. S7.8B, the proposed LSB and MSB circuits successfully converted the dynamic range

of AHL concentration to [0,0], [0,1] and [1,0] logic states, while failed to achieve the [1,1] state.

This circuit acts a 1.5-bit ADC.

Fig. S7.7. (A) The implementation of LSB genetic circuit using a forward PBAD promoter and

reverse Plux promoter which produces a transcriptional interference. (B) The implementation of

MSB. (C) Control 1 circuit. (D) Control 2 circuit using a constitutive promoter to produce the

transcriptional interference.

Fig. S7.8. (A) Experimental results of LSB, MSB and control circuits. Solid lines indicate

modelling results based on the empirical model (Eq. S7.42, Eq. S7.43). We used Arabinose of

0.05 M for all the circuits. (B) The normalized GFP signals of LSB and MSB referred to each

basal level (the data was subtracted by the basal levels of LSB and MSB).

(A) (B)

(D)

(A) (B)

(C)

98

The failure of the proposed LSB and MSB circuits to achieve the [1,1] logic state is possibly due

to the repression of the Pluxtranscriptional interference with PBAD promoter in the presence of high

levels of AHL. To solve this issue, a repressor (TetR) was added to the MSB (Fig. S7.9A). The

TetR indirectly inhibits the activity of the Plux transcriptional interference in the presence of high

levels of AHL , through binding to the combinatorial Plux tetO⁄ promoter (Fig. S7.9B). To

implement, we constructed a hybrid promoter that consists of a forward PBAD promoter and a

combinatorial Plux tetO⁄ promoter which is oriented in opposite direction to PBAD (Fig. S7.9B). To

understand the mechanism of Plux tetO⁄ , we created two control circuits (control 3 and 4) that are

regulated by AHL and a graded PF and includes a forward PBAD and a reverse combinatorial

Plux tetO⁄ as shown in Fig. S7.9C. In control 3, TetR is regulated by a constitutive promoter, and

in control 4 there is no expression of TetR. The experimental results of control circuits 3 and 4

(Fig. S7.10) indicate that when TetR binds to the Plux tetO⁄ promoter, there is no transcriptional

interference with PBAD promoter. Therefore, the control 3 circuit achieves a high GFP signal for

high AHL levels. The results of control 3 are similar to those of control 1. The results of control 4

are similar to those of LSB circuit (Fig. S7.8A). The data of control 3 and 4 are well fitted by our

empirical model (Eq. S7.42-Eq. S7.43), with the parameters as follows:

Control 3: 𝑟1 = 0.7, 𝐾1 = 200, 𝛽1 = 0.07

Control 4: 𝑟0 = 0.8, 𝐾0 = 40, 𝛽0 = 0.001, 𝛼 = 200, 𝑟2 = 1.5, 𝐾2 = 100, 𝑟3 = 1, 𝐾3 = 500, 𝛽2 =
0.005.

99

Fig. S7.9. (A) A design of 2-bit ADC includes the TetR to inhibit the regulation on LSB by

MSB for high AHL. (B) The binding states of forward PBAD promoter and a combinatorial

Plux tetO⁄ promoter which is oriented in opposite direction and produces a transcriptional

interference with PBAD . (C) A control circuit consists of a graded PF that regulates PBAD

promoter and a combinatorial Plux tetO⁄ , while 𝑇𝑒𝑡𝑅 repressor is constitutively expressed. (D) A

control circuit consists of a graded PF that regulates PBAD promoter and a combinatorial

Plux tetO⁄ , when there is no expression of TetR repressor.

(A) (B)

(C)

(D)

100

Fig. S7.10. Experimental results of control circuits 3 and 4. Solid lines represent modelling

results from the empirical models (Eq. S7.42, Eq. S7.43). We induced the circuits with

Arabinose of 0.6 mM.

Based on our control experimental results, we modified the LSB circuit to allow TetR being

dynamically regulated by Plux promoter (Fig. S7.11A shows the construction of 2-bit ADC).

Empirical models for the new circuit are given by:

 𝑀𝑆𝐵 ∝
(
𝐴𝐻𝐿

𝐾1
)
𝑟1
+𝛽1

1+(
𝐴𝐻𝐿

𝐾1
)
𝑟1 (S7.44)

 𝐿𝑆𝐵 ∝
(
𝐴𝐻𝐿

𝐾0
)
𝑟0
+𝛽0

1+(
𝐴𝐻𝐿

𝐾0
)
𝑟0
+𝛼∙(

𝑀𝑆𝐵

𝐾2
)
𝑟2 ∙ (

1

1+𝑓(𝐴𝐻𝐿)
) + 𝛽2 (S7.45)

Where 𝑓(𝐴𝐻𝐿) represents the amount of GFP as a function as AHL. For a high concentration of

TetR 𝑓(𝐴𝐻𝐿) → 0, and for a low concentration of TetR, Eq. S7.45 tends to converge to Eq. S7.43

therefore, an empirical model of 𝑓(𝐴𝐻𝐿) can be given by:

𝑓(𝐴𝐻𝐿) =
𝐿𝑢𝑥𝑅−𝐴𝐻𝐿

1+𝑇𝑒𝑡𝑅
 (S7.46)

For simplicity, we assumed that 𝑓(𝐴𝐻𝐿) ∝ 𝑀𝑆𝐵, then:

𝐿𝑆𝐵 ∝
(
𝐴𝐻𝐿

𝐾0
)
𝑟0
+𝛽0

1+(
𝐴𝐻𝐿

𝐾0
)
𝑟0
+𝛼∙(

𝑀𝑆𝐵

𝐾2
)
𝑟2 ∙ (

1

1+𝛼∙(
𝑀𝑆𝐵

𝐾3
)
𝑟3) + 𝛽2 (S7.47)

Fig. S7.11B shows the experimental results of the modified LSB circuit using the new design,

when TetR is regulated by MSB. These results demonstrate that 2-bit ADC can be achieved using

such a design (Fig. S7.11C). The data of 2-bit ADC is well fitted by our empirical models (Eq.

S7.44, Eq. S7.47), with a set of model parameters:

MSB: 𝑟1 = 1.5 , 𝐾1 = 500, 𝛽1 = 0.015

LSB: 𝑟0 = 1.45, 𝐾0 = 20, 𝛽0 = 0.03, 𝛼 = 300, 𝑟2 = 1.2, 𝐾2 = 1.5, 𝑟3 = 1.3, 𝐾3 = 85, 𝛽2 = 0.04

101

Fig. S7.11. (A) Implementation of a 2-bit ADC, where the LSB circuit is modified to allow TetR

to be regulated by MSB. (B) Experimental and simulation (Eq. S7.47) results of the modified

LSB circuit. (C) The normalized GFP and mCherry signals of the 2-bit ADC. The signals

referred to each basal level (The data was subtracted by the basal levels of GFP and mCherry).

Solid lines indicate the modeling results of the empirical models (Eq. S7.44, Eq. S7.47). We

induced the circuits with Arabinose of 0.4 mM.

7.2. Design II: Design and implementation of 2-bit log-ADC

ADC systems have significant applications in biotechnology and medicine (46), for example, ADC

can be used to regulate several genes with all logic combinations using only a single inducer. To

improve the performance of our 2-bit ADC, we combined principles of neural-network and

pipelined ADC (47) design (Fig. S7.12A). Pipelined ADC consists of several cascaded stages;

every stage is built from comparators with each one has its own linear threshold (47). In the new

design, we added a third perceptgene which receives AHL and acts as comparator for very high

levels of AHL concentration. In this case, we require that 𝐵2 > 𝐵1, and 𝑛2 ≈ 𝑛1. The design of

hybrid ADC is shown in Fig. S7.12B. The LSB (GFP) signal is regulated by two parts: (1) a

forward PBAD promoter and an reverse Plux promoter, which is oriented in opposite direction to

PBAD (Fig. S7.7A); (2) a quorum sensing PrhlR promoter that interacts with AHL inducer (Fig.

(A) (B)

(C)

102

S7.13) (3). The MSB is implemented by a Plux promoter and regulates mCherry. By fitting the

activity of PrhlR to Eq. S7.44, we obtained that 𝐾1 = 20 × 10
3 nM which is larger than 𝐾1 (500

nM) of Plux, satisfying 𝐵2 > 𝐵1.
The 2-bit hybrid ADC was constructed as shown in Fig. S7.14. The circuit receives AHL as an

analog input and contains a graded PF (PluxM56) which regulates LuxR. The LSB circuit is built

from two GFP signals: (1) Forward PBAD promoter reverse Plux promoter and (2) the PrhlR

promoter. The AraC regulated by Plux is located on LCP (Fig. S7.14A). We altered the binding

efficiency of RNA polymerase (45) to ensure a low expression level of AraC. Meanwhile, the AraC

and LuxR − AHL complex binds to the forward PBAD and reverse Plux promoter, respectively,

which increases the threshold of PBAD and decreases the expression level of GFP . The PrhlR

promoter located on HCP is activated by LuxR − AHLcomplex and regulates the GFP signal for

high AHL concentrations. To achieve similar GFP levels in the two parts, an ssrA degradation tag

(15) (LVA) was added on HCP. The Plux of MSB circuit which is located on MCP, regulates the

output mCherry signal. Fig. S7.14B shows the experimental results of 2-bit hybrid ADC with

distinct four logic states. The results show that there is a narrow region (marked in gray color) that

the ADC has irregular behavior.

Fig. S7.12. (A) A 2-bit hybrid ADC combined with neural networks and Pipelined ADC. (B) A

2-bit hybrid ADC using a third comparator, which activates PrhlR promoter only for a high AHL

concentration.

Fig. S7.13. AHL -GFP transfer function of PrhlR promoter. Solid line indicates the fitting results

of the empirical models (Eq. S7.44).

(A) (B)

Repression

103

Fig. S7.14. (A) Implementation of 2-bit hybrid ADC. (B) the normalized GFP and mCherry

signals of 2-bit ADC. Solid lines indicate fitting to the empirical models (Eq. S7.44, Eq. S7.47).

We induced the circuits with Arabinose of 0.06 mM.

7.3.Programmable a simple logic gates based on perceptgene

Our simulation models show that by changing the bias of a single perceptgene, we can achieve

different logic gates. As was shown in Section 2, the perceptgene simulations consists of two

parts:

1. The power-law and multiplication function: The simulations are based on Eq. S2.18, Eq.

S2.19, and Eq. S2.20. Parameters that were used in simulations:

Based on 𝐏𝐥𝐚𝐜𝐎𝟏 and 𝐏𝐭𝐞𝐭𝐎 within ANF loop, and combinatorial promoter
(𝐏𝐥𝐚𝐜𝐎/𝐭𝐞𝐭𝐎) – Fig. 1F

𝐾𝑚1 = 0.8, 𝐾𝑚2 = 1,𝐾𝑑1 = 90,𝐾𝑑2 = 6,𝐾𝑑1ℎ = 45,𝐾𝑑2ℎ = 4, ℎ1 = 1, ℎ2 = 1.4, 𝑅𝑚𝑎𝑥1
= 2000, 𝑅𝑚𝑎𝑥2 = 3000, 𝒏𝟏 = 𝟏, 𝑛2 = 2, 𝑛1ℎ = 1, 𝑛2ℎ = 1, 𝜃 = 1, 𝛽
= 0.001

2. Activation function: here we used a similar activation function to PBAD/ AraC (Eq. S2.21,

Section 2.3), but without a repression element. We also assumed that there are several

binding sites of AraC in the promoter PBAD. Therefore, the PBAD activation function can be

described as:

𝑃 =
(
𝐴𝑟𝑎𝐶𝑐
𝐾𝑑3

)
𝑛3
+𝛽4

1+𝛽4+(
𝐴𝑟𝑎𝐶𝑐
𝐾𝑑3

)
𝑛3 (S7.48)

(A) (B)

104

Where: AraC𝑇 = 30, 𝐾𝑚3 = 0.09, 𝛽4 = 0.002, 𝑛3 = 1.5,

For the OR gate, we used: 𝐾𝑑3 = 2,
For the OR gate, we used: 𝐾𝑑3 = 30,

Fig. S7.15. Simulation results of a single perceptgene for simple logic gates (A) OR logic gate:

 𝐾𝑑3 = 2, (B) AND logic gate 𝐾𝑑3 = 30. (C) shows the data as logic states, “0” ➔ Normalized

inducer level=1, “1” ➔ Normalized inducer level=128.

7.4 Design and implementation of ternary data converter (switch)

From a dynamic system point of view, changing model parameters can lead to qualitatively

different patterns of steady states. We therefore explored the model parameters (Eq. S7.47), by

varying the ratio between repression and thresholding terms in Eq. S7.47 (𝐾2 Vs 𝐾3), or by

controlling the weights (Fig. S7.3E). Interestingly we obtained a new behavior of the LSB circuit

(Fig. S7.16). We demonstrated this behavior by controlling different levels of Arabinose. The

Arabinose concentration controls the repression as shown in Eq. S2.21, meaningly, , In high

Arabinose concentrations, the AraC acts only as an activator without repression. Because AraC is

regulated by Plux, we can assume that AraC ∝ MSB. The experimental resulted AHL -GFP transfer

function using the new design is a three-valued logic (ternary logic) as shown in Fig. S7.17. These

results demonstrate that ternary was achieved using neural networks (Fig. S7.3E). The data of

ternary data converter is well fitted by our empirical models (Eq. S7.44, Eq. S7.47), with a set of

model parameters:

MSB: 𝑟1 = 1.5, 𝐾1 = 450, 𝛽1 = 0.005

LSB: 𝑟0 = 1.6, 𝐾0 = 28, 𝛽0 = 0.02, 𝛼 = 200, 𝑟2 = 1.2, 𝐾2 = 1, 𝑟3 = 1.4, 𝐾3 = 300, 𝛽2 = 0.02

Ternary genetic circuits, converts analog signals to fuzzy levels, may find new applications in

biotechnology, such as allowing engineers to tune the expression level of toxic proteins, enzymes

in metabolic pathways in a reliable way. Furthermore, such systems can useit in building

biosensors, which able to report in three states: low, medium and high. By contrast, the digital

circuits can report only in two states.

(A) (B) (C)

105

Fig. S7.16. Simulation results of the influence of repression K3 versus thresholding k2 on LSB

circuit. Modeling parameters: MSB: 𝑟1 = 1.5, 𝐾1 = 450, 𝛽1 = 0.005, LSB: 𝑟0 = 1.6, 𝐾0 =
28, 𝛽0 = 0.03, 𝛼 = 160, 𝑟2 = 1.2, 𝐾2 = 1, 𝑟3 = 1, 𝛽2 = 0.04.

Fig. S7.17. Implementation of ternary data converter, based on the regulation of repression

versus thresholding. Experimental and modeling (Eq. S7.47) results of ternary circuit. Solid

lines indicate modelling results of the empirical models (Eq. S7.44, Eq. S7.47). We induced

the circuits with high Arabinose of 50 mM compared to Fig. S7.13 with 0.4 mM.

106

7.5. Reconfigurable perceptgene-based logic networks

To demonstrate the computational efficiency of perceptgene design, we modified the 3-input

majority circuit by replacing the PtetO promoter with PluxM56/tetO combinatorial promoter as

shown in Fig. S7.18A. The effect of AHL input on the GFP signal is collectively integrated by the

PluxM56/tetO and PluxM56 lacO1⁄ prompters. Otherwise, the PluxM56/tetO combinatorial promoter acts

as a logical conjunction operation rather than an integrative operation, which means it is active

only if the AHL and IPTG are “1”. The new network architecture allows AHL to exert more reliable

effect on GFP by affecting both the AraC branch and the SupD branch of the network. The

biophysical model that describes the new genetic circuit is based on the equation set Eq. S5.7-Eq.

S5.11, with a modification of 𝑦2:

𝑦1 = (𝐵1 ∙ (
𝐴𝐻𝐿

𝐾𝑚1
)
𝑛1
∙ (
𝐼𝑃𝑇𝐺

𝐾𝑚2
)
𝑛2
)
𝑚1

 (S7.49.1)

𝑧1 =
𝑦1+𝛽1

1+𝛽1+𝑦1
 (S7.49.2)

𝑦2 = (𝐵2 ∙ (
𝑎𝑇𝑐

𝐾𝑚3
)
𝑛3
(
𝐴𝐻𝐿

𝐾𝑚1
)
𝑛1′

)
𝑚2

 (S7.49.3)

𝑦3 = (𝐵4 ∙ 𝑦2 ∙ (𝐵3 ∙ 𝑧1)
𝑚3)𝑚4 (S7.49.4)

𝑧2 =
𝑦3+𝛽2

1+𝛽2+𝑦3
 (S7.49.5)

Where 𝐵4 ≡
𝑦𝑚3

𝐾5
∙
𝐾3

𝐾4
 , 𝐵3 ≡

𝑧𝑚1

𝐾3
 , 𝐵2 ≡

𝑦𝑚2

𝐾2
 , 𝐵1 ≡

𝑦

𝑎
∙ 𝑚1

𝑏, 𝐵5 ≡ 𝐵4 ∙ 𝐵2
𝑚2 ∙ 𝐵3

𝑚3

Eq. S7.49.4 and Eq. S7.49.5 show that the network consists of two layers (Fig. S7.18B). We used

parameters consistent with the previous majority function model, except that 𝑛3 = 0.6 (compared

with 𝑛3 = 0.7, because the effective Hill-coefficient of aTc on PtetO is slightly different from

Plux tetO⁄ promoter). Our model accurately captures the behavior of our new circuit (Fig. S7.18C).

We used different Hill-coefficients of AHL -LuxR for Plux tetO⁄ and Plux lacO⁄ ; 𝑛1′ = 0.65, 𝑛1 =

1. The results of the new circuit show that the [1,0,0] state gave a “1”, by contrast to 3-input

majority function that gave “0”. Because the AHL was collectively integrated by PluxM56/tetO and

PluxM56 lacO1 ⁄ prompters.

107

Fig. S7.18. (A) Multilayer perceptgene displays a new logic function for three inputs (AHL, IPTG

and aTc). (B) Abstract model of the new multilayer perceptgene network. (C) Experimental and

simulation results.

(C)

(B)

(A)

108

Table S7.1 List of parameters used in this section

Symbol Description

X Input

Zi Output

𝑦𝑖 Analog signals

𝑛𝑖 Weights or Hill Coefficients

𝐴𝑖 Biases

𝑘𝑓0 The rates for the forward reactions from Z0 to Z0*

𝑘𝑓1 The rates for the forward reactions from Z1 to Z1*

𝑘𝑟0 The rates for the corresponding backward reactions Z0* to Z0

𝑘𝑟1 The rates for the corresponding backward reactions Z1* to Z1

𝑘10 The regulation of Z1* on the activation of Z0

𝑍𝑇0 The total concentration of molecules 𝑍0

𝑍𝑇1 The total concentration of molecules 𝑍1

𝐾𝑛0, 𝐾𝑛1 and

𝐾𝑚1

Dissociation constants

𝑃𝑖 The reaction activity is defined as ratio of the product and the

total concentration of molecules

𝑃 Probability that RNA polymerase is bound to the forward

promoter at the equilibrium

𝛽 Basal level

𝑌𝑖 The concentration of inducer-𝑇𝐹 complex

𝐾𝑑𝑖 Dissociation constants

𝜃 Interference

Arab Free arabinose concentration

𝐴𝑟𝑎𝐶𝑇 The total concentration of 𝐴𝑟𝑎𝐶

AHL Free N-(β-Ketocaproyl)-L-homoserine Lactone 3OC6HSL

concentration

𝐿𝑢𝑥𝑅𝑇 The total concentration of 𝐿𝑢𝑥𝑅

𝛽𝑒𝑓𝑓 Effective basal constant

𝐾𝑑𝑒𝑓𝑓 Effective dissociation constant

𝜌 Fitting parameter

A Activator

B Transcription factor

ri Hill Coefficients

Ki Effective dissociation constant

βi Promoter basal level

α Fitting parameter

109

Table S7.2 List of abbreviations used in this section

Symbol Description

ADC Analog to digital convertor

DAC Digital to analog convertor

LSB Last Significant Bit

MSB Most Significant Bit

𝐼𝐷𝑅 Input dynamic range

Arab Free arabinose concentration

AHL Free N-(β-Ketocaproyl)-L-homoserine Lactone 3OC6HSL

concentration

PBAD AraC promoter is activated by the 𝐴𝑟𝑎𝐶 when it is induced by

arabinose (Arab)

PluxM56 Mutated LuxR promoter is activated by the 𝐿𝑢𝑥𝑅 when it is

induced by AHL

Pconst Constitutive promoter

Plux LuxR promoter is activated by the 𝐿𝑢𝑥𝑅 when it is induced by

AHL

TetR Concentration of TetR

𝑃𝑙𝑢𝑥 𝑡𝑒𝑡𝑂⁄ Combinatorial promoter

𝑃𝑟ℎ𝑙𝑅 Quorum sensing promoter that interacts with AHL inducer

LVA ssrA degradation tag

110

8. Design principles of neuromorphic gene circuits

Weights and biases in neuromorphic circuits are determined by several factors, including

Hill coefficients of small molecule inducers that serve as perceptgene inputs, the number and

sequence of transcription factor binding sites, regulation of negative feedback strength

(Fig.1-2, Fig. S8.3), regulation of incoherent feedforward strength (Fig. S8.5), transcription

factor sequestration via protein-protein interactions (Fig. S8.6), transcription factors that

competitively inhibit expression via steric hinderance (Fig. S8.7), operator sequence that

controls binding affinity of transcription factor in open loop and positive feedback (Fig. S8.8-

Fig. S.8.10), activation via RNA-protein interactions (Fig. 3), and protein structure (e.g.,

dimerization and cooperativity), and circuit topology. Of particular importance, we

demonstrate modulation of activation function weight 𝒎𝟏 for the majority function via

administration of various Arabinose levels (Fig. S6.2A and Fig. 3E, F). Specifically, we induce

the system with eight different Arabinose concentrations and obtain fine-grain control of

AraC-Arabinose weight, allowing continuous control of the system. The process of affecting

weights and biases begins with a hypothesis of modulating the dosage response (e.g. transfer

function) of a regulatory element. This is inspired by what has already been demonstrated

in the literature, by a new approach that builds upon existing knowledge, or with completely

new innovative methods. After implementing the circuit modifications, the new transfer

functions are evaluated to determine the resultant weight and bias.

The first step toward the design of neuromorphic gene circuits is to understand the nature of the

input molecules and determine their computing weights. In neuromorphic gene circuits, the

computing weights of small molecules can be controlled by modifying the log domain slope of a

regulated promoter’s dosage response curve and can be characterized with Hill coefficients (e.g.,

the number of identical inducers that bind to transcription factors, and cooperativity of

transcription factors). Regulatory topologies such as a negative feedback loop and an incoherent

feedforward loop provide additional strategies that can be used to program the computing weights

of small molecules and proteins. A mathematical model for the open-loop circuit, shown in Fig.

S8.1A, describes an input (𝐼𝑛) that inhibits the activity of repressor 𝑅, which in turn represses the

output. The production of 𝑅 is constitutive and can be expressed as follows

𝑂𝑢𝑡 =
𝛼∙𝜏

1+(
𝑅

𝐾𝑑
)
𝑛 (S.8.1.1)

𝑅 =
𝑅𝑇

1+(
𝐼𝑛

𝐾𝑚
)
ℎ (S.8.1.2)

Where 𝛼 is output production rate, 𝜏 is protein half-life, 𝐾𝑑 is binding dissociation constant of the

repressor (𝑅) to the output, 𝑅𝑇 is the total concentration level of 𝑅, 𝐾𝑚 is binding dissociation

constant of input (𝐼𝑛) to 𝑅, 𝑛 and 𝑚 are Hill-coefficients of 𝐼𝑛 and 𝑅. While the repressor 𝑅 level

is constant in the open-loop circuit, it is regulated by the output protein in the negative feedback

circuit. A mathematical model for the auto-negative feedback loop circuit (Fig. S8.1B) is given

by:

𝑂𝑢𝑡𝑇 =
𝛼∙𝜏

1+(
𝑂𝑢𝑡

𝐾𝑑
)
𝑛 (S8.2.1)

𝑂𝑢𝑡 =
𝑂𝑢𝑡𝑇

1+(
𝐼𝑛

𝐾𝑚
)
ℎ (S8.2.2)

111

Simulation results that compare the characteristic and computing weights of the open loop and

auto-negative feedback circuits are shown in Fig. S8.1C. By programming the strength of the auto-

negative feedback loop, one can obtain fine grain control over the input weights (Fig. S8.1D). In

this work, we varied the number of binding sites for transcription factors in the promoter to control

the strength of auto-negative feedback (Fig. 1).

Fig. S8.1. (A) Open loop design. (B) Auto-negative feedback design. (C) Simulation results for

open loop and auto-negative feedback loop circuits. Simulation parameters: 𝐾𝑚 = 10, ℎ =
2, 𝐾𝑑 = 1, 𝑅𝑇 = 100, 𝛼 × 𝜏 = 3000. (D) Simulation for the auto-negative feedback circuit, where

the feedback loop strength 𝐹𝑠 = 𝛼 × 𝜏/𝐾𝑑.

In order to program the input weights continuously within a range, we split the auto-negative

feedback loop into two reactions, one is the feedforward (𝑅 𝑂𝑢𝑡) loop and second is the negative

feedback loop that is controlled by small molecule inducer 𝑥 (𝐴 𝑅). A mathematical model

describing such a system is given by:

𝐴𝑇 =
𝛼1∙𝜏

1+(
𝑅

𝐾𝑑1
)
𝑛1 (S8.3.1)

𝑅 =
𝑅𝑇

1+(
𝐼𝑛

𝐾𝑚1
)
ℎ (S8.3.2)

𝑅𝑇 = 𝛼2 ∙ 𝜏
(
𝐴𝑋

𝐾𝑑2
)
𝑛2

1+(
𝐴𝑋

𝐾𝑑2
)
𝑛2 (S.8.3.3)

𝐴𝑋 = 𝐴𝑇
(
𝑥

𝐾𝑚2
)
𝑚

1+(
𝑥

𝐾𝑚2
)
𝑚 (S.8.3.4)

The simulation results show that the level of inducer (𝑥) can control the input weight by regulating

the strength of the negative feedback (Fig. S8.2).

(A) (D) (C) (B)

112

Fig. S8.2. (A) Negative feedback design based on splitting the feedforward and feedback by using

different proteins. (B) simulation results for the negative feedback loop. Simulation parameters:

𝐾𝑚1 = 10, ℎ = 1.5, 𝐾𝑑1 = 1, 𝛼2 × 𝜏 = 1000, 𝑛1 = 1,𝐾𝑚2 = 1,𝑚 = 1.5, 𝐾𝑑2 = 10, 𝛼1 × 𝜏 =
1000, 𝑛2 = 1.

In Fig. S8.3 we describe small molecule control of negative feedback regulation via transcription

factor activation of repressor. This design allows us to continuously program the weight of IPTG

by changing the level of AHL. First, we compared the negative feedback circuit (Fig. S8.3B) with

an open-loop circuit (Fig. S8.3C). The open loop circuit includes regulation of mCherry by PlacO

promoter that is induced by IPTG. While LacI is constitutively expressed in the open loop circuit,

it is regulated by the Plux promoter in the negative feedback circuit. Input IPTG regulates the

activity of promoter PlacO and expression of LuxR. The LuxR/AHL complex regulates LacI levels,

which represses promoter PlacO, creating a negative feedback loop. Fig. S8.3D shows experimental

results of open loop and negative loop circuits, in agreement with our theoretical results (Fig. S8.1).

Furthermore, this negative feedback loop design allows us to continuously program the weight of

IPTG by changing the level of AHL (Fig. S8.3E). The negative feedback loop strength, which is

controlled by AHL, determines the IPTG input weight (Fig. S8.3F). These experimental results are

consistent with our simulation results (Fig. S8.2).

(A)

(B) (C)

(B)

(A)

113

Fig. S8.3. (A) Programmable perceptgene input weight. IPTG is the input and AHL regulates IPTG

weight. (B) High level circuit diagram and genetic circuit implementation of programmable

perceptgene input weight based on a negative feedback. AHL binds LuxR, forming a complex that

controls the strength of the negative feedback loop. When IPTG binds LacI, it induces promoter

PlacO activity, increasing LuxR levels. AHL binds LuxR , forming a complex that regulates

expression of LacI. LuxR and GFP are regulated by PlacO promoter. Plux is encoded on MCP, while

PlacO is encoded on LCP. (C) High level circuit diagram and genetic circuit implementation of

open loop circuit. (D) Experimentally measured IPTG/GFP transfer function of open loop and

negative feedback circuits (AHL = 0.1 mM). (E) Experimentally measured IPTG/GFP transfer

function under three different AHL concentrations. (F) IPTG input weight is shown as a function

of AHL concentration.

Incoherent feedforward loops can also be used to program the weights of small molecules and

proteins. In these networks, the upstream regulator (𝐴) directly activates the target gene (𝑂𝑢𝑡) and

indirectly represses it by activating repressor (𝑅) of the target gene (Fig. S8.4A). In our design, we

assumed that the upstream regulator (𝐴) is induced by the input (𝐼𝑛). A mathematical model for

such a system is given by:

𝐼𝑛𝐴 = 𝛼1 ∙ 𝜏
(
𝐼𝑛

𝐾𝑚
)
ℎ

1+(
𝐼𝑛

𝐾𝑚
)
ℎ (S8.4.1)

𝑅𝑇 = 𝛼2 ∙ 𝜏 ∙
(
𝐼𝑛𝐴

𝐾𝑎𝑟
)
𝑛
+𝛽

1+(
𝐼𝑛𝐴

𝐾𝑎𝑟
)
𝑛 (S8.4.2)

𝑂𝑢𝑡 = 𝛼3 ∙ 𝜏 ∙
(
𝐼𝑛𝐴

𝐾𝑎
)
𝑛
+𝛽

1+(
𝐴𝑋

𝐾𝑎
)
𝑛 ∙

1

1+(
𝑅

𝐾𝑟
)
𝑚 (S8.4.3)

Where αi are protein production rate, 𝜏 is protein half-life, 𝐾𝑎, 𝐾𝑎𝑟 and 𝐾𝑟 are binding dissociation

constants of the regulator (𝐴) and repressor (𝑅) to the output, 𝐾𝑚 is binding dissociation constant

of input (𝐼𝑛) to 𝐴, 𝑛 and 𝑚 are Hill-coefficients and 𝛽 is the basal level. The simulation results of

(D)

(F)

(E)

114

incoherent feedforward circuit are shown in Fig. S.8.4B. These results indicate finely tunable

weight with positive and negative values.

Fig. S8.4. (A) Design of incoherent feedforward loop. (B) Design of programmable perceptgene

with a positive weight, simulation results with parameters: 𝐾𝑚1 = 100, ℎ = 1.5, 𝐾𝑎 = 10,𝐾𝑎𝑟 =
10, 𝛼1 × 𝜏 = 100, 𝑛 = 1, 𝛽 = 0.01,𝑚 = 1, 𝛼2 × 𝜏 = 100, 𝐾𝑟 = 10, 30, 1000 (C) Design of

programmable perceptgene with a negative weight, simulation results with parameters: 𝐾𝑚1 =
100, ℎ = 1.5, 𝐾𝑎 = 100, 𝐾𝑎𝑟 = 1, 𝛼1 × 𝜏 = 10, 𝑛 = 1, 𝛽 = 0.005,𝑚 = 1.5, 𝛼2 × 𝜏 = 150, 𝐾𝑟 =
3 − 10.

In Fig. S8.5 we demonstrate experimentally small molecule control of transcription factor

competitive inhibition via binding to an output promoter. This design allows us to modulate the

weight of input AHL continuously by changing the aTc level (Fig. S8.5E). The input AHL binds

LuxR and forms a complex that induces expression of activator (AraC) and repressor (LacI), which

combine to regulate GFP output, resulting in an incoherent feed-forward loop. Small molecule aTc
controls LacI expression via de-repression of TetR, which in turn affects the overall AHL-GFP

transfer function. We show the resulting input weight as a function of aTc relevant for the input

dynamic range. Our incoherent feed-forward circuit provides negative weights.

AHL

∏

()
n

gfp

Arab

()
AraCmax

Kd

aTc

GFP
LuxR

LacI

aTc

AHL

AraC

(B)

(D)

(A) (C)

(E)

(A) (B) (C)

115

Fig. S8.5. (A) A programmable percentgene with single input weight. aTc is used to modulate the

weight of AHL continuously. (B) High level circuit design. Input AHL binds LuxR and forms a

complex that regulates AraC and LacI . The AraC transcription factor activates GFP output

expression, while the LacI transcription factor represses GFP expression. The activation function

is determined by the AraC/LacI interaction, where LacI expression is controlled by aTc, and hence

impacts input weight. (C) Genetic circuit implementation. PtetO promoter is regulated by TetR

through an auto-negative feedback loop and induced by aTc . PTGT and Plux promoters are

regulated by LuxR through a positive feedback loop and induced by AHL. AraC is regulated by

Plux promoter, and LacI is regulated by combinatorial Plux/tetO promoter. A ssrA degradation tag

(LVA) was added to LacI to reduce the maximum protein level. GFP is regulated by AraC/LacI
through activation/repression of combinatorial Para/lacO promoter. The feedback loops in this

circuit increase the input dynamic ranges of AHL and aTc. The PtetO and combinatorial Plux/tetO

promoters are encoded on a medium-copy-number plasmid (MCP). The combinatorial Para/lacO

promoter is encoded on a high-copy-number plasmid (HCP). The Plux and PTGT promoters are

encoded on a low-copy-number plasmid (LCP). (D) Measured AHL - GFP transfer function where

aTc is varied (aTc = 11, 7.5, 5, 3.2 𝑛𝑔/𝑚𝑙 , Arabinose = 50 mM, IPTG = 1 mM). The dotted

lines are Hill-function fitting with 𝐺𝐹𝑃 ∝
(
𝐴𝐻𝐿

𝐾𝑒𝑓𝑓
)

ℎ𝑒𝑓𝑓

+𝛽

1+(
𝐴𝐻𝐿

𝐾𝑒𝑓𝑓
)

ℎ𝑒𝑓𝑓
 :

(1) aTc = 11 𝑛𝑔/𝑚𝑙, ℎ𝑒𝑓𝑓 = 2.2, 𝐾𝑒𝑓𝑓 = 100 𝑚𝑀, 𝛽 = 0.013,

(2) aTc = 7.5 𝑛𝑔/𝑚𝑙 , ℎ𝑒𝑓𝑓 = 1.9, 𝐾𝑒𝑓𝑓 = 85 𝑚𝑀, 𝛽 = 0.012,

(3) aTc = 5 𝑛𝑔/𝑚𝑙 , ℎ𝑒𝑓𝑓 = 1.6, 𝐾𝑒𝑓𝑓 = 100 𝑚𝑀, 𝛽 = 0.02,

(4) aTc = 3.2 𝑛𝑔/𝑚𝑙 , ℎ𝑒𝑓𝑓 = 1.3, 𝐾𝑒𝑓𝑓 = 100 𝑚𝑀, 𝛽 = 0.08,

(E) AHL weight based on the experimental results as a function of aTc .

The second step in the design of neuromorphic gene circuits is to aggregate the multiple inputs to

one node in order to implement the multiplication function, which serves as a collective analog

node. There are several biological mechanisms that can be used to accomplish such a function. For

example, in this work combinatorial promoters (PlacO/tetO, Plux/lacO, Plux/tetO) in Figures 1 and 2,

and mRNA-protein interaction in Figure 3 was used to aggregate the analog weighted inputs and

implement multiplication function. In Figure 4, we showed that transcriptional interference can

also be used to aggregate inputs acting as division with negative weights.

The third step in the design of neuromorphic gene circuits is to add an activation function that

converts the analog pattern of the multiple inputs into a non-linear function for performing analog

(D) (E)

116

classification. This can be achieved by wiring the output of the multiplication circuit with an

activator and promoter to regulate the perceptgene output.

In our neuromorphic genetic circuits, controlling the bias is perhaps easier than controlling the

weights. The bias is determined by the ratio between the maximum protein expression level of the

power-law/multiplication circuit output and the dissociation constant of transcription factor

binding to DNA. The maximum protein expression level is determined by transcription rate,

translation rate, mRNA and protein half-lives, and is given by:

Bias =
transcription rate×mRNA half life×translation rate×protein half life

dissociation constant of transcription factor binding to DNA
 (S8.5)

In this study, we use different methods to control the maximum protein level such as promoter

strength, ribosome binding site strength, ssrA degradation tag and plasmid copy number. We now

show experimentally that it is possible to readily increase the dissociation constant of a

transcription factor by controlling expression of a second biological element that competitively

inhibits the transcription factor. To this end, we use two biological systems: (1) dCas9 regulation

(Fig. S8.6), and (2) protein sequestration (Fig. S8.7).

In Fig. S8.6, we show competitive inhibition of gene activation via steric hinderance binding of

DNA that is tuned by the DNA binding location of the dCas9/single guide RNA (sgRNA) complex.

This design allows us to program bias continuously by choosing different sgRNA sequences. The

dCas9 regulation system is built from two parts; a PBAD promoter that activates the target gene by

binding the Arabinose-AraC complex. The second part is the complex sgRNA-dCas9 which binds

the AraC operator, and prevents the Arabinose-AraC complex from activating promoter PBAD. The

affinity of dCas9-sgRNA complex to its binding site and ability to sterically hinder transcription

factor the promoter, control the binding dissociation constant of Arabinose-AraC complex to PBAD.

These factors, and hence perceptgene bias, can be readily controlled by building a library of

sgRNA sequences (Fig. S8.6D-E). We used Hill-function (Eq. S8.6) to estimate the effective

dissociation constant of Arabinose (𝐾𝑒𝑓𝑓):

𝐺𝐹𝑃 ∝
(
𝐼𝑛

𝐾𝑒𝑓𝑓
)

ℎ𝑒𝑓𝑓

1+(
𝐼𝑛

𝐾𝑒𝑓𝑓
)

ℎ𝑒𝑓𝑓
+ 𝐺𝐹𝑃0 (S8.6)

Where 𝐼𝑛 is the Arabinose concentration. In order to evaluate the bias based on the changes of

dissociation constant, we fit a model that includes induction and activation to our experimental

results. Such model can be given by:

𝑃 =
(
𝐼𝑛𝐴

𝐾𝑑
)
𝑛

+𝛽

1+(
𝐼𝑛𝐴

𝐾𝑑
)
𝑛 (S8.7.1)

𝐼𝑛𝐴 = 𝐴𝑚𝑎𝑥 ∙
(
𝐼𝑛

𝐾𝑚
)
ℎ

1+(
𝐼𝑛

𝐾𝑚
)
ℎ (S8.7.2)

Where 𝐾𝑑 is the binding dissociation constant of inducer-activator (Arabinose-AraC) complex

(𝐼𝑛𝐴) to promoter, 𝛽 is the promoter basal level, 𝐾𝑚 is the binding dissociation constant of inducer

(Arabinose) to activator (AraC), 𝐴𝑚𝑎𝑥 is the activator maximum level achieved by promoter, and

ℎ is Hill-coefficient of inducer. In this simple model, the bias is defined as 𝐵 = 𝐴𝑚𝑎𝑥/𝐾𝑑.

117

Fig. S8.6. (A) A percentgene with a constant input value of 1, allowing analysis of the activation

function’s programmable bias. PBAD promoter serves as the activation function, and the

AraC/Arabinose complex is an analog signal that modulates bias. (B) High level circuit

schematics. The design is based on competitive inhibition of gene expression via a tunable

dCas9/sgRNA complex. The sgRNA sequence determines the affinity of dCas9/sgRNA binding

to AraC operator, and hence can modulate bias by preventing AraC/Arabinose activation of PBAD,

which results in an increase of the AraC/Arabinose dissociation constant. (C) Genetic circuit

implementation. AraC, dCas9 and sgRNA are constitutively expressed by P𝑙𝑎𝑐𝑂, P𝑡𝑒𝑡𝑂 and P𝐽231119

promoters. PBAD promoter is encoded on a low-copy-number plasmid (LCP), dCas9 is encoded on

a high-copy-number plasmid (HCP), and sgRNA is encoded on a medium-copy-number plasmid

(MCP). (D) Experimentally measured transfer functions for three circuit variants encoding two

different sgRNA sequences and a control (purple; without sgRNA and dCas9). SG6 targets the

middle of PBAD promoter, while LKsg3’s target is at the end of the promoter.

SG6: GACGCTTTTTATCGCAACTC; LKsg3: TTTTTTTGGGCTAGCGAATT. The dotted lines are Hill-

function fittings. 𝐾𝑚 = 90 𝑚𝑀, ℎ = 1.5, 𝛽 = 0.035, 𝑛 = 1 . (E) Arabinose dissociation

constant and bias (inset) for all three circuit variants. 𝐵𝑖𝑎𝑠 = 𝐴𝑟𝑎𝐶𝑚𝑎𝑥/𝐾𝑑 , where 𝐾𝑑 is the

dissociation constant of AraC/Arabinose complex, 𝐴𝑟𝑎𝐶𝑚𝑎𝑥 is the maximum AraC produced.

In Fig. S8.7, we demonstrate small molecule control of transcription factor sequestration (48) via

protein-protein interactions. This design allows us to continuously program perceptgene bias using

two heterologous proteins (ExsA and ExsD) where ExsA transcriptional activator is sequestered by

ExsD into an inactive complex. Arabinose-AraC regulates the expression of ExsA that activates

GFP output expression. aTc induces expression of anti-activator ExsD, which inhibits ExsA gene

activation. Hence, the extent of the ExsA/ExsD protein-protein interaction and resultant

perceptgene bias is controlled by aTc. We used Hill-function (Eq. S8.6) to estimate the effective

dissociation constant of Arabinose and set of equations Eq. S8.7.1-2 to estimate the bias.

1

∏

gfp

Arab-AraC

AraCmax

Kd
()

n

GFP

Arab

AraC

sgRNA

dCas9

(A) (B) (C)

(D) (E)

118

Fig. S.8.7. (A) A percentgene with a constant input value of 1, allowing analysis of the activation

function’s programmable bias. Pexs promoter serves as the activation function and the

AraC/Arabinose complex is the analog signal. aTc level controls the activation function bias. (B)

High level circuit diagram. The design is based on protein sequestration where ExsD shunts ExsA

from activating GFP expression. This sequestration increases the dissociation constant of ExsA

promoter binding and hence modulates bias. (C) Genetic circuit implementation. The ExsD- ExsA

interaction that is used to regulate the activation function bias and is controlled via aTc. The

AraC/Arabinose complex regulates expression of the ExsA activator. The TetR/aTc complex

regulates expression level of anti-activator ExsD, which binds ExsA and inhibits its activation of

Pexs promoter. AraC and TetR are constitutively expressed. Pexs promoter is encoded on HCP

while the other promoters are encoded on MCP. (D) Experimentally measured Arabinose transfer

functions under different aTc conditions. The dotted lines are Hill-function fittings, 𝐾𝑚 = 9 𝑚𝑀,
ℎ = 1.5, 𝛽 = 0.035, 𝑛 = 1. (E) The Arabinose dissociation constant and relative bias (inset) as

a function of aTc.

Introducing random mutations to operator sequence of transcription factor can also be used to

control the weights and bias. Fig. S8.8 describes modulations of transcription factor LuxR’s DNA

binding affinity via changes in Lux operator sequence. We introduced 7 random mutations into the

first four nucleotides of the LuxR binding site. In order to precisely calculate the Hill-coefficient

and effective dissociation constant, we simultaneously measured the activity of the Plux promoters

using GFP signal and measured the activity of the host cell using constitutive mCherry signal for

each AHL level (Fig. S8.8A). With our open loop circuit topology, we experimentally measured

1

∏

gfp

Arab-AraC

AraCmax

Kd
()

n aTc

(C) (A) (B)

(D) (E)

119

Hill-coefficient values ranging essentially continuously between 0.4 and 1 with a step of 0.1 (Fig.

S8.8B and C). The AHL input weight is derived from the Hill-coefficient. Indeed, the input weight

is the same as the Hill-coefficient when the basal level is very low, because both are equal to the

slope at the log-log scale.

As we showed above, while the negative feedback can reduce the Hill-coefficient, here we show

that positive feedback can increase the Hill-coefficient. This result matches other efforts that

utilized auto-positive feedback (APF) to produce a sharp threshold in the response of inducer-

promoter activity (49). Fig. S8.9 represent the experimental results of open and auto-positive

feedback loops, from Fig. S2.13 at the logarithmic scale. The Hill-coefficient values were doubled

when auto-positive feedback was used compared to open loop. We then incorporated other six Lux
operator mutants into a Lux response circuit with positive feedback regulation, and obtained Hill-

coefficient values ranging between 1.1 and 2 and computed weights between 0.75 and 1.7 (Fig.

S8.10).

Fig. S8.8. (A) Circuit design for open loop followed AHL induction. LuxR is constitutively

produced. LuxR/AHL binds Lux operator mutants within Plux promoter and activates GFP

expression. (B) Experimentally measured AHL-GFP transfer functions of the Lux operator mutants

used to determine Hill coefficients of the AHL input. (C) Experimental data shows that random

mutations in the first four bases of the Lux operator result in an essentially continuous range of

Hill-coefficients throw AHL input and AHL input weights. The dotted lines are Hill-function

fittings.

Fig. S8.9. Hill coefficients for a modified circuit that encodes auto-positive feedback regulation

(APF), where LuxR is expressed by the same mutated Plux promoters. (A) The construction of

open loop (OL) and APF circuits based on Plux promoter. (B) The construction of OL and APF

circuits based on mutated Plux promoter (PluxM56). (C) Measured transfer functions of multiple

circuits, dots are experimental data, and dashed-line is a Hill function fitting with the below

parameters (See Fig. S2.13):

(C)
(A)

(A)

(B)

(B) (C)

120

OL circuit – Wild type Plux: 𝐾 = 30,𝑚𝑒𝑓𝑓 = 1, 𝑎 = 25 × 10
3, 𝑏 = 600

APF circuit – Wild type Plux: 𝐾 = 7,𝑚𝑒𝑓𝑓 = 2, 𝑎 = 30 × 10
3, 𝑏 = 800

OL circuit – Mutated PluxM56: 𝐾 = 500,𝑚𝑒𝑓𝑓 = 0.3, 𝑎 = 5 × 10
3, 𝑏 = 100

APF circuit – Mutated PluxM56: 𝐾 = 500,𝑚𝑒𝑓𝑓 = 0.5, 𝑎 = 30 × 10
3, 𝑏 = 100

Fig. S8.10. (A) Circuit design for positive feedback AHL. LuxR is regulated by the mutated PluxM

promoter. LuxR/AHL binds mutant Lux operators within promoter PluxM and activates LuxR

expression, and also LuxR/AHL binds wild type Lux operators within promoter Plux and activates

GFP expression. (B) Experimentally measured AHL-GFP transfer functions of the Lux operator

mutants used to determine the AHL input Hill coefficients. (C) Experimental data shows that

random mutations in the first four bases of the Lux operator, resulting in an essentially continuous

range of AHL input Hill-coefficients and AHL input weights. The dotted lines are Hill-function

fitting.

So far, we showed theoretically and experimentally that biological factors and design topologies

determine weights and biases in our neuromorphic circuits. To provide a better view of design

principles for neuromorphic gene circuits, we summarize and show below other examples (Table

S8.1). Remarkably, we conclude that the same biological mechanism can be used to tune the bias

and also to implement power law circuit. The table S8.1 starts with auto-negative feedback (ANF)

loops (P1, P2), a dual repression node (P1/2), and feedforward loop (P𝑧). The analog signal (Y) is

represented by the activity of the dual repression node. The elements P1 and P2 are self-regulated

and negatively induced by the inputs In1 and In2 respectively. The analog signal (Y) is combined

with a nonlinear function to produce the output 𝑍 . This design has positive weights and is

experimentally implemented using genetic components, as shown in Fig. 1. The design includes

ANF loops consist of promoters that are regulated by repressors (R1, R2), (2) the inputs In1 and

In2 are small molecules that inhibit the repressors activity, (3) the dual repression node is

implemented by combinatorial promoter, and is also regulated by R1 and R2 and (4) the nonlinear

activation function is realized by the regulation of the activator 𝑌 to P𝑧 promoter. Our simulation

results (Table S8.1A) show that the output of the combinatorial promoter can be described by the

analog pattern at the logarithmic domain (𝑙𝑜𝑔(𝑌) = 𝑛1 ∙ 𝑙𝑜𝑔(𝐼𝑛1) + 𝑛2 ∙ 𝑙𝑜𝑔(𝐼𝑛2) + 𝐶𝑜𝑛𝑠), and

the activator 𝑌 with P𝑧 promoter convert this analog behavior to non-linear pattern with two states,

asymptotically. Essentially, the circuit makes a decision based on collective interaction of

transcription factors with analog behavior through their binding to a combinatorial promoter. Table

S8.1B shows our design to implement a perceptgene with negative weights. This design is slightly

similar to the previous one, where P1 and P2are replaced by activation-repression (hybrid) nodes.

Such nodes are directly activated by the inputs (In1 and In2) and self-repressed. We can implement

(A) (B) (C)

121

the activation-repression nodes in living cells using combinatorial promoters that are regulated by

activators and repressors. The inputs can be small molecules or transcription factors. Table S8.1C

shows our third design and it implements a perceptgene with negative and positive weights. This

design is based on the previous design. Specifically, the dual repression node that regulates the

collective analog signal (𝑌)was replaced by an activation-repression (hybrid) node. Perceptgenes

can also be implemented by other biological mechanisms. For example, Table S8.1D shows that a

perceptgene with negative and positive weights was implemented by protein sequestration, where

activator and anti-activator pair is involved. Other examples are shown in Table S8.1E where a

binding interaction between two sub-proteins can occur (45), and Table S8.1F where

phosphorylation and dephosphorylation reactions in two-component signaling system (50) are

involved. Lastly, antisense transcription (40), which occurs counter to gene orientation, can also

be applied to implement a power-law function with a positive and negative weights (Table S8.1G).

(A) Positive- weight perceptgene based dual repression system

Schematic

design

Schematic

block

Genetic design Mathematical model at

steady state

Simulation results

(B) Negative-weight perceptgene based dual repression

Schematic

design

Schematic

block

Genetic design Mathematical model at

steady state

Simulation results

Y =
𝛼Y ∙ 𝜏

1 + (
𝑅1
𝐾𝑑1
)
𝑛1

+ (
𝑅2
𝐾𝑑2
)
𝑛2

+ (
𝑅1
𝐾𝑑1
)
𝑛1

∙ (
𝑅2
𝐾𝑑2
)
𝑛2

𝑅𝑖 =
𝑅𝑇𝑖

(1+(
𝐼𝑛𝑖
𝐾𝑚𝑖

)
ℎ𝑖
)

 𝑅𝑇𝑖 =
𝛼R∙𝜏

1+(
𝑅𝑖
𝐾𝑑𝑖
)
𝑛𝑖

Z =
𝛼Z ∙ 𝜏 ∙ ((

𝑌
𝐾𝑑
)
𝑚

+ 𝛽)

1 + (
𝑌
𝐾𝑑
)
𝑚

𝐾𝑚𝑖 = 1, ℎ𝑖 = 1.5, 𝛼R ∙ 𝜏=300, 𝐾𝑑i = 1,
𝑛i = 1, 𝑚 = 2.5, 𝛼Y ∙ 𝜏=100, 𝐾𝑑=30, 𝛽 =0.01

Y =
𝛼Y ∙ 𝜏

1 + (
𝑅1
𝐾𝑑1
)
𝑛1

+ (
𝑅2
𝐾𝑑2
)
𝑛2

+ (
𝑅1
𝐾𝑑1
)
𝑛1

∙ (
𝑅2
𝐾𝑑2
)
𝑛2

Z =
𝛼Z ∙ 𝜏 ∙ ((

𝑌
𝐾𝑑
)
𝑚

+ 𝛽)

1 + (
𝑌
𝐾𝑑
)
𝑚

𝑅𝑖 =
𝛼R∙𝜏

1+(
𝑅i
𝐾𝑑i
)
𝑛i

 ∙
((

𝐼𝑛𝑖
𝐾𝑚𝑖

)
ℎ𝑖
+𝛽i)

1+(
𝐼𝑛𝑖
𝐾𝑚𝑖

)
ℎ𝑖

𝐾𝑚𝑖 = 100, ℎ𝑖 = 1.5, 𝛼R ∙ 𝜏=300, 𝐾𝑑i = 1,
𝑛i = 1, 𝑚 = 2.5, 𝛼Y ∙ 𝜏=100, 𝐾𝑑=30, 𝛽 =0.01

122

(C) Perceptgene based hybrid activation-repression system

Schematic

design

Schematic

block

Genetic design Mathematical model at

steady state

Simulation results

(D) Perceptgene based protein sequestration system

Schematic

design

Schematic

block

Genetic design Mathematical model at

steady state

Simulation results

(E) Perceptgene based fusion protein system

Schematic

design

Schematic

block

Genetic design Mathematical model

at steady state

Simulation results

Z =
𝛼Z ∙ 𝜏 ∙ ((

𝑌
𝐾𝑑
)
𝑚

+ 𝛽)

1 + (
𝑌
𝐾𝑑
)
𝑚

𝑅𝑖 =
𝛼R∙𝜏

1+(
𝑅i
𝐾𝑑i
)
𝑛i

 ∙
((

𝐼𝑛𝑖
𝐾𝑚𝑖

)
ℎ𝑖
+𝛽i)

1+(
𝐼𝑛𝑖
𝐾𝑚𝑖

)
ℎ𝑖

Y =
𝛼Y ∙ 𝜏 ∙ ((

𝐴1
𝐾𝑑𝑎1

)
𝑛1

+ 𝛽)

1 + (
𝐴1
𝐾𝑑a1

)
𝑛1

+ (
𝑅2
𝐾𝑑2
)
𝑛2

+ (
𝐴1
𝐾𝑑a1

)
𝑛1

∙ (
𝑅2
𝐾𝑑2
)
𝑛2

𝐴1 = 𝑔1 ∙ 𝑅1

𝐾𝑚𝑖 = 100, ℎ𝑖 = 1.5, 𝛼R ∙ 𝜏=300, 𝑔1=1, 𝐾𝑑i = 1

𝑛i = 1, 𝑚 = 2.5, 𝛼Y ∙ 𝜏=200, 𝐾𝑑a1=5, 𝐾𝑑=30,

𝛽 =0.01

𝑅𝑖 =
𝛼R∙𝜏

1+(
𝑅i
𝐾𝑑i

)
𝑛i

 ∙
((

𝐼𝑛𝑖
𝐾𝑚𝑖

)
ℎ𝑖
+𝛽i)

1+(
𝐼𝑛𝑖
𝐾𝑚𝑖

)
ℎ𝑖

𝑌𝑇
+ = 𝑔1 ∙ 𝑅1

𝑌𝑇
− = 𝑔2 ∙ 𝑅2

𝐶 =
𝐾𝑚𝑐 + 𝑌𝑇

+ + 𝑌𝑇
−

2
−

√(𝐾𝑚𝑐 + 𝑌𝑇
+ + 𝑌𝑇

−)2 − 4 ∙ 𝑌𝑇
+ ∙ 𝑌𝑇

−

2

𝑌+ = 𝑌𝑇

+-C 𝐾𝑚𝑐 = 𝐾−1/𝐾1

Z =
𝛼Z ∙ 𝜏 ∙ ((

𝑌+

𝐾𝑑
)
𝑚

+ 𝛽)

1 + (
𝑌+

𝐾𝑑
)
𝑚

𝐾𝑚𝑖 = 100, ℎ𝑖 = 1.5, 𝛼R ∙ 𝜏=300, 𝑔1=1,

𝑔2=15 𝐾𝑑i = 1, 𝑛i = 1,𝐾𝑚𝑐 =
10, 𝑚 = 2.5, 𝐾𝑑=3, 𝛽 =0.01

𝑅𝑖 =
𝛼R∙𝜏

1+(
𝑅i
𝐾𝑑i

)
𝑛i

 ∙
((

𝐼𝑛𝑖
𝐾𝑚𝑖

)
ℎ𝑖
+𝛽i)

1+(
𝐼𝑛𝑖
𝐾𝑚𝑖

)
ℎ𝑖

𝐴𝐷𝑇 = 𝑔1 ∙ 𝑅1 𝐵𝐷𝑇 = 𝑔2 ∙ 𝑅2

𝐶𝑜𝑚𝑝 =
𝐾𝑚 + 𝐴𝐷𝑇 + 𝐵𝐷𝑇

2
−

√(𝐾𝑚𝑐 + 𝐴𝐷𝑇 + 𝐵𝐷𝑇)2 − 4 ∙ 𝐴𝐷𝑇 ∙ 𝐵𝐷𝑇
2

𝐾𝑚𝑐 = 𝐾−1/𝐾1

Z =
𝛼Z ∙ 𝜏 ∙ ((

𝐶
𝐾𝑑
)
𝑚

+ 𝛽)

1 + (
𝐶
𝐾𝑑
)
𝑚

𝐾𝑚𝑖 = 100, ℎ𝑖 = 1.5, 𝛼R ∙ 𝜏=300,

𝑔1=1, 𝑔2=1, 𝐾𝑑i = 1, 𝑛i = 1,
𝐾𝑚𝑐 = 10, 𝑚 = 2.5, 𝐾𝑑=3, 𝛽 =0.01

123

(F) Perceptgene based two-component regulatory system

Schematic

design

Schematic

block

Genetic design Mathematical model

at steady state

Simulation results

(G) Perceptgene based antisense transcriptional regulatory system

Schematic

design

Schematic

block

Genetic design Mathematical model at

steady state

Simulation results

𝐶 =
(𝑚𝑇1 +𝑚𝑇2 + 𝐾𝑚𝑐)

2

−
√(𝑚𝑇1 +𝑚𝑇2 + 𝐾𝑚𝑐)2 − 4 ∙ 𝑚𝑇1 ∙ 𝑚𝑇2

2

Tables S8.1. Examples for neuromorphic gene circuits. The schematic design describes the

regulatory elements, the schematic block shows the mathematical operations, the genetic design

shows the genetic implementation and biological regulatory components.

In addition to our own experimental data and simulation results, previous articles have also

demonstrated the ability to modulate various properties of engineered gene circuits that are

relevant to our neuromorphic circuit engineering efforts. The engineered libraries of genetic device

variants described briefly below could be used in our neuromorphic approach to obtain essentially

continuous modulation of weights and biases:

• The Ribosome Binding Site Calculator is a tool that predicts the affinity to RNA

polymerase of synthetic ribosome binding sites in Escherichia coli, and as such enables

rational control over protein expression levels (51). This tool can be useful for

programming bias, which is directly affected by the translation rate.

• The Anderson synthetic promoter library includes more than 30 characterized promoters

with variable strength of approximately 100 fold between the weakest and strongest

(http://parts.igem.org/Promoters/Catalog/Anderson). This tool can also be useful for

𝑅𝑖 =
𝛼R∙𝜏

1+(
𝑅i
𝐾𝑑i

)
𝑛i

 ∙
((

𝐼𝑛𝑖
𝐾𝑚𝑖

)
ℎ𝑖
+𝛽i)

1+(
𝐼𝑛𝑖
𝐾𝑚𝑖

)
ℎ𝑖

𝐾𝑚𝑐 = 𝐾−1/𝐾1

𝐴𝑖 = 𝑔𝑖 ∙ 𝑅𝑖

𝑌∗ = 𝑌𝑇

𝐴1
𝐴2∙𝐾𝑚
𝐴1

𝐴2∙𝐾𝑚
+1

Z =
𝛼Z ∙ 𝜏 ∙ ((

𝑌∗

𝐾𝑑
)
𝑚

+ 𝛽)

1 + (
𝑌∗

𝐾𝑑
)
𝑚

𝐾𝑚𝑖 = 100, ℎ𝑖 = 1.5, 𝛼R ∙ 𝜏=300,

𝑔1=1, 𝑔2=1, 𝐾𝑑i = 1, 𝑛i =
1, 𝑌𝑇 = 100, 𝐾𝑚𝑐 = 10, 𝑚 = 2.5,
𝐾𝑑=30, 𝛽 =0.01

𝑅𝑖 =
𝛼R∙𝜏

1+(
𝑅i
𝐾𝑑i

)
𝑛i

 ∙
((

𝐼𝑛𝑖
𝐾𝑚𝑖

)
ℎ𝑖
+𝛽i)

1+(
𝐼𝑛𝑖
𝐾𝑚𝑖

)
ℎ𝑖

𝑚𝑇𝑖 = 𝑔𝑖 ∙ 𝑅𝑖

Z =
𝛼Z ∙ 𝜏 ∙ ((

𝑌
𝐾𝑑
)
𝑚

+ 𝛽)

1 + (
𝑌
𝐾𝑑
)
𝑚

𝑌 = 𝑚𝑇1 − 𝐶

𝐾𝑚𝑖 = 100, ℎ𝑖 = 1.5, 𝛼R ∙ 𝜏=300,

𝑔1=1, 𝑔2=1, 𝐾𝑑i = 1, 𝑛i = 1,
𝐾𝑚𝑐 = 10, 𝑚 = 2.5, 𝐾𝑑=3, 𝛽 =0.01

𝑚1 +𝑚2 ↔ 𝐶

http://parts.igem.org/Promoters/Catalog/Anderson

124

programming bias, which is directly affected by the transcription rate. Another synthetic

promoter library was also published around the same time (52).

• The Weiss TALER library includes 26 programmed transcriptional repressors that bind

synthetic combinatorial promoters in mammalian cells (53). With TALE modular protein

construction, any DNA sequence can be targeted, leading to an essentially limitless design

search space (with a usable length of anywhere between 14 and 26 DNA bases for TALER

binding). The library elements have an approximately 2 orders of magnitude difference in

repression folds from around 20 to greater than 103 leading to different Hill coefficients

and hence different input weights. Promoter engineering by inclusion of two versus four

TALER binding sites increased fold repression by five and ten fold for TALER21 and

TALER14 respectively.

• The Voigt repressor library includes 16 orthogonal TetR -family repressors and their

cognate promoters. Each repressor/promoter pair’s transfer function has been

characterized. The measured Hill coefficients range between 1.5 and 6.5, with fold changes

between 1-2 orders of magnitudes (54). This tool can be useful for programming input

weights.

• A recent effort in Escherichia coli has demonstrated several inducible synthetic promoters

with varying ligand-promoter activity transfer functions. The synthetic promoters are

regulated by TtgR, PmeR and NalC and are induced by phloretin, Naringenin, and PCP,

receptively (55). This tool can be useful for programming input weights similar to Fig.

S8.8.

• The Riboswitch Binding Sequence Calculator predicts ligand induced gene activation of

riboswitch sequences using a physics based model. Then, computational design with this

tool is used to create a library of 62 different synthetic riboswitches with activation fold of

up to 383x (56). This tool can be useful for programming weight and bias.

• A library of LuxR transcription factors were developed (57). AHL -dependent

transcriptional activation can be selected to meet design specifications. This tool can be

useful for programming input weight similar to Fig. S8.8.

• A library with 238 member of tunable control for protein degradation in bacteria were

developed (58). This tool can be useful for programming bias, which is directly affected

by the protein half-life.

• A library of antisense constitutive promoters was developed (40) . Every member of the

library includes a target gene that is regulated by a repressor and by another promoter that

is oriented opposite to the target gene. The library includes 5,668 terminator–promoter

combinations that was used to control the expression of three repressors (PhlF, SrpR, and

TarA). Such design can be used reliably to tune gene expression level and control small

molecules' dissociation constant. This tool can be useful for programming bias.

Other methods to alter the dosage response curves of genetic regulation elements have also been

published, and these could also be used to modulate weight and bias in neuromorphic circuits:

• Landry et al. 2018 developed a two-component signaling system that can dynamically tune

the dissociation constant of small molecules. This system can be used to control bias (59).

125

• Segall-Shapiro et al. 2014 split T7 proteins into several parts and changed cooperativity.

This method can be used to control the weights for inputs and activation functions (22).

• Morel et al. 2016 introduced extra binding sites into promoters and changed cooperativity.

This method can be used to control input weight (60).

We also analyzed the properties of common synthetic biological parts, including weights for some

of the parts used in this manuscript (Fig. S8.11A) and Hill coefficients for devices that were

previously published (Fig. S8.11B) providing another source of parts with desired weights and

Hill-coefficients for small molecules and transcription factors.

Fig. S8.11. (A) Hill coefficient values of small molecules that are used in this study. (B) Hill

coefficient values of transcription factors that are used in Stanton et al. 2014 (54).

In summary, there are many methods to control the weights and biases, these include

transcription factor binding sites, operator mutations, and T7 RNA polymerase mutations.

With respect to LacI regulation of a promoter via the number of binding sites, there is a

practical limit on the number of binding sites that can be used in a single promoter. As such,

the number of binding sites in a single promoter only represents one coarse grain ‘knob’ for

tweaking weights. The example of T7 RNA polymerase is also coarse-grained. The power

and flexibility come from combining such coarse-grain approaches with others that provide

more fine-grain tuning (e.g., operator sequence mutations). For the operator mutations, we

show experimentally seven different weights with good coverage of the desired range and

support the feasibility of obtainingnear-continuous control (Fig. S8.8). Importantly, we show

experimentally that replacing the open-loop control with closed loop feedback control shifted

the range of weights from 0.25-0.80 to 0.75-1.70 (Fig. S8.10). This is an example of how coarse

grain and fine grain control can be used synergistically to obtain desired weights. In terms

of additional control, other synergistic approaches mentioned above include Hill coefficients

of small molecule inducers that serves as perceptgene inputs, transcription factors that

competitively inhibit expression via steric hinderance, regulation of negative feedback

strength, transcription factor sequestration via protein-protein interactions, protein

structure (e.g., dimerization and cooperativity), and circuit topology. As such, optimization

and reconfiguration of neuronal circuit function is not solely dependent on the success or

failure of any particular approach. These approaches can be mixed and matched, and the

impact on the cost function can be then observed in order to further refine neuronal circuit

behavior. Clearly, at the moment, these modulations are not as easy to manipulate as, for

example, modifying weights in a computer simulation of neuronal circuits.

0

1

2

3

4

5

6

7

T
7

H
ap

R

Q
ac

R

A
m

e
R

M
cb

R

la
cR

(A
)

A
m

tR

Ta
rA

Li
tR

Sm
cR

P
sr

A

B
e

tl

B
u

tR

Sc
b

R

H
lly

llR

Lm
rA

Sr
p

R

B
M

3
R

1

O
rf

2

H
ill

-C
o

e
ff

ic
ie

n
t

o
f

tr
an

sc
ri

p
ti

o
n

 fa
ct

o
rs

(A) (B)

126

Scaling and optimization of neuromorphic circuit based on using design principles from analog

and digital computation (Supplementary Information, Sections 5 and 7), fuzzy computation

(Supplementary Information, Sections 3 and 4), algorithms from ANNs as gradient descent and

backpropagation (Supplementary Information, Section 6), and modules that were developed in the

neuromorphic field such as Hopfield networks (61). Here we provide another example to design

2-Bit Full adder based on neuromorphic design. We start by presenting the truth table of our circuit

(Table S8.2):

In1 In2 Cin In2+Cin Sum Cout

0 0 0 0 0 0

0 0 1 1 1 0

0 1 0 1 1 0

0 1 1 2 0 1

1 0 0 0 1 0

1 0 1 1 0 1

1 1 0 1 0 1

1 1 1 2 1 1

Table S8.2. Truth table of 2-bit Full Adder.

As shown in the Table S8.2, the Cout output displays “1” if and only if the majority of the inputs

are “1”, and displays “0” if and only if the majority of the inputs are “0”. Such function is called

3-input majority and is implemented in this study (Figure 3, Supplementary Information, Section

5). The implementation of Sum output of 2-bit Full adder is more complex depending on the design

roles (e.g., the input numbers of single perceptgene). According to the truth Table S8.2, when the

input In1 is “0”, the summation of In2 and C𝑖𝑛 inputs can be encoded to band-pass filter circuit

(BPF), and when the input In1 is “1” the summation of In2 and C𝑖𝑛 inputs can be encoded to NOT-

BPF (NBPF). Our 2-bit Full adder comprises BPF, NBPF and 2-1 multiplexer (Fig. S8.12A). A

NBPF circuit is an inverted BPF circuit, which means, a high output results if and only if the input

level is very low/high, and low output results for intermediate levels of input. The implementation

of BPF is shown in Supplementary Information, Section 7, and it includes two cascaded

perceptgenes that one inhibits the other (Fig. S8.12B). By wiring the output of BPF with an

inhibitor, one can simply implement the NBPF. The 2-1 multiplexer selects between the BPF and

NBPF output signals and forwards it to Sum output (Fig. S8.12C). In our design, the In1 acts as a

selector and the outputs of BPF and NBPF are the data signals which are forwarded to the Sum

output. The operation of Multiplexer can be described as 𝑢{𝑍𝐵𝑃𝐹 ∙ (1 − 𝐼𝑛1)} + 𝑢{𝑍𝑁𝐵𝑃𝐹 ∙ 𝐼𝑛1},
where u is the sigmoid function. Fig. S8.12D shows a digital design of 2-bit Full adder which

include 6 AND gates, 3 OR gates, and 2 NOT gates. According to the assumption that each 2-input

logic gate can be implemented only by 2 transcription factors, we get that neuromorphic design

requires 9 transcription factors while the digital design requires 20 transcription factors. Notably,

that 2-bit Full adder can be implemented with other biological parts (62) than transcription factors,

which might require fewer components.

127

Fig. S8.12. (A) Design of 2-bit Full adder. (B) Design of band-pass (BFP) filter circuit BPF, NOT-

BPF (NBPF) and 2-bit Multiplexer. (C) Truth table of 2-bit Multiplexer. (D) Digital design of 2-

bit Full adder.

In

0

ZBP

F

ZNBP

F

Su

m

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

(B) (C)

(D)

(A)

128

9. Dynamic Measurements of Neuromorphic Genetic Circuits

We characterized the dynamics of perceptgenes implementing the power-law and multiplication

function and the average function, as well as the multi-layered 2-bit ADC. These experiments

monitor the progress of circuit output at multiple time points (4.5, 7, 8.5 and 10 hours). In general,

circuit output is quite stable across all of these time points (Fig. S9.1, Fig. S9.3, and Fig. S9.4).

The maximum and minimum levels of the LSB and MSB circuit in the multi-layered 2-bit ADC

across all input dosages reach approximately 2/3 of their highest values after 4.5 hours (Fig. S9.5).

These levels gradually increase until they reach their peak at 8.5 hours and then decreases back to

about 2/3 of the maximum at 10 hours. Importantly, the input levels where LSB and MSB outputs

transition between low and high levels are consistent across all time points (Fig. S9.6). Therefore,

at all time points measured the ADC continues to properly convert AHL input concentration levels

to the appropriate four output states [0,0], [0,1], [1,0] and [1,1]. Similar dynamic behavior is

observed for the average circuit and power-law and multiplication circuit (Fig. S9.1 and Fig. S9.3).

The dynamics of our circuits are mainly determined by the characteristics of the synthetic parts

and the regulatory topologies. The synthetic parts we use are based on parts that have been

extensively characterized in the literature. The regulatory topologies that govern the behavior of

our circuits include cascades, feed-forward, and feedback motifs – again, motifs that frequently

occur in synthetic biology. by definition, we expect that the dynamics of our neuromorphic circuits

are roughly the same as existing digital and analog circuits using similar synthetic parts and motifs

(4, 6, 16), e.g., response times in few hours.

Time-course experiments were performed on perceptgene for computing power-law and

multiplication function (Fig. 1B and 1D), perceptgene for computing an average function (Fig. 2G

and 2I) and on ADC circuits (Fig. 4F, and 4G). E. coli strains were picked from LB agar plates

and grown overnight at 37°C, 300 r.p.m. in 5 mL of LB medium with appropriate antibiotics and

inducers (Carbenicillin (50 µg/ml), Kanamycin (30 µg/ml), Chloramphenicol (34 µg/ml)).

Overnight cultures were diluted 1:100 into 5 mL of LB medium with added antibiotics and were

then incubated at 37°C, 300 r.p.m. for 30 min. 200 µl of culture was then moved into a 96-well

plate, combined with inducers (Arabinose and AHL 3OC6HSL), and incubated in a VWR

microplate shaker at 37°C, 500 r.p.m. Once the diluted cultures grew to an OD600 of ~0.5 (~4 hours

and 30 min), 120 µl of culture was taken to a FACS machine for measurement. Simultaneously,

we performed two steps:

1. 40 µl of culture was moved into a new 96-well plate containing 200 µl of media, antibiotics,

and inducers and then incubated in a VWR microplate shaker at 37°C, 500 r.p.m. At OD600

~0.5 (after 2.5 hours), 200 µl of culture was taken to a FACS machine for measurement

and 40 µl of culture was moved into a new 96-well plate containing 200 µl of media,

antibiotics, and inducers and then incubated in a VWR microplate shaker at 37°C, 500

r.p.m. This iterative dilution, growth, and measurement process was repeated and resulted

the dynamics after 7 hours and 10 hours.

2. 20 µl of culture was moved into a new 96-well plate containing 200 µl of media, antibiotics

and inducers, then incubated in a VWR microplate shaker at 37°C, 500 r.p.m. At OD600

~0.5 (4 hours and 20 min), 200 µl of culture was taken to a FACS machine for measurement

and resulted the dynamics after 8.30 hours.

129

The experimental results of power-law, multiplication function, and average circuits

corresponding to different times are shown in Fig. S9.1 and Fig. S9.3 below shown by fitting our

experimental results to surface, the weight values are consistent over time (Fig. S9.2). The average

circuit continues to operate correctly and compute the average between two analog numbers (Fig.

S9.3).

Fig. S9.1. Raw data of time-course experiments (4.5 hours, 7 hours, 8.5 hours and 10 hours) for

perceptgene computes power-law and multiplication function (Matching Fig. 1B with PlacO/PtetO)

(A) (B)

(C) (D)

130

Fig. S9.2. Normalized data of Time-course experiments (4.5 hours, 7 hours, 8.5 hours and 10

hours) for perceptgene that computes power-law and multiplication function (A, C, E, and G).

Matlab surface fits (B, D, F, and H) the experimental results to power-law and multiplication

function 𝑙𝑜𝑔(𝐺𝐹𝑃) = 𝑐 + 𝑛3 ∙ 𝑙𝑜𝑔(𝐼𝑃𝑇𝐺) + 𝑛4 ∙ 𝑙𝑜𝑔 (𝑎𝑇𝑐).

(A) (B)

(D) (C)

(E)

(H)

(F)

(G)

131

Fig. S9.3. Dynamics of average computing circuit. (A)-(C) Raw data of time-course experiments

(4.5 hours, 7 hours and 10 hours) for perceptgene that computes the average between two analog

signals. (D)-(F) Normalized data of Time-course experiments (4.5 hours, 7 hours, and 10 hours)

for perceptgene that computes average function between two analog inputs.

The experimental results of ADC corresponding to different times are shown in Fig. S9.4 below.

The GFP signal of the ADC circuit represents the LSB output, and the mCherry signal of the ADC

circuit represents the MSB output. In the fours time points (4.5 hours, 7 hours, 8.5 hours and 10

hours) our ADC continues to operate properly and convert the AHL concentration level to four

states [0,0], [0,1], [1,0] and [1,1] (Fig. S9.5) We also compared the minimum and maximum

expression levels of GFP and mCherry at different time points (Fig. S9.6). Furthermore, we fitted

the data to an empirical model, and we found that the fitting parameters change slightly across

time (Table S9.1). The empirical model is based on Section 7 and is given by:

𝐿𝑆𝐵𝑙𝑜𝑤 =
(
𝐴𝐻𝐿

𝐾𝑚1
)
ℎ1

1+(
𝐴𝐻𝐿

𝐾𝑚1
)
ℎ1 ∙

1

1+(
𝐴𝐻𝐿

𝐾𝑚2
)
ℎ2 + 𝑏1 (S9.1)

𝐿𝑆𝐵ℎ𝑖𝑔ℎ =
(
𝐴𝐻𝐿

𝐾𝑚3
)
ℎ3

1+(
𝐴𝐻𝐿

𝐾𝑚3
)
ℎ3 + 𝑏2 (S9.2)

𝐿𝑆𝐵 =
𝐿𝑆𝐵𝑙𝑜𝑤

𝑀𝑎𝑥(𝐿𝑆𝐵𝑙𝑜𝑤)
+

𝐿𝑆𝐵ℎ𝑖𝑔ℎ

𝑀𝑎𝑥(𝐿𝑆𝐵ℎ𝑖𝑔ℎ)
 (S9.3)

𝑀𝑆𝐵 =
(
𝐴𝐻𝐿

𝐾𝑚4
)
ℎ4

1+(
𝐴𝐻𝐿

𝐾𝑚4
)
ℎ4 + 𝑏3 (S9.4)

Where 𝐾𝑚𝑖 are dissociation constants, ℎ𝑖 are Hill-coefficients, and 𝑏𝑖 are basal levels.

(A) (B) (C)

(D) (E) (F)

132

Fig. S9.4. Raw data of time-course experiments (4.5 hours, 7 hours, 8.5 hours and 10 hours) for

the ADC circuit. To enable a suitable comparison between the GFP and mCherry signals, we

scaled the measured mCherry signal by 23.

Fig. S9.5. Time course of expression levels for the ADC circuit. (A) Minimum level of GFP (LSB).

(B) Maximum level of GFP (LSB). (C) Minimum level of mCherry (MSB). (D) Maximum level

of mCherry (MSB).

(A) (B)

(C) (D)

(A)

(C)

(B)

(D)

133

Fig. S9.6. Normalized data for Time-course experiments (4.5 hours, 7 hours, 8.5 hours and 10

hours) of the ADC circuit. The dotted line corresponds to a set of equations; Eq. S9.1-4. The

average signals and standard divisions were calculated for the normalized signals. Therefore, there

is a difference in the standard deviation values compared to Fig. S9.4.

Table S9.1. Shows the time course fitting parameters (Eq. S9.1-.4) for the ADC circuit. The

empirical model is based on Section 8.

Parameter Time=4.5 hours Time=7 hours Time=8.5 hours Time=10 hours

Km1 20nM 20nM 30nM 20nM

Km2 15nM 15nM 15nM 15nM

Km3 105nM 105nM 105nM 105nM

Km4 300nM 200nM 200nM 100nM

h1 2 2 2 2

h2 2 2 2 2

h3 0.9 0.9 0.9 0.9

h4 1.5 1.5 1.5 1.5

b1 0.01 0.01 0.008 0.008

b2 0.005 0.005 0.005 0.005

b3 0.07 0.05 0.05 0.03

(A) (B)

(C) (D)

134

10. Noise Analysis in Neuromorphic Circuits

In this section, we perform the Signal-to-Noise ratio (SNR). The sensitivity analysis from Section

1 and SNR parameters can provide quantitative information for the precision and reliability of

circuits. We quantified the noise of neuromorphic circuits by further analysis of single-cell FACS

experimental data. Specifically, for each single layer perceptgene circuit (from Figures 1 and 2)

we quantified the signal-to-noise ratio for each input dosage that we tested and graphed a

corresponding SNR histogram (Fig. S10.1). These histograms show the distribution of SNR

exhibited by each of the circuits. The general observation is that the power law and multiplication

circuits that use only auto-negative feedback for the inputs (LacI/IPTG and TetR/aTc) generally

tend to have higher SNRs than circuits that include auto-positive feedback (LuxI/AHL with either

TetR or LacI). Another observation is that the activation function (AraC) addition tends to

coalesce the SNR distributions of all three circuits to roughly the same values. Thus, activation

functions utilized in two circuits were able to increase the SNR.

Fig. S10.1. Signal-to-Noise ratio (SNR) analysis of perceptgene units (Fig. 1 and 2 in the main

text). (A) SNR analysis for power-law and multiplication circuits. The circuit with only negative

feedback (via LacI and TetR) exhibits improved SNR over the other two circuits that contain a

positive feedback motif (via LuxR). (B), (C) and (D) SNR analysis for perceptgene with activation

functions computes smooth minimum, maximum and average functions, respectively.

(A) (B)

(C) (D)

135

11. Benefits of log-based ANNs computing

In electronics, ANNs outperform the conventional computing paradigms (e.g., digital and

analog) in a variety of settings (such as classification and signal processing (63–67)) owing to

their collective resilient properties. ANNs perform efficient execution of complex functions

by utilizing a low number of components similar to analog design and producing reliable

results similar to digital circuits (e.g. majority function, supplementary information, Section

5, ADC, Supplementary information, Section 7). Implementing ANNs in a biological setting

requires an important change to obtain the same performance benefits. Specifically, using

logarithmic rather than linear functions is often more appropriate for describing

biochemical reactions in gene regulation (e.g., Hill Functions that describe dosage response

curves, Weber’s law (4, 49, 68)). The use of logarithmic functions for ANNs places particular

requirements on properties of gene regulatory elements in terms of their Hill coefficients,

basal and maximal protein expression levels, and transcription factor dissociation constants.

These requirements can be met ‘easily’. Furthermore, we have shown that common

biochemical reactions can be simply converted to perceptgene units (Design principles of

neuromorphic circuits, Supplementary Information, Section 8).

In comparison, a linear genetic implementation would have been based on less reliable parts,

for example, we have shown in Section 1 that computation based on the perceptron requires

an activation function with a very high Hill-coefficients (>2.5). Such values are very

challenging to obtain in synthetic and natural biological systems. Therefore, linear-based

ANNs computing would place much more stringent requirements on gene regulatory

elements' properties and necessitated a more complex design to achieve the same

performance. Furthermore, the logarithmic domain is also more appropriate for attenuating

the effects of typical fluctuations in protein expression levels. Subsequently, it provides a

more resistant platform for neuromorphic computing in a gene regulation context. The

essence here is the reliance on fold-change regulation, as opposed to absolute-change

regulation, with the former being more appropriate for genetic circuits (as previously

articulated in the community, e.g., by Uri Alon (69)).

136

12. Comparing neuromorphic computing with digital and analog computing

Our selection of circuits to design and build was based on two guidelines:

1. To prove that, for the first time, neuromorphic computing principles can be achieved in

single living cells by transforming concepts from neural networks to genetic regulatory

networks.

2. To construct synthetic gene circuits that perform complex computation with minimal

requirements in computational devices and host cell resources.

Three of the circuits we decided to build, min/max/avg, are fundamental building blocks for

neuromorphic computing. The other three, majority / 2-bit ADC / ternary switch, demonstrate

multi-layered neuronal circuits.

In terms of appreciating the min/max/avg functions, it is essential to recognize that to the best of

our knowledge, only “hard” (i.e., discrete) minimum and maximum functions have been

demonstrated in synthetic biology. Complicated functions operate using binary AND/OR logic,

where each bit has two logic states. In terms of these complicated functions, AND implements

binary min, while OR implements binary max. The average function cannot be implemented with

an individual single-bit binary logic gate but would instead require digitization of input and output

signals and very complex multi-device logic. In sharp contrast, soft functions operate in the analog

domain. Our single perceptgenes implement single-device analog min/max/avg computations

whereby the single devices transform analog input signals into output values that remain in the

analog domain. These operations have not been demonstrated in synthetic biology!

Our multi-layer functions also represent significant progress over existing efforts in synthetic

biology. Our majority function (1) demonstrates neuromorphic modularity because the three-input

majority function is built from two-layer perceptron and (2) allows us to compare the properties

of neuromorphic design with digital design. Our three-input majority function has two main

advantages over the previous digital design (6): (1) We use fewer synthetic parts; our three-bit

majority function comprises 15 biological parts (i.e., promoters and genes) in comparison to 22

parts, (2) the neuromorphic circuit is reconfigurable and trainable via learning algorithms that

optimize desired behavior efficiently (e.g., reduce error). With this neuromorphic architecture, we

minimized error by modulating the weight of PBAD/AraC in a manner similar to backpropagation

algorithm. This optimization approach could not have been performed for the existing digital

circuit design.

Our other two multi-layer neuromorphic circuits also provide innovation beyond existing

approaches. To the best of our knowledge, we are the first to demonstrate a 2-bit analog-to-digital

converter (ADC). In general, analog-to-digital converters take as input a graded signal, partition

the analog input into several consecutive ranges that cover the entire input range, and assign a

digital value to these ranges in a sequential manner. Representing this digital value requires

multiple bits if more than two regions are specified. A 1-bit ADC partitions the input range into

two, and the output is then a single bit with a value of either 0 or 1. A 2-bit ADC partitions the

input range into four, with an output that requires two bits representing each of the four consecutive

ranges, namely 00, 01, 10 and 11.

Two recent synthetic biology publications have discussed the notion of analog-to-digital

converters. In one publication (70), 1-bit analog-to-digital conversion was used to quantize

extracellular inputs (including dihydrojasmone and eugenol) each into single-bit values, and then

these were combined into several 2-input logic functions (AND, OR, NOR) still operating with

single bit output. In another recent publication (46), a single analog input (H2O2) was partitioned

137

into three consecutive ranges, and three separate 1-bit outputs (GFP, RFP, and BFP) were used to

indicate which of three ranges was detected. Hence, one of these digital outputs is high for a given

analog input value while the other two are low. In conventional ADC circuit design, these three 1-

bit outputs are then combined via a second stage digital logic circuit (comprising three 2-input

logic gates: one XOR and two AND gates) to create a 2-bit digital representation of the analog

input signal. Hence, this work represents only the first stage of a 2-bit ADC, but not the second

stage. In terms of biological circuit elements, they used seven transcription units. We estimate that

it would require 6-8 additional transcription units to implement their second stage of the 2-bit

ADC, which would require a total of 15 transcription units if it was built. In comparison, ours is

a fully functional 2-bit ADC implemented using only five transcription units. Besides minimizing

the size of the circuits, our perceptgene networks also operate with low expression levels, mainly

in order to maintain low bias levels. In contrast, digital systems often attempt to operate with

significant noise margins, and hence high expression levels for ON values. This latter point is

further elaborated on in the main narrative.

The implementation of our third multi-layered neuromorphic circuit, the ternary switch,

demonstrated the ease of converting one neuromorphic computing to another. Specifically, we

started with the 2-bit ADC circuit and increased the LSB perceptgene activation using higher

Arabinose, which corresponds to increasing the MSB input weight into the LSB computation.

Such ease in changing neuronal network parameters and achieving new functions is an important

component for ultimately implementing learning algorithms using gene circuits.

138

13. Potential Applications of Synthetic Neuromorphic Circuits

For example, a three-input majority function can be fitted to any logic gate with up to three inputs,

including the two-input AND gate (71, 72), and optimized in applications currently suffering from

a trade-off between specificity and sensitivity. Typically, synthetic gene circuits for disease

treatment must be highly sensitive to detect biomarkers and deliver the produced therapeutic

proteins to target cells and must be precisely specified to protect surrounding healthy cells (60).

Ternary converters may also be helpful in engineering cells whose therapeutic outputs are

connected in a closed-loop and are regulated by quantitative levels of disease biomarkers. While

circuits behave either in an analog manner, showing insensitivity to disease biomarkers, or in a

digital manner, in which they are quantized to a single level of therapeutic proteins, ternary

converters with feedback loops can settle at two saturated levels and can precisely adjust the

production of the therapeutic proteins (e.g., adiponectin which attenuates insulin-resistance

syndrome (73)) to the level required for disease management. Furthermore, data converters may

find applications in biotechnology either by coordinating the expression of several genes, using a

single inducer or by improving the production yield of the desired biomass in synthetic pathways,

using a three-state genetic switch. For example, engineered cells that produce quorum-sensing

signals (AHL) and contain a ternary converter, could have multilevel phases, dictated by

accumulated AHL levels in the bioreactor. These phases could efficiently optimize the production

rate versus the cell growth rate compared to the two-state switch (74).

Another example is that the next-generation therapeutic-based synthetic gene circuits can be self-

controlled once administered, replacing the need for exhaustive manipulation by a manually

customized, trial-and-error clinical design. Recently, the design cycle of bioproducts has driven

the set-up of laboratory automation, foundries (e.g., robotics) and information infrastructures (75)

using ‘design, build, test, learn and correct’ heuristics. We expect that adaptive genetic circuits

will significantly standardize this cycle, drastically reduce time-to-market and cost, through a

generic methodology, using training algorithms suitable for general purpose applications.

Fig. S13. proposed an efficient and reliable computing platform, which combines analog, a

perceptgene network, and digital memory for sorting.

139

Fig. S13 shows the proposed platform is compatible with digital and analog computing platforms

using data converters. This complementary strategy can leverage the advantages of the three

platforms to achieve an efficient and accurate computational approach for scaling the architecture

of robust genetic networks in living cells. For instance, analog computing can be applied for front-

end calculations (e.g., ratiometric for sensory systems), perceptgene networks can be applied for

processing and computation, and digital circuits can be applied back-end data storage (memory)

with clear ON and OFF states.

140

14. FACS Data

All fluorescence intensities were smoothed using Matlab.

Fig. S14.1. GFP flow cytometry data for a population of cells containing the synthetic perceptgene

based on ANF loops (Fig. 1C). (A) IPTG was held constant at 125 μM, and aTc was varied. (B)

aTc was held constant at 50 ng/ml, and IPTG was varied.

(A)

(B)

141

Fig. S14.2. GFP flow cytometry data for a population of cells containing the synthetic perceptgene

based on ANF loops (Fig. 1C). (A) IPTG was held constant at 62.5 μM, and aTc was varied. (B)

aTc was held constant at 25 ng/ml, and IPTG was varied.

(B)

(A)

142

Fig. S14.3. GFP flow cytometry data for a population of cells containing the synthetic perceptgene

based on ANF loops (Fig. 1C). (A) IPTG was held constant at 31.25 μM, and aTc was varied. (B)

aTc was held constant at 12.5 ng/ml, and IPTG was varied.

(B)

(A)

143

Fig. S14.4. GFP flow cytometry data for a population of cells containing the synthetic perceptgene

based on ANF loops (Fig. 1C). (A) IPTG was held constant at 15.63 μM, and aTc was varied. (B)

aTc was held constant at 6.25 ng/ml, and IPTG was varied.

(A)

(B)

144

Fig. S14.5. GFP flow cytometry data for a population of cells containing the synthetic perceptgene

based on ANF loops (Fig. 1C). (A) IPTG was held constant at 7.813 μM, and aTc was varied. (B)

aTc was held constant at 3.125 ng/ml, and IPTG was varied.

(A)

(B)

145

Fig. S14.6. GFP flow cytometry data for a population of cells containing the synthetic perceptgene

based on ANF loops (Fig. 1C). (A) IPTG was held constant at 3.906 μM and, aTc was varied. (B)

aTc was held constant at 1.563 ng/ml, and IPTG was varied.

(A)

(B)

146

Fig. S14.7. GFP flow cytometry data for a population cells containing the synthetic perceptgene

based on ANF loops (Fig. 1C). (A) IPTG was held constant at 1.953 μM and aTc was varied. (B)

aTc was held constant at 0.783 ng/ml and IPTG was varied.

(B)

(A)

147

Fig. S14.8. GFP flow cytometry data for a population of cells containing the synthetic perceptgene

based on ANF loops (Fig. 1C). (a) IPTG was held constant at 0.977 μM, and aTc was varied. (B)

aTc was held constant at 0.391 ng/ml, and IPTG was varied.

(A)

(B)

148

Fig. S14.9. GFP flow cytometry data for a population of cells containing the synthetic perceptgene

based on ANF loops. In this circuit, PlacO within the ANF was replaced by PlacO1 (Fig. 1D). (A)

IPTG was held constant at 125 μM, and aTc was varied. (B) aTc was held constant at 50 ng/ml,

and IPTG was varied.

(A)

(B)

149

Fig. S14.10. GFP flow cytometry data for a population of cells containing the synthetic

perceptgene based on ANF loops. In this circuit, PlacO within the ANF was replaced by PlacO1
(Fig. 1D). (A) IPTG was held constant at 62.5 μM, and aTc was varied. (B) aTc was held constant

at 25 ng/ml, and IPTG was varied.

(A)

(B)

150

Fig. S14.11. GFP flow cytometry data for a population of cells containing the synthetic

perceptgene based on ANF loops. In this circuit, PlacO within the ANF was replaced by PlacO1 (Fig.

1D). (A) IPTG was held constant at 31.25 μM, and aTc was varied. (B) aTc was held constant at

12.5 ng/ml, and IPTG was varied.

(B)

(A)

151

Fig. S14.12. GFP flow cytometry data for a population of cells containing the synthetic

perceptgene based on ANF loops. In this circuit, PlacO within the ANF was replaced by PlacO1 (Fig.

1D). (A) IPTG was held constant at 15.63 μM, and aTc was varied. (B) aTc was held constant at

6.25 ng/ml,and IPTG was varied.

(A)

(B)

152

Fig. S14.13. GFP flow cytometry data for a population of cells containing the synthetic

perceptgene based on ANF loops. In this circuit, PlacO within the ANF was replaced by PlacO1
(Fig. 1D). (A) IPTG was held constant at 7.813 μM and aTc was varied. (B) aTc was held constant

at 3.125 ng/ml and IPTG was varied.

(A)

(B)

153

Fig. S14.14. GFP flow cytometry data for a population of cells containing the synthetic

perceptgene based on ANF loops. In this circuit, PlacO within the ANF was replaced by PlacO1 (Fig.

1D). (A) IPTG was held constant at 3.906 μM, and aTc was varied. (B) aTc was held constant at

1.563 ng/ml, and IPTG was varied.

(A)

(B)

154

Fig. S14.15. GFP flow cytometry data for a population of cells containing the synthetic

perceptgene based on ANF loops. In this circuit, PlacO within the ANF was replaced by PlacO1 (Fig.

1D). (A) IPTG was held constant at 1.953 μM, and aTc was varied. (B) aTc was held constant at

0.783 ng/ml, and IPTG was varied.

(A)

(B)

155

Fig. S14.16. GFP flow cytometry data for a population of cells containing the synthetic

perceptgene based on ANF loops. In this circuit, PlacO within the ANF was replaced by PlacO1 (Fig.

1D). (A) IPTG was held constant at 0.977 μM, and aTc was varied. (B) aTc was held constant at

0.391 ng/ml, and IPTG was varied.

(A)

(B)

156

Fig. S14.17. GFP flow cytometry data for a population of cells containing the synthetic

perceptgene based on ANF loops. In this circuit, PlacOwithin the ANF was replaced by PlacO1 and

AraC truncated was used to improve the compatibility of Arabinose and IPTG (Fig. 1H). (A)

Arabinose was held constant at 0.04 mM, IPTG was held constant at 125 μM, and aTc was varied.

(B) Arabinose was held constant at 0.04 mM, aTc was held constant at 50 ng/ml, and IPTG was

varied.

(A)

(B)

157

Fig. S14.18. GFP flow cytometry data for a population of cells containing the synthetic

perceptgene based on ANF loops. In this circuit, PlacO within the ANF was replaced by PlacO1 and

AraC truncated was used to improve the compatibility of Arabinose and IPTG (Fig. 1H). (A)

Arabinose was held constant at 0.04 mM, IPTG was held constant at 62.5 μM, and aTc was varied.

(B) Arabinose was held constant at 0.04 mM, aTc was held constant at 25 ng/ml, and IPTG was

varied.

(A)

(B)

158

Fig. S14.19. GFP flow cytometry data for a population of cells containing the synthetic

perceptgene based on ANF loops. In this circuit, PlacO within the ANF was replaced by PlacO1 and

AraC truncated was used to improve the compatibility of Arabinose and IPTG (Fig. 1H). (A)

Arabinose was held constant at 0.04 mM, IPTG was held constant at 31.25 μM and aTc was varied.

(B) Arabinose was held constant at 0.04 mM, aTc was held constant at 12.5 ng/ml and IPTG was

varied.

(B)

(A)

159

Fig. S14.20. GFP flow cytometry data for a population of cells containing the synthetic

perceptgene based on ANF loops. In this circuit, PlacO within the ANF was replaced by PlacO1 and

AraC truncated was used to improve the compatibility of Arabinose and IPTG (Fig. 1H). (A)

Arabinose was held constant at 0.04 mM, IPTG was held constant at 15.63 μM, and aTc was

varied. (B) Arabinose was held constant at 0.04 mM, aTc was held constant at 6.25 ng/ml, and

IPTG was varied.

(B)

(A)

160

Fig. S14.21. GFP flow cytometry data for a population of cells containing the synthetic

perceptgene based on ANF loops. In this circuit, PlacO within the ANF was replaced by PlacO1 and

AraC truncated was used to improve the compatibility of Arabinose and IPTG (Fig. 1H). (A)

Arabinose was held constant at 0.04 mM, IPTG was held constant at 7.813 μM, and aTc was

varied. (B) Arabinose was held constant at 0.04 mM, aTc was held constant at 3.125 ng/ml, and

IPTG was varied.

(B)

(A)

161

Fig. S14.22. GFP flow cytometry data for a population of cells containing the synthetic

perceptgene based on ANF loops. In this circuit, PlacO within the ANF was replaced by PlacO1 and

AraC truncated was used to improve the compatibility of Arabinose and IPTG (Fig. 1H). (A)

Arabinose was held constant at 0.04 mM, IPTG was held constant at 3.906 μM, and aTc was

varied. (B) Arabinose was held constant at 0.04 mM, aTc was held constant at 1.563 ng/ml, and

IPTG was varied.

(B)

(A)

162

Fig. S14.23. GFP flow cytometry data for a population of cells containing the synthetic

perceptgene based on ANF loops. In this circuit, PlacO within the ANF was replaced by PlacO1 and

AraC truncated was used to improve the compatibility of Arabinose and IPTG (Fig. 1H). (A)

Arabinose was held constant at 0.04 mM, IPTG was held constant at 1.953 μM, and aTc was

varied. (B) Arabinose was held constant at 0.04 mM, aTc was held constant at 0.783 ng/ml, and

IPTG was varied.

(B)

(A)

163

Fig. S14.24. GFP flow cytometry data for a population of cells containing the synthetic

perceptgene based on ANF loops. In this circuit, PlacO within the ANF was replaced by PlacO1 and

AraC truncated was used to improve the compatibility of Arabinose and IPTG (Fig. 1H). (A)

Arabinose was held constant at 0.04 mM, IPTG was held constant at 0.977 μM, and aTc was

varied. (B) Arabinose was held constant at 0.04 mM, aTc was held constant at 0.391 ng/ml, and

IPTG was varied.

(B)

(A)

164

Fig. S14.25. mCherry flow cytometry data for a population of cells containing the synthetic

perceptgene based on ANF and APF loops. In this circuit, PtetO promoter was regulated by TetR

through ANF loop and mutated PluxTGT promoter was regulated by LuxR through APF loop (Fig.

2B). (A) AHL was held constant at 3.0 μM and aTc was varied. (b) aTc was held constant at 25

ng/ml and AHL was varied.

(B)

(A)

165

Fig. S14.26. mCherry flow cytometry data for a population of cells containing the synthetic

perceptgene based on ANF and APF loops. In this circuit, PtetO promoter was regulated by TetR

through ANF loop and mutated PluxTGT promoter was regulated by LuxR through APF loop (Fig.

2B). (A) AHL was held constant at 1.50 μM and aTc was varied. (B) aTc was held constant at 12.5

ng/ml and AHL was varied.

(A)

(B)

166

Fig. S14.27. mCherry flow cytometry data for a population of cells containing the synthetic

perceptgene based on ANF and APF loops. In this circuit, PtetO promoter was regulated by TetR

through ANF loop and mutated PluxTGT promoter was regulated by LuxR through APF loop (Fig.

2B). (A) AHL was held constant at 0.75 μM and aTc was varied. (B) aTc was held constant at 6.25

ng/ml and AHL was varied

(B)

(A)

167

Fig. S14.28. mCherry flow cytometry data for a population of cells containing the synthetic

perceptgene based on ANF and APF loops. In this circuit, PtetO promoter was regulated by TetR

through ANF loop and mutated PluxTGT promoter was regulated by LuxR through APF loop (Fig.

2B). (A) AHL was held constant at 0.375 μM and aTc was varied. (B) aTc was held constant at

3.125 ng/ml and AHL was varied.

(B)

(A)

168

Fig. S14.29. mCherry flow cytometry data for a population of cells containing the synthetic

perceptgene based on ANF and APF loops. In this circuit, PtetO promoter was regulated by TetR

through ANF loop and mutated PluxTGT promoter was regulated by LuxR through APF loop (Fig.

2B). (A) AHL was held constant at 0.188 μM and aTc was varied. (B) aTc was held constant at

1.563 ng/ml and AHL was varied.

(B

)

(A)

169

Fig. S14.30. mCherry flow cytometry data for a population of cells containing the synthetic

perceptgene based on ANF and APF loops. In this circuit, PtetO promoter was regulated by TetR

through ANF loop and mutated PluxTGT promoter was regulated by LuxR through APF loop (Fig.

2B). (A) AHL was held constant at 0.094 μM and aTc was varied. (B) aTc was held constant at

0.783 ng/ml and AHL was varied.

(B

)

(A)

170

Fig. S14.31. mCherry flow cytometry data for a population of cells containing the synthetic

perceptgene based on ANF and APF loops. In this circuit, PtetO promoter was regulated by TetR

through ANF loop and mutated PluxTGT promoter was regulated by LuxR through APF loop (Fig.

2B). aTc was held constant at 0.391 ng/ml and AHL was varied.

171

Fig. S14.32. GFP flow cytometry data for a population of cells containing the synthetic

perceptgene based on ANF and APF loops. In this circuit, PtetO promoter was regulated by TetR

through ANF loop and mutated PluxTGT promoter was regulated by LuxR through APF loop. The

output of the power-law and multiplication function was replaced by AraC activator, which

regulate PBAD promote (Fig. 2E). (A) Arabinose was held constant at 0.5 mM, AHL was held

constant at 3.0 μM and aTc was varied. (B) Arabinose was held constant at 0.5 mM, aTc was held

constant at 25 ng/ml and AHL was varied.

(B)

(A)

172

Fig. S14.33. GFP flow cytometry data for a population of cells containing the synthetic

perceptgene based on ANF and APF loops. In this circuit, PtetO promoter was regulated by TetR

through ANF loop and mutated PluxTGT promoter was regulated by LuxR through APF loop. The

output of the power-law and multiplication function was replaced by AraC activator, which

regulate PBAD promoter (Fig. 2E). (A) Arabinose was held constant at 0.5 mM, AHL was held

constant at 1.5 μM and aTc was varied. (B) Arabinose was held constant at 0.5 mM, aTc was held

constant at 12.5 ng/ml and AHL was varied.

(B)

(A)

173

Fig. S14.34. GFP flow cytometry data for a population of cells containing the synthetic

perceptgene based on ANF and APF loops. In this circuit, PtetO promoter was regulated by TetR

through ANF loop and mutated PluxTGT promoter was regulated by LuxR through APF loop. The

output of the power-law and multiplication function was replaced by AraC activator, which

regulate PBAD promoter (Fig. 2E). (A) Arabinose was held constant at 0.5 mM, AHL was held

constant at 0.75 μM and aTc was varied. (B) Arabinose was held constant at 0.5 mM, aTc was

held constant at 6.25 ng/ml and AHL was varied.

(B)

(A)

174

Fig. S14.35. GFP flow cytometry data for a population of cells containing the synthetic

perceptgene based on ANF and APF loops. In this circuit, PtetO promoter was regulated by TetR

through ANF loop and mutated PluxTGT promoter was regulated by LuxR through APF loop. The

output of the power-law and multiplication function was replaced by AraC activator, which

regulate PBAD promoter (Fig. 2E). (A) Arabinose was held constant at 0.5 mM, AHL was held

constant at 0.375 μM and aTc was varied. (B) Arabinose was held constant at 0.5 mM, aTc was

held constant at 3.125 ng/ml and AHL was varied.

(B)

(A)

175

Fig. S14.36. GFP flow cytometry data for a population of cells containing the synthetic

perceptgene based on ANF and APF loops. In this circuit, PtetO promoter was regulated by TetR

through ANF loop and mutated PluxTGT promoter was regulated by LuxR through APF loop. The

output of the power-law and multiplication function was replaced by AraC activator, which

regulate PBAD promoter (Fig. 2E). (A) Arabinose was held constant at 0.5 mM, AHL was held

constant at 0.188 μM and aTc was varied. (B) Arabinose was held constant at 0.5 mM, aTc was

held constant at 1.563 ng/ml and AHL was varied.

(B)

(A)

176

Fig. S14.37. GFP flow cytometry data for a population of cells containing the synthetic

perceptgene based on ANF and APF loops. In this circuit, PtetO promoter was regulated by TetR

through ANF loop and mutated PluxTGT promoter was regulated by LuxR through APF loop. The

output of the power-law and multiplication function was replaced by AraC activator, which

regulate PBAD promoter (Fig. 2E). (A) Arabinose was held constant at 0.5 mM, AHL was held

constant at 0.094 μM and aTc was varied. (B) Arabinose was held constant at 0.5 mM, aTc was

held constant at 0.783 ng/ml and AHL was varied

(B)

(A)

177

Fig. S14.38. GFP flow cytometry data for a population of cells containing the synthetic

perceptgene based on ANF and APF loops. In this circuit, PtetO promoter was regulated by TetR

through ANF loop and mutated PluxTGT promoter was regulated by LuxR through APF loop. The

output of the power-law and multiplication function was replaced by AraC activator, which

regulate PBADD promoter (Fig. 2E). Arabinose was held constant at 0.5 mM, aTc was held constant

at 0.391 ng/ml and AHL was varied

178

Fig. S14.39. GFP flow cytometry data for a population of cells containing the synthetic

perceptgene based on ANF and APF loops. In this circuit, PlacO1 promoter was regulated by LacI
through ANF loop and mutated PluxAAT promoter was regulated by LuxR through APF loop (Fig.

S3.4, Fig. S3.6). (A) Arabinose was held constant at 0.5 mM, AHL was held constant at 1.5 μM

and IPTG was varied. (B) Arabinose was held constant at 0.5 mM, IPTG was held constant at 125

μM and AHL was varied.

(B)

(A)

179

Fig. S14.40. GFP flow cytometry data for a population of cells containing the synthetic

perceptgene based on ANF and APF loops. In this circuit, PlacO1 promoter was regulated by LacI
through ANF loop and mutated PluxAAT promoter was regulated by LuxR through APF loop (Fig.

S3.4, Fig. S3.6). (A) Arabinose was held constant at 0.5 mM, AHL was held constant at 0.75 μM

and IPTG was varied. (B) Arabinose was held constant at 0.5 mM, IPTG was held constant at 62.5

μM and AHL was varied.

(B)

(A)

180

Fig. S14.41. GFP flow cytometry data for a population of cells containing the synthetic

perceptgene based on ANF and APF loops. In this circuit, PlacO1 promoter was regulated by LacI
through ANF loop and mutated PluxAAT promoter was regulated by LuxR through APF loop (Fig.

S3.4, Fig. S3.6). (A) Arabinose was held constant at 0.5 mM, AHL was held constant at 0.375 μM

and IPTG was varied. (B) Arabinose was held constant at 0.5 mM, IPTG was held constant at 31.25

μM and AHL was varied.

(B)

(A)

181

Fig. S14.42. GFP flow cytometry data for a population of cells containing the synthetic

perceptgene based on ANF and APF loops. In this circuit, PlacO1 promoter was regulated by LacI
through ANF loop and mutated PluxAAT promoter was regulated by LuxR through APF loop (Fig.

S3.4, Fig. S3.6). (A) Arabinose was held constant at 0.5 mM, AHL was held constant at 0.188 μM

and IPTG was varied. (B) Arabinose was held constant at 0.5 mM, IPTG was held constant at 15.63

μM and AHL was varied.

(B)

(A)

182

Fig. S14.43. GFP flow cytometry data for a population of cells containing the synthetic

perceptgene based on ANF and APF loops. In this circuit, PlacO1 promoter was regulated by LacI
through ANF loop and mutated PluxAAT promoter was regulated by LuxR through APF loop (Fig.

S3.4, Fig. S3.6). (A) Arabinose was held constant at 0.5 mM, AHL was held constant at 0.094 μM

and IPTG was varied. (B) Arabinose was held constant at 0.5 mM, IPTG was held constant at 7.813

μM and AHL was varied.

(B)

(A)

183

Fig. S14.44. GFP flow cytometry data for a population of cells containing the synthetic

perceptgene based on ANF and APF loops. In this circuit, PlacO1 promoter was regulated by LacI
through ANF loop and mutated PluxAAT promoter was regulated by LuxR through APF loop (Fig.

S3.4, Fig. S3.6). Arabinose was held constant at 0.5 mM, IPTG was held constant at 3.906 μM and

AHL was varied.

184

Fig. S14.45. GFP flow cytometry data for a population of cells containing the synthetic

perceptgene based on ANF and APF loops. In this circuit, synthetic average-meter based on

perceptgene model was calculated using PlacO1 promoter, mutated PluxAAT promoter and a

combinatorial promoter (Plux/tetO). PBAD was used to set the logistic curve of the analog inputs

(Fig. 2H). (A) Arabinose was held constant at 0.5 mM, AHL was held constant at 1.5 μM and

IPTG was varied. (B) Arabinose was held constant at 0.5 mM, IPTG was held constant at 125 μM

and AHL was varied.

(B)

(A)

185

Fig. S14.46. GFP flow cytometry data for a population of cells containing the synthetic

perceptgene based on ANF and APF loops. In this circuit, synthetic average-meter based on

perceptgene model was calculated using PlacO1 promoter, mutated PluxAAT promoter and a

combinatorial promoter (Plux/tetO). PBAD was used to set the logistic curve of the analog inputs

(Fig. 2H). (A) Arabinose was held constant at 0.5 mM, AHL was held constant at 0.75 μM and

IPTG was varied. (B) Arabinose was held constant at 0.5 mM, IPTG was held constant at 62.5 μM

and AHL was varied.

(A)

(B)

186

Fig. S14.47. GFP flow cytometry data for a population of cells containing the synthetic

perceptgene based on ANF and APF loops. In this circuit, synthetic average-meter based on

perceptgene model was calculated using PlacO1 promoter, mutated PluxAAT promoter and a

combinatorial promoter (Plux/tetO). PBAD was used to set the logistic curve of the analog inputs

(Fig. 2H). (A) Arabinose was held constant at 0.5 mM, AHL was held constant at 0.375 μM and

IPTG was varied. (b) Arabinose was held constant at 0.5 mM, IPTG was held constant at 31.25 μM

and AHL was varied.

(B)

(A)

187

Fig. S14.48. GFP flow cytometry data for a population of cells containing the synthetic

perceptgene based on ANF and APF loops. In this circuit, synthetic average-meter based on

perceptgene model was calculated using PlacO1 promoter, mutated PluxAAT promoter and a

combinatorial promoter (Plux/tetO). PBAD was used to set the logistic curve of the analog inputs

(Fig. 2H). (A) Arabinose was held constant at 0.5 mM, AHL was held constant at 0.188 μM and

IPTG was varied. (b) Arabinose was held constant at 0.5 mM, IPTG was held constant at 15.63 μM

and AHL was varied.

(B)

(A)

188

Fig. S14.49. GFP flow cytometry data for a population of cells containing the synthetic

perceptgene based on ANF and APF loops. In this circuit, synthetic average-meter based on

perceptgene model was calculated using PlacO1 promoter, mutated PluxAAT promoter and a

combinatorial promoter (Plux/tetO). PBAD was used to set the logistic curve of the analog inputs

(Fig. 2H). (A) Arabinose was held constant at 0.5 mM, AHL was held constant at 0.094 μM and

IPTG was varied. (B) Arabinose was held constant at 0.5 mM, IPTG was held constant at 7.813

μM and AHL was varied.

(A)

(B)

189

Fig. S14.50. GFP flow cytometry data for a population of cells containing the synthetic

perceptgene based on ANF and APF loops. In this circuit, synthetic average-meter based on

perceptgene model was calculated using PlacO1 promoter, mutated PluxAAT promoter and a

combinatorial promoter (Plux/tetO). PBAD was used to set the logistic curve of the analog inputs

(Fig. 2H). Arabinose was held constant at 0.5 mM, IPTG was held constant at 3.906 μM and AHL

was varied.

190

Fig. S14.51. GFP flow cytometry data for a population of cells containing the synthetic multilayer

perceptgene network (Fig. 3C). Measured response of majority circuit. AHL [0.1875, 0.3μM],

IPTG [7.8125, 125μM], aTc [1.5625, 25ng/mL] and Arabinose [0.25mM].

Fig. S14.52. GFP flow cytometry data for a population of cells containing the synthetic multilayer

perceptgene network (Fig. 3C). Measured response of majority circuit. AHL [0.1875, 0.3μM],

IPTG [7.8125, 125μM], aTc [1.5625, 25ng/mL] and Arabinose [0.125 mM].

191

Fig. S14.53. GFP flow cytometry data for a population of cells containing the synthetic multilayer

perceptgene network (Fig. 3C). Measured response of majority circuit. AHL [0.1875, 0.3μM],

IPTG [7.8125, 125μM], aTc [1.5625, 25ng/mL] and Arabinose [0.0625 mM].

Fig. S14.54. GFP flow cytometry data for a population of cells containing the synthetic multilayer

perceptgene network (Fig. 3C). Measured response of majority circuit. AHL [0.1875, 0.3μM],

IPTG [7.8125, 125μM], aTc [1.5625, 25ng/mL] and Arabinose [0.03125 mM].

192

Fig. S14.55. GFP flow cytometry data for a population of cells containing the synthetic multilayer

perceptgene displays a new logic function for three input (AHL, IPTG and aTc) (Fig. 7.18).

Measured response of majority circuit. AHL [0.1875, 0.3μM], IPTG [7.8125, 125μM], aTc
[1.5625, 25ng/mL] and Arabinose [0.03125 mM].

Fig. S14.56. GFP flow cytometry data for a population of cells containing the genetic circuit to

implement LSB using a forward 𝑃𝐵𝐴𝐷 promoter and an antisense 𝑃𝑢𝑥 promoter (Fig. S7.7A, Fig.

S7.8).

193

Fig. S14.57. GFP flow cytometry data for a population of cells containing the genetic circuit to

implement 2-bit ADC, using a graded PF that regulates 𝑃𝐵𝐴𝐷 promoter and a combinatorial

antisense 𝑃𝑙𝑢𝑥∕𝑡𝑒𝑡𝑂, while 𝑇𝑒𝑡𝑅 repressor is regulated by MSB Circuit (Fig. 4C blue plot).

Fig. S14.58. GFP flow cytometry data for a population of cells containing the genetic circuit to

implement 2-bit hybrid ADC, where LSB circuit is built from two GFP signals: (1) Forward

PBAD promoter with antisense Plux promoter and (2) the PrhlR promoter (Fig. 4F).

194

Fig. S14.59. mCherry flow cytometry data for a population of cells containing the genetic circuit

to implement 2-bit hybrid ADC. Where the Plux of MSB circuit which is located on MCP,

regulates the output mCherry signal (Fig. 4F).

Fig. S14.60. GFP flow cytometry data for a population of cells containing the genetic circuit to

implement ternary data converter, based on the regulation of 𝑇𝑒𝑡𝑅 by MSB (Fig. 4G).

195

Fig. S14.61. GFP flow cytometry data for a population of cells containing the linear summation

using ANF (Fig. S2.20). (A) IPTG was held constant at 1000 μM and aTc was varied. (B) aTc was

held constant at 100 ng/ml and IPTG was varied.

(A)

(B)

196

Fig. S14.62. GFP flow cytometry data for a population of cells containing the linear summation

using ANF (Fig. S2.20). (A) IPTG was held constant at 500 μM and aTc was varied. (B) aTc was

held constant at 50 ng/ml and IPTG was varied.

(A)

(B)

197

Fig. S14.63. GFP flow cytometry data for a population of cells containing the linear summation

using ANF (Fig. S2.20). (A) IPTG was held constant at 250 μM and aTc was varied. (B) aTc was

held constant at 25 ng/ml and IPTG was varied.

(A)

(B)

198

Fig. S14.64. GFP flow cytometry data for a population of cells containing the linear summation

using ANF (Fig. S2.20). (A) IPTG was held constant at 125 μM and aTc was varied. (B) aTc was

held constant at 12.5 ng/ml and IPTG was varied.

(A)

(B)

199

Fig. S14.65. GFP flow cytometry data for a population of cells containing the the linear

summation using ANF (Fig. S2.20). (A) IPTG was held constant at 62.5 μM and aTc was varied.

(B) aTc was held constant at 6.25 ng/ml and IPTG was varied.

(A)

(B)

200

Fig. S14.66. GFP flow cytometry data for a population of cells containing the the linear

summation using ANF (Fig. S2.20). IPTG was held constant at 31.25 μM and aTc was varied.

201

Fig. S14.67. GFP flow cytometry data for a population of cells containing the genetic perceptron

in the linear domain. AraC truncated was used to improve the compatibility of Arabinose and IPTG

(Fig. S2.21A). (A) Arabinose was held constant at 0.04 mM, IPTG was held constant at 1000 μM

and aTc was varied. (B) Arabinose was held constant at 0.04 mM, aTc was held constant at 100

ng/ml and IPTG was varied.

(A)

(B)

202

Fig. S14.68. GFP flow cytometry data for a population of cells containing the genetic perceptron

in the linear domain. AraC truncated was used to improve the compatibility of Arabinose and IPTG

(Fig. S2.21A). (A) Arabinose was held constant at 0.04 mM, IPTG was held constant at 500 μM

and aTc was varied. (B) Arabinose was held constant at 0.04 mM, aTc was held constant at 50

ng/ml and IPTG was varied.

(A)

(B)

203

Fig. S14.69. GFP flow cytometry data for a population of cells containing the genetic perceptron

in the linear domain. AraC truncated was used to improve the compatibility of Arabinose and IPTG

(Fig. S2.21A). (A) Arabinose was held constant at 0.04 mM, IPTG was held constant at 250 μM

and aTc was varied. (B) Arabinose was held constant at 0.04 mM, aTc was held constant at 25

ng/ml and IPTG was varied.

(A)

(B)

204

Fig. S14.70. GFP flow cytometry data for a population of cells containing the genetic perceptron

in the linear domain. AraC truncated was used to improve the compatibility of Arabinose and IPTG

(Fig. S2.21A). (A) Arabinose was held constant at 0.04 mM, IPTG was held constant at 125 μM

and aTc was varied. (B) Arabinose was held constant at 0.04 mM, aTc was held constant at 12.5

ng/ml and IPTG was varied.

(A)

(B)

205

Fig. S14.71. GFP flow cytometry data for a population of cells containing the genetic perceptron

in the linear domain. AraC truncated was used to improve the compatibility of Arabinose and IPTG

(Fig. S2.21A). (A) Arabinose was held constant at 0.04 mM, IPTG was held constant at 62.5 μM

and aTc was varied. (B) Arabinose was held constant at 0.04 mM, aTc was held constant at 6.25

ng/ml and IPTG was varied.

(A)

(B)

206

Fig. S14.72. GFP flow cytometry data for a population of cells containing the genetic perceptron

in the linear domain. AraC truncated was used to improve the compatibility of Arabinose and IPTG

(Fig. S2.21A).. Arabinose was held constant at 0.04 mM, IPTG was held constant at 31.25 μM and

aTc was varied.

207

Fig. S14.73. GFP flow cytometry data for a population of cells containing the genetic perceptron

in the linear domain. AraC truncated was used to improve the compatibility of Arabinose and IPTG

(Fig. S2.21C). (A) Arabinose was held constant at 0.08 mM, IPTG was held constant at 1000 μM

and aTc was varied. (B) Arabinose was held constant at 0.08 mM, aTc was held constant at 100

ng/ml and IPTG was varied.

(A)

(B)

208

Fig. S14.74. GFP flow cytometry data for a population of cells containing the genetic perceptron

in the linear domain. AraC truncated was used to improve the compatibility of Arabinose and IPTG

(Fig. S2.21C). (A) Arabinose was held constant at 0.08 mM, IPTG was held constant at 500 μM

and aTc was varied. (B) Arabinose was held constant at 0.08 mM, aTc was held constant at 50

ng/ml and IPTG was varied.

(A)

(B)

209

Fig. S14.75. GFP flow cytometry data for a population of cells containing the genetic perceptron

in the linear domain. AraC truncated was used to improve the compatibility of Arabinose and IPTG

(Fig. S2.21C). (A) Arabinose was held constant at 0.08 mM, IPTG was held constant at 250 μM

and aTc was varied. (B) Arabinose was held constant at 0.08 mM, aTc was held constant at 25

ng/ml and IPTG was varied.

(A)

(B)

210

Fig. S14.76. GFP flow cytometry data for a population of cells containing the genetic perceptron

in the linear domain. AraC truncated was used to improve the compatibility of Arabinose and IPTG

(Fig. S2.21C). (A) Arabinose was held constant at 0.08 mM, IPTG was held constant at 125 μM

and aTc was varied. (B) Arabinose was held constant at 0.08 mM, aTc was held constant at 12.5

ng/ml and IPTG was varied.

(A)

(B)

211

Fig. S14.77. GFP flow cytometry data for a population of cells containing the genetic perceptron

in the linear domain. AraC truncated was used to improve the compatibility of Arabinose and IPTG

(Fig. S2.21C). (A) Arabinose was held constant at 0.08 mM, IPTG was held constant at 62.5 μM

and aTc was varied. (B) Arabinose was held constant at 0.08 mM, aTc was held constant at 6.25

ng/ml and IPTG was varied.

(A)

(B

)

212

Fig. S14.78. GFP flow cytometry data for a population of cells containing the genetic perceptron

in the linear domain. AraC truncated was used to improve the compatibility of Arabinose and IPTG

(Fig. S2.21C). Arabinose was held constant at 0.04 mM, IPTG was held constant at 31.25 μM and

aTc was varied.

213

Fig. S14.79. GFP flow cytometry data for a population of cells containing a 3-input perceptgene

network and back propagation algorithm with TCTA Mutation (Fig. 3G and Fig. S6.5B).

AHL [0.1875, 0.3μM], IPTG [7.8125, 125μM], aTc [1.5625, 25ng/mL] and Arabinose [0.25mM].

Fig. S14.80. GFP flow cytometry data for a population of cells containing a 3-input perceptgene

network and back propagation algorithm with TCTA Mutation (Fig. 3G and Fig. S6.5B). AHL

[0.1875, 0.3μM], IPTG [7.8125, 125μM], aTc [1.5625, 25ng/mL] and Arabinose [0.125mM].

214

Fig. S14.81. GFP flow cytometry data for a population of cells containing a 3-input perceptgene

network and back propagation algorithm with TCTA Mutation (Fig. 3G and Fig. S6.5B). AHL

[0.1875, 0.3μM], IPTG [7.8125, 125μM], aTc [1.5625, 25ng/mL] and Arabinose [0.0625mM].

Fig. S14.82. GFP flow cytometry data for a population of cells containing a 3-input perceptgene

network and back propagation algorithm with TCTA Mutation (Fig. 3G and Fig. S6.5B). AHL

[0.1875, 0.3μM], IPTG [7.8125, 125μM], aTc [1.5625, 25ng/mL] and Arabinose [0.03125 mM].

215

Fig. S14.83. GFP flow cytometry data for a population of cells containing a 3-input perceptgene

network and back propagation algorithm with TCTA Mutation (Fig. 3G and Fig. S6.5B). AHL

[0.1875, 0.3μM], IPTG [7.8125, 125μM], aTc [1.5625, 25ng/mL] and Arabinose [0.015625

mM].

Fig. S14.84. GFP flow cytometry data for a population of cells containing flow cytometry data

for a population of cells containing a 3-input perceptgene network and back propagation

algorithm with TCTA Mutation (Fig. 3G and Fig. S6.5B). AHL [0.1875, 0.3μM], IPTG [7.8125,

125μM], aTc [1.5625, 25ng/mL] and Arabinose [0.0078125mM].

216

Fig. S14.85. GFP flow cytometry data for a population of cells containing the first perceptgene

layer with 2-input from the 3-input network with TCTA Mutation (Fig. S6.7B). AHL [0.1875,

0.3μM], IPTG [7.8125, 125μM], aTc [1.5625, 25ng/mL] and Arabinose [0.25mM].

Fig. S14.86. GFP flow cytometry data for a population of cells containing the first perceptgene

layer with 2-input from the 3-input network with TCTA Mutation (Fig. S6.7B). AHL [0.1875,

0.3μM], IPTG [7.8125, 125μM], aTc [1.5625, 25ng/mL] and Arabinose [0.125mM].

217

Fig. S14.87. GFP flow cytometry data for a population of cells containing the first perceptgene

layer with 2-input from the 3-input network with TCTA Mutation (Fig. S6.7B). AHL [0.1875,

0.3μM], IPTG [7.8125, 125μM], aTc [1.5625, 25ng/mL] and Arabinose [0.0625mM].

Fig. S14.88. GFP flow cytometry data for a population of cells containing the first perceptgene

layer with 2-input from the 3-input network with TCTA Mutation (Fig. S6.7B). AHL [0.1875,

0.3μM], IPTG [7.8125, 125μM], aTc [1.5625, 25ng/mL] and Arabinose [0.03125mM].

218

Fig. S14.89. GFP flow cytometry data for a population of cells containing the first perceptgene

layer with 2-input from the 3-input network with TCTA Mutation (Fig. S6.7B). AHL [0.1875,

0.3μM], IPTG [7.8125, 125μM], aTc [1.5625, 25ng/mL] and Arabinose [0.015625mM].

Fig. S14.90. GFP flow cytometry data for a population of cells containing the first perceptgene

layer with 2-input from the 3-input network with TCTA Mutation (Fig. S6.7B). AHL [0.1875,

0.3μM], IPTG [7.8125, 125μM], aTc [1.5625, 25ng/mL] and Arabinose [0.0078125mM].

219

Fig. S14.91. GFP flow cytometry data for a population of cells containing a 3-input perceptgene

network and back propagation algorithm with GTTG Mutation (Fig. 3G and Fig. S6.5D). AHL

[0.1875, 0.3μM], IPTG [7.8125, 125μM], aTc [1.5625, 25ng/mL] and Arabinose [0.25mM].

Fig. S14.92. GFP flow cytometry data for a population of cells containing a 3-input perceptgene

network and back propagation algorithm with GTTG Mutation (Fig. 3G and Fig. S6.5D). AHL

[0.1875, 0.3μM], IPTG [7.8125, 125μM], aTc [1.5625, 25ng/mL] and Arabinose [0.125mM].

220

Fig. S14.93. GFP flow cytometry data for a population of cells containing a 3-input perceptgene

network and back propagation algorithm with GTTG Mutation (Fig. 3G and Fig. S6.5D). AHL

[0.1875, 0.3μM], IPTG [7.8125, 125μM], aTc [1.5625, 25ng/mL] and Arabinose [0.0625mM].

Fig. S14.94. GFP flow cytometry data for a population of cells containing a 3-input perceptgene

network and back propagation algorithm with GTTG Mutation (Fig. 3G and Fig. S6.5D). AHL

[0.1875, 0.3μM], IPTG [7.8125, 125μM], aTc [1.5625, 25ng/mL] and Arabinose [0.03125 mM].

221

Fig. S14.95. GFP flow cytometry data for a population of cells containing a 3-input perceptgene

network and back propagation algorithm with GTTG Mutation (Fig. 3G and Fig. S6.5D). AHL

[0.1875, 0.3μM], IPTG [7.8125, 125μM], aTc [1.5625, 25ng/mL] and Arabinose [0.015625

mM].

Fig. S14.96. GFP flow cytometry data for a population of cells containing a 3-input perceptgene

network and back propagation algorithm with GTTG Mutation (Fig. 3G and Fig. S6.5D). AHL

[0.1875, 0.3μM], IPTG [7.8125, 125μM], aTc [1.5625, 25ng/mL] and Arabinose

[0.0078125mM].

222

Fig. S14.97. GFP flow cytometry data for a population of cells containing the first perceptgene

layer with 2-input from the 3-input network with GTTG Mutation (Fig. S6.7D). AHL [0.1875,

0.3μM], IPTG [7.8125, 125μM], aTc [1.5625, 25ng/mL] and Arabinose [0.25mM].

Fig. S14.98. GFP flow cytometry data for a population of cells containing the first perceptgene

layer with 2-input from the 3-input network with GTTG Mutation (Fig. S6.7D). AHL [0.1875,

0.3μM], IPTG [7.8125, 125μM], aTc [1.5625, 25ng/mL] and Arabinose [0.125mM].

223

Fig. S14.99. GFP flow cytometry data for a population of cells containing the first perceptgene

layer with 2-input from the 3-input network with GTTG Mutation (Fig. S6.7D). AHL [0.1875,

0.3μM], IPTG [7.8125, 125μM], aTc [1.5625, 25ng/mL] and Arabinose [0.0625mM].

Fig. S14.100. GFP flow cytometry data for a population of cells containing the first perceptgene

layer with 2-input from the 3-input network with GTTG Mutation (Fig. S6.7D). AHL [0.1875,

0.3μM], IPTG [7.8125, 125μM], aTc [1.5625, 25ng/mL] and Arabinose [0.03125mM].

224

Fig. S14.101. GFP flow cytometry data for a population of cells containing the first perceptgene

layer with 2-input from the 3-input network with GTTG Mutation (Fig. S6.7D). AHL [0.1875,

0.3μM], IPTG [7.8125, 125μM], aTc [1.5625, 25ng/mL] and Arabinose [0.015625mM].

Fig. S14.102. GFP flow cytometry data for a population of cells containing the first perceptgene

layer with 2-input from the 3-input network with GTTG Mutation (Fig. S6.7D). AHL [0.1875,

0.3μM], IPTG [7.8125, 125μM], aTc [1.5625, 25ng/mL] and Arabinose [0.0078125].

225

Fig. S14.103. GFP flow cytometry data for a population of cells containing flow cytometry data

for a population of cells containing a 3-input perceptgene network and back propagation algorithm

with GAGC Mutation (Fig. 3G and Fig. S6.5F). AHL [0.1875, 0.3μM], IPTG [7.8125, 125μM],

aTc [1.5625, 25ng/mL] and Arabinose [0.25mM].

Fig. S14.104. GFP flow cytometry data for a population of cells containing flow cytometry data

for a population of cells containing a 3-input perceptgene network and back propagation

algorithm with GAGC Mutation (Fig. 3G and Fig. S6.5F). AHL [0.1875, 0.3μM], IPTG [7.8125,

125μM], aTc [1.5625, 25ng/mL] and Arabinose [0.125mM].

226

Fig. S14.105. GFP flow cytometry data for a population of cells containing flow cytometry data

for a population of cells containing a 3-input perceptgene network and back propagation

algorithm with GAGC Mutation (Fig. 3G and Fig. S6.5F). AHL [0.1875, 0.3μM], IPTG [7.8125,

125μM], aTc [1.5625, 25ng/mL] and Arabinose [0.0625mM].

Fig. S14.106. GFP flow cytometry data for a population of cells containing flow cytometry data

for a population of cells containing a 3-input perceptgene network and back propagation

algorithm with GAGC Mutation (Fig. 3G and Fig. S6.5F). AHL [0.1875, 0.3μM], IPTG [7.8125,

125μM], aTc [1.5625, 25ng/mL] and Arabinose [0.03125 mM].

227

Fig. S14.107. GFP flow cytometry data for a population of cells containing flow cytometry data

for a population of cells containing a 3-input perceptgene network and back propagation

algorithm with GAGC Mutation (Fig. 3G and Fig. S6.5F). AHL [0.1875, 0.3μM], IPTG [7.8125,

125μM], aTc [1.5625, 25ng/mL] and Arabinose [0.015625 mM].

Fig. S14.108. GFP flow cytometry data for a population of cells containing flow cytometry data

for a population of cells containing a 3-input perceptgene network and back propagation

algorithm with GAGC Mutation (Fig. 3G and Fig. S6.5F). AHL [0.1875, 0.3μM], IPTG [7.8125,

125μM], aTc [1.5625, 25ng/mL] and Arabinose [0.0078125mM].

228

Fig. S14.109. GFP flow cytometry data for a population of cells containing the first perceptgene

layer with 2-input from the 3-input network with GAGC Mutation (Fig. S6.7F). AHL [0.1875,

0.3μM], IPTG [7.8125, 125μM], aTc [1.5625, 25ng/mL] and Arabinose [0.25mM].

Fig. S14.110. GFP flow cytometry data for a population of cells containing the first perceptgene

layer with 2-input from the 3-input network with GAGC Mutation (Fig. S6.7F). AHL [0.1875,

0.3μM], IPTG [7.8125, 125μM], aTc [1.5625, 25ng/mL] and Arabinose [0.125mM].

229

Fig. S14.111. GFP flow cytometry data for a population of cells containing the first perceptgene

layer with 2-input from the 3-input network with GAGC Mutation (Fig. S6.7F). AHL [0.1875,

0.3μM], IPTG [7.8125, 125μM], aTc [1.5625, 25ng/mL] and Arabinose [0.0625mM].

Fig. S14.112. GFP flow cytometry data for a population of cells containing the first perceptgene

layer with 2-input from the 3-input network with GAGC Mutation (Fig. S6.7F). AHL [0.1875,

0.3μM], IPTG [7.8125, 125μM], aTc [1.5625, 25ng/mL] and Arabinose [0.03125mM].

230

Fig. S14.113. GFP flow cytometry data for a population of cells containing the first perceptgene

layer with 2-input from the 3-input network with GAGC Mutation (Fig. S6.7F). AHL [0.1875,

0.3μM], IPTG [7.8125, 125μM], aTc [1.5625, 25ng/mL] and Arabinose [0.015625mM].

Fig. S14.1114. GFP flow cytometry data for a population of cells containing the first perceptgene

layer with 2-input from the 3-input network with GAGC Mutation (Fig. S6.7F). AHL [0.1875,

0.3μM], IPTG [7.8125, 125μM], aTc [1.5625, 25ng/mL] and Arabinose [0.0078125].

231

Fig. S14.115. GFP flow cytometry data for a population of cells containing flow cytometry data

for a population of cells containing a 3-input perceptgene network and back propagation algorithm

with TGGG Mutation (Fig. 3G and Fig. S6.5H). AHL [0.1875, 0.3μM], IPTG [7.8125, 125μM],

aTc [1.5625, 25ng/mL] and Arabinose [0.25mM].

Fig. S14.116. GFP flow cytometry data for a population of cells containing flow cytometry data

for a population of cells containing a 3-input perceptgene network and back propagation

algorithm with TGGG Mutation (Fig. 3G and Fig. S6.5H). AHL [0.1875, 0.3μM], IPTG [7.8125,

125μM], aTc [1.5625, 25ng/mL] and Arabinose [0.125mM].

232

Fig. S14.117. GFP flow cytometry data for a population of cells containing flow cytometry data

for a population of cells containing a 3-input perceptgene network and back propagation

algorithm with TGGG Mutation (Fig. 3G and Fig. S6.5H). AHL [0.1875, 0.3μM], IPTG [7.8125,

125μM], aTc [1.5625, 25ng/mL] and Arabinose [0.0625mM].

Fig. S14.118. GFP flow cytometry data for a population of cells containing flow cytometry data

for a population of cells containing a 3-input perceptgene network and back propagation

algorithm with TGGG Mutation (Fig. 3G and Fig. S6.5H). AHL [0.1875, 0.3μM], IPTG [7.8125,

125μM], aTc [1.5625, 25ng/mL] and Arabinose [0.03125 mM].

233

Fig. S14.119. GFP flow cytometry data for a population of cells containing flow cytometry data

for a population of cells containing a 3-input perceptgene network and back propagation

algorithm with TGGG Mutation (Fig. 3G and Fig. S6.5H). AHL [0.1875, 0.3μM], IPTG [7.8125,

125μM], aTc [1.5625, 25ng/mL] and Arabinose [0.015625 mM].

Fig. S14.120. GFP flow cytometry data for a population of cells containing flow cytometry data

for a population of cells containing a 3-input perceptgene network and back propagation

algorithm with TGGG Mutation (Fig. 3G and Fig. S6.5H). AHL [0.1875, 0.3μM], IPTG [7.8125,

125μM], aTc [1.5625, 25ng/mL] and Arabinose [0.0078125mM].

234

Fig. S14.121. GFP flow cytometry data for a population of cells containing the first perceptgene

layer with 2-input from the 3-input network with TGGG Mutation (Fig. S6.7H). AHL [0.1875,

0.3μM], IPTG [7.8125, 125μM], aTc [1.5625, 25ng/mL] and Arabinose [0.25mM].

Fig. S14.122. GFP flow cytometry data for a population of cells containing the first perceptgene

layer with 2-input from the 3-input network with TGGG Mutation (Fig. S6.7H). AHL [0.1875,

0.3μM], IPTG [7.8125, 125μM], aTc [1.5625, 25ng/mL] and Arabinose [0.125mM].

235

Fig. S14.123. GFP flow cytometry data for a population of cells containing the first perceptgene

layer with 2-input from the 3-input network with TGGG Mutation (Fig. S6.7H). AHL [0.1875,

0.3μM], IPTG [7.8125, 125μM], aTc [1.5625, 25ng/mL] and Arabinose [0.0625mM].

Fig. S14.124. GFP flow cytometry data for a population of cells containing the first perceptgene

layer with 2-input from the 3-input network with TGGG Mutation (Fig. S6.7H). AHL [0.1875,

0.3μM], IPTG [7.8125, 125μM], aTc [1.5625, 25ng/mL] and Arabinose [0.03125mM].

236

Fig. S14.125. GFP flow cytometry data for a population of cells containing the first perceptgene

layer with 2-input from the 3-input network with TGGG Mutation (Fig. S6.7H). AHL [0.1875,

0.3μM], IPTG [7.8125, 125μM], aTc [1.5625, 25ng/mL] and Arabinose [0.015625mM].

Fig. S14.126. GFP flow cytometry data for a population of cells containing the first perceptgene

layer with 2-input from the 3-input network with TGGG Mutation (Fig. S6.7H). AHL [0.1875,

0.3μM], IPTG [7.8125, 125μM], aTc [1.5625, 25ng/mL] and Arabinose [0.0078125].

237

Fig. S14.127. GFP flow cytometry data for a population of cells containing APF (PluxTCTA) and

ANF (PlacO1) loops and combinatorial promoter (Plux/lacO-GFP) to power-law and multiplication

function (Fig. S6.4A and S6.4C). (A) AHL was held constant at 3.0 μM and IPTG was varied. (B)

IPTG was held constant at 250 μM and AHL was varied.

238

Fig. S14.128. GFP flow cytometry data for a population of cells containing APF (PluxTCTA) and

ANF (PlacO1) loops and combinatorial promoter (Plux/lacO-GFP) to power-law and multiplication

function (Fig. S6.4A and S6.4C). (A) AHL was held constant at 1.5 μM and IPTG was varied. (B)

IPTG was held constant at 125 μM and AHL was varied.

239

Fig. S14.129. GFP flow cytometry data for a population of cells containing APF (PluxTCTA) and

ANF (PlacO1) loops and combinatorial promoter (Plux/lacO-GFP) to power-law and multiplication

function (Fig. S6.4A and S6.4C). (A) AHL was held constant at 0.75 μM and IPTG was varied.

(B) IPTG was held constant at 62.5 μM and AHL was varied.

240

Fig. S14.130. GFP flow cytometry data for a population of cells containing APF (PluxTCTA) and

ANF (PlacO1) loops and combinatorial promoter (Plux/lacO-GFP) to power-law and multiplication

function (Fig. S6.4A and S6.4C). (A) AHL was held constant at 0.375 μM and IPTG was varied.

(B) IPTG was held constant at 31.25 μM and AHL was varied.

241

Fig. S14.131. GFP flow cytometry data for a population of cells containing APF (PluxTCTA) and

ANF (PlacO1) loops and combinatorial promoter (Plux/lacO-GFP) to power-law and multiplication

function (Fig. S6.4A and S6.4C). (A) AHL was held constant at 0.188 μM and IPTG was varied.

(B) IPTG was held constant at 15.63 μM and AHL was varied.

242

Fig. S14.132. GFP flow cytometry data for a population of cells containing APF (PluxTCTA) and

ANF (PlacO1) loops and combinatorial promoter (Plux/lacO-GFP) to power-law and multiplication

function (Fig. S6.4A and S6.4C). (A) AHL was held constant at 0.094 μM and IPTG was varied.

(B) IPTG was held constant at 7.813 μM and AHL was varied.

243

Fig. S8.133. GFP flow cytometry data for a population of cells containing APF (PluxTCTA) and

ANF (PlacO1) loops and combinatorial promoter (Plux/lacO-GFP) to power-law and multiplication

function (Fig. S6.4A and S6.4C). IPTG was held constant at 3.906 μM and AHL was varied.

Fig. S14.134. GFP flow cytometry data for a population of cells containing APF (PluxTCTA) and

ANF (PlacO1) loops and combinatorial promoter (Plux/lacO-GFP) to power-law and multiplication

function (Fig. S6.4A and S6.4C). IPTG was held constant at 1.953 μM and AHL was varied.

244

Fig. S14.135. GFP flow cytometry data for a population of cells containing APF (PluxGTTG) and

ANF (PlacO1) loops and combinatorial promoter (Plux/lacO-GFP) to power-law and multiplication

function (Fig. S6.4A and S6.4D). (A) AHL was held constant at 3.0 μM and IPTG was varied. (B)

IPTG was held constant at 250 μM and AHL was varied.

245

Fig. S14.136. GFP flow cytometry data for a population of cells containing APF (PluxGTTG) and

ANF (PlacO1) loops and combinatorial promoter (Plux/lacO-GFP) to power-law and multiplication

function (Fig. S6.4A and S6.4D). (A) AHL was held constant at 1.5 μM and IPTG was varied.

(B) IPTG was held constant at 125 μM and AHL was varied.

246

Fig. S14.137. GFP flow cytometry data for a population of cells containing APF (PluxGTTG) and

ANF (PlacO1) loops and combinatorial promoter (Plux/lacO-GFP) to power-law and multiplication

function (Fig. S6.4A and S6.4D). (A) AHL was held constant at 0.75 μM and IPTG was varied.

(B) IPTG was held constant at 62.5 μM and AHL was varied.

247

Fig. S14.138. GFP flow cytometry data for a population of cells containing APF (PluxGTTG) and

ANF (PlacO1) loops and combinatorial promoter (Plux/lacO-GFP) to power-law and multiplication

function (Fig. S6.4A and S6.4D). (A) AHL was held constant at 0.375 μM and IPTG was varied.

(B) IPTG was held constant at 31.25 μM and AHL was varied.

248

Fig. S14.139. GFP flow cytometry data for a population of cells containing APF (PluxGTTG) and

ANF (PlacO1) loops and combinatorial promoter (Plux/lacO-GFP) to power-law and multiplication

function (Fig. S6.4A and S6.4D). (A) AHL was held constant at 0.188 μM and IPTG was varied.

(B) IPTG was held constant at 15.63 μM and AHL was varied.

249

Fig. S14.40 GFP flow cytometry data for a population of cells containing APF (PluxGTTG) and

ANF (PlacO1) loops and combinatorial promoter (Plux/lacO-GFP) to power-law and multiplication

function (Fig. S6.4A and S6.4D). (A) AHL was held constant at 0.094 μM and IPTG was varied.

(B) IPTG was held constant at 7.813 μM and AHL was varied.

250

Fig. S14.141. GFP flow cytometry data for a population of cells containing APF (PluxGTTG) and

ANF (PlacO1) loops and combinatorial promoter (Plux/lacO-GFP) to power-law and multiplication

function (Fig. S6.4A and S6.4D). IPTG was held constant at 3.906 μM and AHL was varied.

Fig. S14.142. GFP flow cytometry data for a population of cells containing APF (PluxGTTG) and

ANF (PlacO1) loops and combinatorial promoter (Plux/lacO-GFP) to power-law and multiplication

function (Fig. S6.4A and S6.4D). IPTG was held constant at 1.953 μM and AHL was varied.

251

Fig. S14.143. GFP flow cytometry data for a population of cells containing APF (PluxGTTG) and

ANF (PlacO1) loops and combinatorial promoter (Plux/lacO-GFP) to power-law and multiplication

function (Fig. S6.4A and S6.4D). (A) AHL was held constant at 3.0 μM and IPTG was varied. (B)

IPTG was held constant at 250 μM and AHL was varied.

252

Fig. S14.144. GFP flow cytometry data for a population of cells containing APF (PluxGTTG) and

ANF (PlacO1) loops and combinatorial promoter (Plux/lacO-GFP) to power-law and multiplication

function (Fig. S6.4A and S6.4D). (A) AHL was held constant at 1.5 μM and IPTG was varied.

(B) IPTG was held constant at 125 μM and AHL was varied.

253

Fig. S14.145. GFP flow cytometry data for a population of cells containing APF (PluxGTTG) and

ANF (PlacO1) loops and combinatorial promoter (Plux/lacO-GFP) to power-law and multiplication

function (Fig. S6.4A and S6.4D). (A) AHL was held constant at 0.75 μM and IPTG was varied.

(B) IPTG was held constant at 62.5 μM and AHL was varied.

254

Fig. S14.146. GFP flow cytometry data for a population of cells containing APF (PluxGTTG) and

ANF (PlacO1) loops and combinatorial promoter (Plux/lacO-GFP) to power-law and multiplication

function (Fig. S6.4A and S6.4D). (A) AHL was held constant at 0.375 μM and IPTG was varied.

(B) IPTG was held constant at 31.25 μM and AHL was varied.

255

Fig. S14.147. GFP flow cytometry data for a population of cells containing APF (PluxGTTG) and

ANF (PlacO1) loops and combinatorial promoter (Plux/lacO-GFP) to power-law and multiplication

function (Fig. S6.4A and S6.4D). (A) AHL was held constant at 0.188 μM and IPTG was varied.

(B) IPTG was held constant at 15.63 μM and AHL was varied.

256

Fig. S14.148. GFP flow cytometry data for a population of cells containing APF (PluxGTTG) and

ANF (PlacO1) loops and combinatorial promoter (Plux/lacO-GFP) to power-law and multiplication

function (Fig. S6.4A and S6.4D). (A) AHL was held constant at 0.094 μM and IPTG was varied.

(B) IPTG was held constant at 7.813 μM and AHL was varied.

257

Fig. S14.149. GFP flow cytometry data for a population of cells containing APF (PluxGTTG) and

ANF (PlacO1) loops and combinatorial promoter (Plux/lacO-GFP) to power-law and multiplication

function (Fig. S6.4A and S6.4D). IPTG was held constant at 3.906 μM and AHL was varied.

Fig. S14.150. GFP flow cytometry data for a population of cells containing APF (PluxGTTG) and

ANF (PlacO1) loops and combinatorial promoter (Plux/lacO-GFP) to power-law and multiplication

function (Fig. S6.4A and S6.4D). IPTG was held constant at 1.953 μM and AHL was varied.

258

Fig. S14.151. GFP flow cytometry data for a population of cells containing APF (PluxGAGC) and

ANF (PlacO1) loops and combinatorial promoter (Plux/lacO-GFP) to power-law and multiplication

function (Fig. S6.4A and S6.4E). (A) AHL was held constant at 3.0 μM and IPTG was varied. (B)

IPTG was held constant at 250 μM and AHL was varied.

259

Fig. S14.152. GFP flow cytometry data for a population of cells containing APF (PluxGAGC) and

ANF (PlacO1) loops and combinatorial promoter (Plux/lacO-GFP) to power-law and multiplication

function (Fig. S6.4A and S6.4E). (A) AHL was held constant at 1.5 μM and IPTG was varied. (B)

IPTG was held constant at 125 μM and AHL was varied.

260

Fig. S14.153. GFP flow cytometry data for a population of cells containing APF (PluxGAGC) and

ANF (PlacO1) loops and combinatorial promoter (Plux/lacO-GFP) to power-law and multiplication

function (Fig. S6.4A and S6.4E). (A) AHL was held constant at 0.75 μM and IPTG was varied.

(B) IPTG was held constant at 62.5 μM and AHL was varied.

261

Fig. S14.154. GFP flow cytometry data for a population of cells containing APF (PluxGAGC) and

ANF (PlacO1) loops and combinatorial promoter (Plux/lacO-GFP) to power-law and multiplication

function (Fig. S6.4A and S6.4E). (A) AHL was held constant at 0.375 μM and IPTG was varied.

(B) IPTG was held constant at 31.25 μM and AHL was varied.

262

Fig. S14.155. GFP flow cytometry data for a population of cells containing APF (PluxGAGC) and

ANF (PlacO1) loops and combinatorial promoter (Plux/lacO-GFP) to power-law and multiplication

function (Fig. S6.4A and S6.4E). (A) AHL was held constant at 0.188 μM and IPTG was varied.

(B) IPTG was held constant at 15.63 μM and AHL was varied.

263

Fig. S14.156. GFP flow cytometry data for a population of cells containing APF (PluxGAGC) and

ANF (PlacO1) loops and combinatorial promoter (Plux/lacO-GFP) to power-law and multiplication

function (Fig. S6.4A and S6.4E). (A) AHL was held constant at 0.094 μM and IPTG was varied.

(B) IPTG was held constant at 7.813 μM and AHL was varied.

264

Fig. S14.157. GFP flow cytometry data for a population of cells containing APF (PluxGAGC) and

ANF (PlacO1) loops and combinatorial promoter (Plux/lacO-GFP) to power-law and multiplication

function (Fig. S6.4A and S6.4E). IPTG was held constant at 3.906 μM and AHL was varied.

Fig. S14.158. GFP flow cytometry data for a population of cells containing APF (PluxGAGC) and

ANF (PlacO1) loops and combinatorial promoter (Plux/lacO-GFP) to power-law and multiplication

function (Fig. S6.4A and S6.4E). IPTG was held constant at 1.953 μM and AHL was varied.

265

15. List of biological parts used in this study

Part Description

and source

DNA sequence Mutation done in

this study

araC AraC coding

sequence(14)

atggctgaagcgcaaaatgatcccctgctgccgggatactcgtttaacgcccat

ctggtggcgggtttaacgccgattgaggccaacggttatctcgatttttttatcga

ccgaccgctgggaatgaaaggttatattctcaatctcaccattcgcggtcaggg

ggtggtgaaaaatcagggacgagaatttgtctgccgaccgggtgatattttgctg

ttcccgccaggagagattcatcactacggtcgtcatccggaggctcgcgaatg

gtatcaccagtgggtttactttcgtccgcgcgcctactggcatgaatggcttaact

ggccgtcaatatttgccaatacgggtttctttcgcccggatgaagcgcaccagc

cgcatttcagcgacctgtttgggcaaatcattaacgccgggcaaggggaaggg

cgctattcggagctgctggcgataaatctgcttgagcaattgttactgcggcgca

tggaagcgattaacgagtcgctccatccaccgatggataatcgggtacgcgag

gcttgtcagtacatcagcgatcacctggcagacagcaattttgatatcgccagcg

tcgcacagcatgtttgcttgtcgccgtcgcgtctgtcacatcttttccgccagcag

ttagggattagcgtcttaagctggcgcgaggaccaacgcattagtcaggcgaa

gctgcttttgagcactacccggatgcctatcgccaccgtcggtcgcaatgttggt

tttgacgatcaactctatttctcgcgagtatttaaaaaatgcaccggggccagccc

gagcgagtttcgtgccggttgtgaagaaaaagtgaatgatgtagccgtcaagtt

gtcataa

araC

(Truncated)

 atggctgaagcgcaaaatgatcccctgctgccgggatactcgtttaacgcccat

ctggtggcgggtttaacgccgattgaggccaacggttatctcgatttttttatcga

ccgaccgctgggaatgaaaggttatattctcaatctcaccattcgcggtcaggg

ggtggtgaaaaatcagggacgagaatttgtctgccgaccgggtgatattttgctg

ttcccgccaggagagattcatcactacggtcgtcatccggaggctcgcgaatg

gtatcaccagtgggtttactttcgtccgcgcgcctactggcatgaatggcttaact

ggccgtcaatatttgccaatacgggtttctttcgcccggatgaagcgcaccagc

cgcatttcagcgacctgtttgggcaaatcattaacgccgggcaaggggaaggg

cgctattcggagctgctggcgataaatctgcttgagcaattgttactgcggcgca

tggaagcgattaacgagtcgctccatccaccgatggataatcgggtacgcgag

gcttgtcagtacatcagcgatcacctggcagacagcaattttgatatcgccagcg

tcgcacagcatgtttgcttgtcgccgtcgcgtctgtcacatcttttccgccagcag

ttagggattagcgtcttaagctggcgcgaggaccaacgcattagtcaggcgaa

gctgcttttgagcactacccggatgcctatcgccaccgtcggtcgcaatgttggt

tttgacgatcaactctatttctcgcgagtatttaaaaaatgcaccggggccagccc

gagcgagtttcgtgccggttaa

GFP Enhanced Green

Fluorescent

Protein coding

sequence (76)

atgagtaaaggagaagaacttttcactggagttgtcccaattcttgttgaattagat

ggtgatgttaatgggcacaaattttctgtcagtggagagggtgaaggtgatgca

acatacggaaaacttacccttaaatttatttgcactactggaaaactacctgttcca

tggccaacacttgtcactactttcggttatggtgttcaatgctttgcgagataccca

gatcatatgaaacagcatgactttttcaagagtgccatgcccgaaggttatgtac

aggaaagaactatatttttcaaagatgacgggaactacaagacacgtgctgaag

tcaagtttgaaggtgatacccttgttaatagaatcgagttaaaaggtattgattttaa

agaagatggaaacattcttggacacaaattggaatacaactataactcacacaat

gtatacatcatggcagacaaacaaaagaatggaatcaaagttaacttcaaaatta

gacacaacattgaagatggaagcgttcaactagcagaccattatcaacaaaata

ctccaattggcgatggccctgtccttttaccagacaaccattacctgtccacacaa

tctgccctttcgaaagatcccaacgaaaagagagaccacatggtccttcttgagt

ttgtaacagctgctgggattacacatggcatggatgaactatacaaataa

Either a or c

LacI

LacI coding

sequence (2)

gtgaaaccagtaacgttatacgatgtcgcagagtatgccggtgtctcttatcaga

ccgtttcccgcgtggtgaaccaggccagccacgtttctgcgaaaacgcgggaa

aaagtggaagcggcgatggcggagctgaattacattcccaaccgcgtggcac

266

aacaactggcgggcaaacagtcgttgctgattggcgttgccacctccagtctgg

ccctgcacgcgccgtcgcaaattgtcgcggcgattaaatctcgcgccgatcaa

ctgggtgccagcgtggtggtgtcgatggtagaacgaagcggcgtcgaagcct

gtaaagcggcggtgcacaatcttctcgcgcaacgcgtcagtgggctgatcatta

actatccgctggatgaccaggatgccattgctgtggaagctgcctgcactaatgt

tccggcgttatttcttgatgtctctgaccagacacccatcaacagtattattttctcc

catgaagacggtacgcgactgggcgtggagcatctggtcgcattgggtcacca

gcaaatcgcgctgttagcgggcccattaagttctgtctcggcgcgtctgcgtctg

gctggctggcataaatatctcactcgcaatcaaattcagccgatagcggaacgg

gaaggcgactggagtgccatgtccggttttcaacaaaccatgcaaatgctgaat

gagggcatcgttcccactgcgatgctggttgccaacgatcagatggcgctggg

cgcaatgcgcgccattaccgagtccgggctgcgcgttggtgcggatatctcgg

tagtgggatacgacgataccgaagacagctcatgttatatcccgccgttaacca

ccatcaaacaggattttcgcctgctggggcaaaccagcgtggaccgcttgctgc

aactctctcagggccaggcggtgaagggcaatcagctgttgcccgtctcactg

gtgaaaagaaaaaccaccctggcgcccaatacgcaaaccgcctctccccgcg

cgttggccgattcattaatgcagctggcacgacaggtttcccgactggaaagcg

ggcagtga

LuxR LuxR coding

sequence

(BBa_C0062)

(77), induced by

AHL

(3OC6HSL)

atgaaaaacataaatgccgacgacacatacagaataattaataaaattaaagctt

gtagaagcaataatgatattaatcaatgcttatctgatatgactaaaatggtacatt

gtgaatattatttactcgcgatcatttatcctcattctatggttaaatctgatatttcaat

cctagataattaccctaaaaaatggaggcaatattatgatgacgctaatttaataa

aatatgatcctatagtagattattctaactccaatcattcaccaattaattggaatata

tttgaaaacaatgctgtaaataaaaaatctccaaatgtaattaaagaagcgaaaa

catcaggtcttatcactgggtttagtttccctattcatacggctaacaatggcttcg

gaatgcttagttttgcacattcagaaaaagacaactatatagatagtttatttttacat

gcgtgtatgaacataccattaattgttccttctctagttgataattatcgaaaaataa

atatagcaaataataaatcaaacaacgatttaaccaaaagagaaaaagaatgttt

agcgtgggcatgcgaaggaaaaagctcttgggatatttcaaaaatattaggttgc

agtgagcgtactgtcactttccatttaaccaatgcgcaaatgaaactcaatacaac

aaaccgctgccaaagtatttctaaagcaattttaacaggagcaattgattgcccat

actttaaaaattaataa

mCherry Red Fluorescent

Protein coding

sequence (76)

atggtgagcaagggcgaagaagataacatggccatcatcaaggagttcatgcg

cttcaaggtgcacatggagggctccgtgaacggccacgagttcgagatcgag

ggcgagggcgagggccgcccctacgagggcacccagaccgccaagctgaa

ggtgaccaagggtggccccctgcccttcgcctgggacatcctgtcccctcagtt

catgtacggctccaaggcctacgtgaagcaccccgccgacatccccgactact

tgaagctgtccttccccgagggcttcaagtgggagcgcgtgatgaacttcgag

gacggcggcgtggtgaccgtgacccaggactcctccctgcaggacggcgag

ttcatctacaaggtgaagctgcgcggcaccaacttcccctccgacggccccgta

atgcagaagaagaccatgggctgggaggcctcctccgagcggatgtaccccg

aggacggcgccctgaagggcgagatcaagcagaggctgaagctgaaggac

ggcggccactacgacgctgaggtcaagaccacctacaaggccaagaagccc

gtgcagctgcccggcgcctacaacgtcaacatcaagttggacatcacctccca

caacgaggactacaccatcgtggaacagtacgaacgcgccgagggccgcca

ctccaccggcggcatggacgagctgtacaagtaa

tetR tetR coding

sequence (2)

atgtccagattagataaaagtaaagtgattaacagcgcattagagctgcttaatg

aggtcggaatcgaaggtttaacaacccgtaaactcgcccagaagctaggtgta

gagcagcctacattgtattggcatgtaaaaaataagcgggctttgctcgacgcct

tagccattgagatgttagataggcaccatactcacttttgccctttagaaggggaa

agctggcaagattttttacgtaataacgctaaaagttttagatgtgctttactaagtc

atcgcgatggagcaaaagtacatttaggtacacggcctacagaaaaacagtat

gaaactctcgaaaatcaattagcctttttatgccaacaaggtttttcactagagaat

gcattatatgcactcagcgctgtggggcattttactttaggttgcgtattggaagat

caagagcatcaagtcgctaaagaagaaagggaaacacctactactgatagtat

gccgccattattacgacaagctatcgaattatttgatcaccaaggtgcagagcca

267

gccttcttattcggccttgaattgatcatatgcggattagaaaaacaacttaaatgt

gaaagtgggtcctaa

T7ptag T7 Tag coding

sequence (26)

atgattaccgtgcactagaataccattaacattgctaagaacgacttctctgacat

cgaactggctgctatcccgttcaacactctggctgaccattacggtgagcgttta

gctcgcgaacagttggcccttgagcatgagtcttacgagatgggtgaagcacg

cttccgcaagatgtttgagcgtcaacttaaagctggtgaggttgcggataacgct

gccgccaagcctctcatcactaccctactccctaagatgattgcacgcatcaac

gactggtttgaggaagtgaaagctaagcgcggcaagcgcccgacagccttcc

agttcctgtaggaaatcaagccggaagccgtagcgtacatcaccattaagacca

ctctggcttgcctaaccagtgctgacaatacaaccgttcaggctgtagcaagcg

caatcggtcgggccattgaggacgaggctcgcttcggtcgtatccgtgaccttg

aagctaagcacttcaagaaaaacgttgaggaacaactcaacaagcgcgtagg

gcacgtctacaagaaagcatttatgcaagttgtcgaggctgacatgctctctaag

ggtctactcggtggcgaggcgtggtcttcgtggcataaggaagactctattcatg

taggagtacgctgcatcgagatgctcattgagtcaaccggaatggttagcttaca

ccgccaaaatgctggcgtagtaggtcaagactctgagactatcgaactcgcac

ctgaatacgctgaggctatcgcaacccgtgcaggtgcgctggctggcatctctc

cgatgttccaaccttgcgtagttcctcctaagccgtggactggcattactggtggt

ggctattgggctaacggtcgtcgtcctctggcgctggtgcgtactcacagtaag

aaagcactgatgcgctacgaagacgtttacatgcctgaggtgtacaaagcgatt

aacattgcgcaaaacaccgcatggaaaatcaacaagaaagtcctagcggtcgc

caacgtaatcaccaagtggaagcattgtccggtcgaggacatccctgcgattga

gcgtgaagaactcccgatgaaaccggaagacatcgacatgaatcctgaggctc

tcaccgcgtggaaacgtgctgccgctgctgtgtaccgcaaggacaaggctcgc

aagtctcgccgtatcagccttgagttcatgcttgagcaagccaataagtttgctaa

ccataaggccatctggttcccttacaacatggactggcgcggtcgtgtttacgct

gtgtcaatgttcaacccgcaaggtaacgatatgaccaaaggactgcttacgctg

gcgaaaggtaaaccaatcggtaaggaaggttactactggctgaaaatccacgg

tgcaaactgtgcgggtgtcgataaggttccgttccctgagcgcatcaagttcatt

gaggaaaaccacgagaacatcatggcttgcgctaagtctccactggagaacac

ttggtgggctgagcaagattctccgttctgcttccttgcgttctgctttgagtacgct

ggggtacagcaccacggcctgagctataactgctcccttccgctggcgtttgac

gggtcttgctctggcatccagcacttctccgcgatgctccgagatgaggtaggt

ggtcgcgcggttaacttgcttcctagtgaaaccgttcaggacatctacgggattg

ttgctaagaaagtcaacgagattctacaagcagacgcaatcaatgggaccgata

acgaagtagttaccgtgaccgatgagaacactggtgaaatctctgagaaagtca

agctgggcactaaggcactggctggtcaatggctggcttacggtgttactcgca

gtgtgactaagcgttcagtcatgacgctggcttacgggtccaaagagttcggctt

ccgtcaacaagtgctggaagataccattcagccagctattgattccggcaaggg

tctgatgttcactcagccgaatcaggctgctggatacatggctaagctgatttgg

gaatctgtgagcgtgacggtggtagctgcggttgaagcaatgaactggcttaag

tctgctgctaagctgctggctgctgaggtcaaagataagaagactggagagatt

cttcgcaagcgttgcgctgtgcattgggtaactcctgatggtttccctgtgtggca

ggaatacaagaagcctattcagacgcgcttgaacctgatgttcctcggtcagttc

cgcttacagcctaccattaacaccaacaaagatagcgagattgatgcacacaaa

caggagtctggtatcgctcctaactttgtacacagccaagacggtagccaccttc

gtaagactgtagtgtgggcacacgagaagtacggaatcgaatcttttgcactgat

tcacgactccttcggtaccattccggctgacgctgcgaacctgttcaaagcagtg

cgcgaaactatggttgacacatatgagtcttgtgatgtactggctgatttctacga

ccagttcgctgaccagttgcacgagtctcaattggacaaaatgccagcacttcc

ggctaaaggtaacttgaacctccgtgacatcttagagtcggacttcgcgttcgca

taa

SupD SupD-tRNA

coding sequence

caattcggagagatgccggagcggctgaacggaccggtctctaaaaccggag

taggggcaactctaccgggggttcaaatccccctctctccgccactacagatcc

ttagcgaaagctaaggattttttttaagct

268

(BBa_K228001)

(26)

LAA + stop

codon

 aggcctgcagcaaacgacgaaaactacgctttagcagcttaa

LVA + stop

codon

 aggcctgctgcaaacgacgaaaactacgctttagtagcttaa

PBAD araBAD

promoter (14)

aagaaaccaattgtccatattgcatcagacattgccgtcactgcgtcttttactgg

ctcttctcgctaaccaaaccggtaaccccgcttattaaaagcattctgtaacaaag

cgggaccaaagccatgacaaaaacgcgtaacaaaagtgtctataatcacggca

gaaaagtccacattgattatttgcacggcgtcacactttgctatgccatagcattttt

atccataagattagcggatcctacctgacgctttttatcgcaactctctactgtttct

ccat

PJ231119 TTGACAGCTAGCTCAGTCCTAGGTATAATACTA

GT

LKsg3 aattcgctagcccaaaaaaa

SG6 gagttgcgataaaaagcgtc

gRNA GTTTTAGAGCTAGAAATAGCAAgttaaaataagGCTA

GTCCGTTATCAACTTGAAAAAGTGGCACCGAGT

CGGTGC

dCas9 ATGGATAAGAAATACTCAATAGGCTTAGCTATC

GGCACAAATAGCGTCGGATGGGCGGTGATCACT

GATGAATATAAGGTTCCGTCTAAAAAGTTCAAG

GTTCTGGGAAATACAGACCGCCACAGTATCAAA

AAAAATCTTATAGGGGCTCTTTTATTTGACAGTG

GAGAGACAGCGGAAGCGACTCGTCTCAAACGG

ACAGCTCGTAGAAGGTATACACGTCGGAAGAAT

CGTATTTGTTATCTACAGGAGATTTTTTCAAATG

AGATGGCGAAAGTAGATGATAGTTTCTTTCATC

GACTTGAAGAGTCTTTTTTGGTGGAAGAAGACA

AGAAGCATGAACGTCATCCTATTTTTGGAAATA

TAGTAGATGAAGTTGCTTATCATGAGAAATATC

CAACTATCTATCATCTGCGAAAAAAATTGGTAG

ATTCTACTGATAAAGCGGATTTGCGCTTAATCTA

TTTGGCCTTAGCGCATATGATTAAGTTTCGTGGT

CATTTTTTGATTGAGGGAGATTTAAATCCTGATA

ATAGTGATGTGGACAAACTATTTATCCAGTTGGT

ACAAACCTACAATCAATTATTTGAAGAAAACCC

TATTAACGCAAGTGGAGTAGATGCTAAAGCGAT

TCTTTCTGCACGATTGAGTAAATCAAGACGATTA

GAAAATCTCATTGCTCAGCTCCCCGGTGAGAAG

AAAAATGGCTTATTTGGGAATCTCATTGCTTTGT

CATTGGGTTTGACCCCTAATTTTAAATCAAATTT

TGATTTGGCAGAAGATGCTAAATTACAGCTTTC

AAAAGATACTTACGATGATGATTTAGATAATTT

ATTGGCGCAAATTGGAGATCAATATGCTGATTT

GTTTTTGGCAGCTAAGAATTTATCAGATGCTATT

TTACTTTCAGATATCCTAAGAGTAAATACTGAA

ATAACTAAGGCTCCCCTATCAGCTTCAATGATTA

AACGCTACGATGAACATCATCAAGACTTGACTC

TTTTAAAAGCTTTAGTTCGACAACAACTTCCAGA

AAAGTATAAAGAAATCTTTTTTGATCAATCAAA

AAACGGATATGCAGGTTATATTGATGGGGGAGC

TAGCCAAGAAGAATTTTATAAATTTATCAAACC

AATTTTAGAAAAAATGGATGGTACTGAGGAATT

ATTGGTGAAACTAAATCGTGAAGATTTGCTGCG

269

CAAGCAACGGACCTTTGACAACGGCTCTATTCC

CCATCAAATTCACTTGGGTGAGCTGCATGCTATT

TTGAGAAGACAAGAAGACTTTTATCCATTTTTAA

AAGACAATCGTGAGAAGATTGAAAAAATCTTGA

CTTTTCGAATTCCTTATTATGTTGGTCCATTGGC

GCGTGGCAATAGTCGTTTTGCATGGATGACTCG

GAAGTCTGAAGAAACAATTACCCCATGGAATTT

TGAAGAAGTTGTCGATAAAGGTGCTTCAGCTCA

ATCATTTATTGAACGCATGACAAACTTTGATAA

AAATCTTCCAAATGAAAAAGTACTACCAAAACA

TAGTTTGCTTTATGAGTATTTTACGGTTTATAAC

GAATTGACAAAGGTCAAATATGTTACTGAAGGA

ATGCGAAAACCAGCATTTCTTTCAGGTGAACAG

AAGAAAGCCATTGTTGATTTACTCTTCAAAACA

AATCGAAAAGTAACCGTTAAGCAATTAAAAGAA

GATTATTTCAAAAAAATAGAATGTTTTGATAGT

GTTGAAATTTCAGGAGTTGAAGATAGATTTAAT

GCTTCATTAGGTACCTACCATGATTTGCTAAAAA

TTATTAAAGATAAAGATTTTTTGGATAATGAAG

AAAATGAAGATATCTTAGAGGATATTGTTTTAA

CATTGACCTTATTTGAAGATAGGGAGATGATTG

AGGAAAGACTTAAAACATATGCTCACCTCTTTG

ATGATAAGGTGATGAAACAGCTTAAACGTCGCC

GTTATACTGGTTGGGGACGTTTGTCTCGAAAATT

GATTAATGGTATTAGGGATAAGCAATCTGGCAA

AACAATATTAGATTTTTTGAAATCAGATGGTTTT

GCCAATCGCAATTTTATGCAGCTGATCCATGATG

ATAGTTTGACATTTAAAGAAGACATTCAAAAAG

CACAAGTGTCTGGACAAGGCGATAGTTTACATG

AACATATTGCAAATTTAGCTGGTAGCCCTGCTAT

TAAAAAAGGTATTTTACAGACTGTAAAAGTTGT

TGATGAATTGGTCAAAGTAATGGGGCGGCATAA

GCCAGAAAATATCGTTATTGAAATGGCACGTGA

AAATCAGACAACTCAAAAGGGCCAGAAAAATTC

GCGAGAGCGTATGAAACGAATCGAAGAAGGTA

TCAAAGAATTAGGAAGTCAGATTCTTAAAGAGC

ATCCTGTTGAAAATACTCAATTGCAAAATGAAA

AGCTCTATCTCTATTATCTCCAAAATGGAAGAG

ACATGTATGTGGACCAAGAATTAGATATTAATC

GTTTAAGTGATTATGATGTCGATGCCATTGTTCC

ACAAAGTTTCCTTAAAGACGATTCAATAGACAA

TAAGGTCTTAACGCGTTCTGATAAAAATCGTGG

TAAATCGGATAACGTTCCAAGTGAAGAAGTAGT

CAAAAAGATGAAAAACTATTGGAGACAACTTCT

AAACGCCAAGTTAATCACTCAACGTAAGTTTGA

TAATTTAACGAAAGCTGAACGTGGAGGTTTGAG

TGAACTTGATAAAGCTGGTTTTATCAAACGCCA

ATTGGTTGAAACTCGCCAAATCACTAAGCATGT

GGCACAAATTTTGGATAGTCGCATGAATACTAA

ATACGATGAAAATGATAAACTTATTCGAGAGGT

TAAAGTGATTACCTTAAAATCTAAATTAGTTTCT

GACTTCCGAAAAGATTTCCAATTCTATAAAGTA

CGTGAGATTAACAATTACCATCATGCCCATGAT

GCGTATCTAAATGCCGTCGTTGGAACTGCTTTGA

TTAAGAAATATCCAAAACTTGAATCGGAGTTTG

TCTATGGTGATTATAAAGTTTATGATGTTCGTAA

270

AATGATTGCTAAGTCTGAGCAAGAAATAGGCAA

AGCAACCGCAAAATATTTCTTTTACTCTAATATC

ATGAACTTCTTCAAAACAGAAATTACACTTGCA

AATGGAGAGATTCGCAAACGCCCTCTAATCGAA

ACTAATGGGGAAACTGGAGAAATTGTCTGGGAT

AAAGGGCGAGATTTTGCCACAGTGCGCAAAGTA

TTGTCCATGCCCCAAGTCAATATTGTCAAGAAA

ACAGAAGTACAGACAGGCGGATTCTCCAAGGAG

TCAATTTTACCAAAAAGAAATTCGGACAAGCTT

ATTGCTCGTAAAAAAGACTGGGATCCAAAAAAA

TATGGTGGTTTTGATAGTCCAACGGTAGCTTATT

CAGTCCTAGTGGTTGCTAAGGTGGAAAAAGGGA

AATCGAAGAAGTTAAAATCCGTTAAAGAGTTAC

TAGGGATCACAATTATGGAAAGAAGTTCCTTTG

AAAAAAATCCGATTGACTTTTTAGAAGCTAAAG

GATATAAGGAAGTTAAAAAAGACTTAATCATTA

AACTACCTAAATATAGTCTTTTTGAGTTAGAAAA

CGGTCGTAAACGGATGCTGGCTAGTGCCGGAGA

ATTACAAAAAGGAAATGAGCTGGCTCTGCCAAG

CAAATATGTGAATTTTTTATATTTAGCTAGTCAT

TATGAAAAGTTGAAGGGTAGTCCAGAAGATAAC

GAACAAAAACAATTGTTTGTGGAGCAGCATAAG

CATTATTTAGATGAGATTATTGAGCAAATCAGT

GAATTTTCTAAGCGTGTTATTTTAGCAGATGCCA

ATTTAGATAAAGTTCTTAGTGCATATAACAAAC

ATAGAGACAAACCAATACGTGAACAAGCAGAA

AATATTATTCATTTATTTACGTTGACGAATCTTG

GAGCTCCCGCTGCTTTTAAATATTTTGATACAAC

AATTGATCGTAAACGATATACGTCTACAAAAGA

AGTTTTAGATGCCACTCTTATCCATCAATCCATC

ACTGGTCTTTATGAAACACGCATTGATTTGAGTC

AGCTAGGAGGTGAC

PBAD _RD1 atagcatttttatccataagattagcggatcctacctgacgctttttatcgcaactct

ctactgtttctccataccgtttttttgggctagc

ExsA ExsA gene (48) atgcaaggagccaaatctcttggccgaaagcagataacgtcttgtcattggaac

attccaactttcgaatacagggtaaacaaggaagagggcgtatatgttctgctcg

agggcgaactgaccgtccaggacatcgattccactttttgcctggcgcctggcg

agttgcttttcgtccgccgcggaagctatgtcgtaagtaccaagggaaaggaca

gccgaatactctggattccattatctgcccagtttctacaaggcttcgtccagcgc

ttcggcgcgctgttgagtgaagtcgagcgttgcgacgagcccgtgccgggcat

catcgcgttcgctgccacgcctctgctggccggttgcgtcaaggggttgaagg

aattgcttgtgcatgagcatccgccgatgctcgcctgcctgaagatcgaggagtt

gctgatgctcttcgcgttcagtccgcaggggccgctgctgatgtcggtcctgcg

gcaactgagcaaccggcatgtcgagcgtctgcagctattcatggagaagcact

acctcaacgagtggaagctgtccgacttctcccgcgagttcggcatggggctg

accaccttcaaggagctgttcggcagtgtctatggggtttcgccgcgcgcctgg

atcagcgagcggagaatcctctatgcccatcagttgctgctcaacagcgacatg

agcatcgtcgacatcgccatggaggcgggcttttccagtcagtcctatttcaccc

agagctatcgccgccgtttcggctgcacgccgagccgctcgcggcaggggaa

ggacgaatgccgggctaaaaataactga

ExsD ExsD gene (48) atggagcaggaagacgataagcagtactcccgagaagcggtgttcgctggca

ggcgggtatccgtggtgggctcggacgcccgctcgcggggtcgggtgccgg

gttacgcatcgagcagtttgtatcgtgagtccggaatcatcagtgcgcggcaact

ggcgttgctgcagcggatgctgccgcgcctgcggctggagcaactgttccgct

gcgagtggttgcagcagcgcctggcgcgcggcctggcgctggggcgcgaa

271

gaggtgcggcagattctcctctgcgcggcgcaggacgacgacggctggtgct

ccgaactgggcgaccgggtcaacctcgccgtgccgcagtcgatgatcgactg

ggtcctgctgccggtctatggctggtgggaaagcctgctcgaccaggcgatcc

ccggctggcgcctgtcgctggtggagctggagacccagtcccggcaactgcg

agtcaagtccgaattctggtcccgcgtggccgagctggagccggagcaggcc

cgcgaggaactggccagggtcgccaagtgccaggcgcgcacccaggaaca

ggtggccgaactggccggcaagctggagacggcttcggcactggcgaagag

cgcctggccgaactggcagcggggcatggcgacgctgctcgccagcggcg

ggctggccggcttcgagccgatccccgaggtcctcgaatgcctctggcaacct

ctctgccggctggacgacgacgtcggcgcggcggacgccgtccaggcctgg

ctgcacgaacgcaacctgtgccaggcacaggatcacttctactggcagagctg

a

pexsD

Promoter (48) gaaggacgaatgccgggctaaaaataactgacgttttttgaaagcccggtagc

ggctgcatgagtagaatcggcccaaat

PlacO PLlacO-1

promoter (2)

aattgtgagcggataacaattgacattgtgagcggataacaagatactgagca

catcagcaggacgcactgacc

Placo/teto tacaacgtcgtgttaaattgtgagcggataacaatttagttgacatttatgcttccg

gctcgtataattccacccctatcagtgatagagagcgttacccaac

PlacO1 ttgacattgtgagcggataacaagatactgagcacatcagcaggacgcactga

cc

PLlacO-

1_Deleting 1

binding site

Plux Lux promoter,

BBa_R0062

(77)

acctgtaggatcgtacaggtttacgcaagaaaatggtttgttatagtcgaataaa

Plux(AAT) aattgtaggatcgtacaggtttacgcaagaaaatggtttgttatagtcgaataaa The “acct” of

Plux (in bold) was

mutated to “aatt”

by site directed

Mutagenesis.

Plux(TGT) tgttgtaggatcgtacaggtttacgcaagaaaatggtttgttatagtcgaataaa The “acct” of

Plux (in bold) was

mutated to “tgtt”

by site directed

Mutagenesis.

Plux(LBL) acctgtaggatcgtacaggtttacgcaagaaaatggtttgttactttcgaataaa The “tag” of Plux

(in bold) was

mutated to “ctt”

by site directed

Mutagenesis.

PluxM56 tggggtaggatcgtacaggtttacgcaagaaaatggtttgttatagtcgaataaa The “acct” of

Plux (in bold) was

mutated to

“TGGG” by site

directed

Mutagenesis.

plux/laco acctgtaggatcgtacaggtttacttgtgagcggataacaatatagtgtgtggaat

tgtgagcggataacaatt

plux/teto acctgtaggatcgtacaggtttacgcaagaaaatggtttgttatagtcgaatatcc

ctatcagtgatagaga

PrhlR tcctgtgaaatctggcagttaccgttagctttcgaattggctaaaaagtgttc

272

Pteto PLtetO-1

promoter (2)

tccctatcagtgatagagattgacatccctatcagtgatagagatactgagcacat

cagcaggacgcactgacc

Pteto* PLtetO*

promoter (48)

ttttcagcaggacgcactgacctccctatcagtgatagagattgacatccctatca

gtgatagagatactgagcacatat

PT7 taatacgactcactatagggaga

RBS1 BBa_B0030 attaaagaggagaaa

RBS2 BBa_B0031 tcacacaggaaacc

RBS3 BBa_B0034 aaagaggagaaa

RiboJ sTRSV HHRz agctgtcaccggatgtgctttccggtctgatgagtccgtgaggacgaaacagcc

tctacaaataattttgtttaa

rrnB T1

terminator

transcription

terminator T1

from the E.coli

rrnB gene

caaataaaacgaaaggctcagtcgaaagactgggcctttcgttttatctgttgttt

gtcggtgaacgctctcctgagtaggacaaat

p15A medium-copy-

number p15A

origin of

replication

cggtcgttcgactgcggcgagcggaaatggcttacgaacggggcggagattt

cctggaagatgccaggaagatacttaacagggaagtgagagggccgcggca

aagccgtttttccataggctccgcccccctgacaagcatcacgaaatctgacgct

caaatcagtggtggcgaaacccgacaggactataaagataccaggcgtttccc

cctggcggctccctcgtgcgctctcctgttcctgcctttcggtttaccggtgtcatt

ccgctgttatggccgcgtttgtctcattccacgcctgacactcagttccgggtag

gcagttcgctccaagctggactgtatgcacgaaccccccgttcagtccgaccg

ctgcgccttatccggtaactatcgtcttgagtccaacccggaaagacatgcaaa

agcaccactggcagcagccactggtaattgatttagaggagttagtcttgaagtc

atgcgccggttaaggctaaactgaaaggacaagttttggtgactgcgctcctcc

aagccagttacctcggttcaaagagttggtagctcagagaaccttcgaaaaacc

gccctgcaaggcggttttttcgttttcagagcaagagattacgcgcagaccaaa

acgatctcaagaagatcatcttattaatcagataaaatatttctagatttcagtgcaa

tttatctcttcaaatgtagcacctgaagtcagccccatacgatataagttgtt

pSC101 Low-copy

replication

origin

gtacgggttttgctgcccgcaaacgggctgttctggtgttgctagtttgttatcaga

atcgcagatccggcttcaggtttgccggctgaaagcgctatttcttccagaattgc

catgattttttccccacgggaggcgtcactggctcccgtgttgtcggcagctttga

ttcgataagcagcatcgcctgtttcaggctgtctatgtgtgactgttgagctgtaac

aagttgtctcaggtgttcaatttcatgttctagttgctttgttttactggtttcacctgtt

ctattaggtgttacatgctgttcatctgttacattgtcgatctgttcatggtgaacag

ctttaaatgcaccaaaaactcgtaaaagctctgatgtatctatcttttttacaccgttt

tcatctgtgcatatggacagttttccctttgatatctaacggtgaacagttgttctact

tttgtttgttagtcttgatgcttcactgatagatacaagagccataagaacctcaga

tccttccgtatttagccagtatgttctctagtgtggttcgttgtttttgcgtgagccat

gagaacgaaccattgagatcatgcttactttgcatgtcactcaaaaattttgcctca

aaactggtgagctgaatttttgcagttaaagcatcgtgtagtgtttttcttagtccgtt

acgtaggtaggaatctgatgtaatggttgttggtattttgtcaccattcatttttatct

ggttgttctcaagttcggttacgagatccatttgtctatctagttcaacttggaaaat

caacgtatcagtcgggcggcctcgcttatcaaccaccaatttcatattgctgtaag

tgtttaaatctttacttattggtttcaaaacccattggttaagccttttaaactcatggt

agttattttcaagcattaacatgaacttaaattcatcaaggctaatctctatatttgcc

ttgtgagttttcttttgtgttagttcttttaataaccactcataaatcctcatagagtattt

gttttcaaaagacttaacatgttccagattatattttatgaatttttttaactggaaaag

ataaggcaatatctcttcactaaaaactaattctaatttttcgcttgagaacttggca

tagtttgtccactggaaaatctcaaagcctttaaccaaaggattcctgatttccaca

gttctcgtcatcagctctctggttgctttagctaatacaccataagcattttccctact

gatgttcatcatctgagcgtattggttataagtgaacgataccgtccgttctttcctt

gtagggttttcaatcgtggggttgagtagtgccacacagcataaaattagcttggt

ttcatgctccgttaagtcatagcgactaatcgctagttcatttgctttgaaaacaact

273

aattcagacatacatctcaattggtctaggtgattttaatcactataccaattgagat

gggctagtcaatgataattactagtccttttcctttgagttgtgggtatctgtaaattc

tgctagacctttgctggaaaacttgtaaattctgctagaccctctgtaaattccgct

agacctttgtgtgttttttttgtttatattcaagtggttataatttatagaataaagaaa

gaataaaaaaagataaaaagaatagatcccagccctgtgtataactcactacttt

agtcagttccgcagtattacaaaaggatgtcgcaaacgctgtttgctcctctacaa

aacagaccttaaaaccctaaaggcttaagtagcaccctcgcaagctcgggcaa

atcgctgaatattccttttgtctccgaccatcaggcacctgagtcgctgtctttttcg

tgacattcagttcgctgcgctcacggctctggcagtgaatgggggtaaatggca

ctacaggcgccttttatggattcatgcaaggaaactacccataatacaagaaaag

cccgtcacgggcttctcagggcgttttatggcgggtctgctatgtggtgctatctg

actttttgctgttcagcagttcctgccctctgattttccagtctgaccacttcggatta

tcccgtgacaggtcattcagactggctaatgcacccagtaaggcagcggtatca

tcaacaggcttacccgtcttactgtccctagt

ColE1 High-copy

replication

origin

cgttcggctgcggcgagcggtatcagctcactcaaaggcggtaatacggttatc

cacagaatcaggggataacgcaggaaagaacatgtgagcaaaaggccagca

aaaggccaggaaccgtaaaaaggccgcgttgctggcgtttttccataggctcc

gcccccctgacgagcatcacaaaaatcgacgctcaagtcagaggtggcgaaa

cccgacaggactataaagataccaggcgtttccccctggaagctccctcgtgc

gctctcctgttccgaccctgccgcttaccggatacctgtccgcctttctcccttcg

ggaagcgtggcgctttctcaatgctcacgctgtaggtatctcagttcggtgtagg

tcgttcgctccaagctgggctgtgtgcacgaaccccccgttcagcccgaccgct

gcgccttatccggtaactatcgtcttgagtccaacccggtaagacacgacttatc

gccactggcagcagccactggtaacaggattagcagagcgaggtatgtaggc

ggtgctacagagttcttgaagtggtggcctaactacggctacactagaaggaca

gtatttggtatctgcgctctgctgaagccagttaccttcggaaaaagagttggtag

ctcttgatccggcaaacaaaccaccgctggtagcggtggtttttttgtttgcaagc

agcagattacgcgcagaaaaaaaggatctcaagaagatcctttgatcttttctac

ggggtctgacgctcagtggaacgaaaactcacgttaagggattttggtcatg

cmR aaattacgccccgccctgccactcatcgcagtactgttgtaattcattaagcattct

gccgacatggaagccatcacaaacggcatgatgaacctgaatcgccagcggc

atcagcaccttgtcgccttgcgtataatatttgcccatggtgaaaacgggggcga

agaagttgtccatattggccacgtttaaatcaaaactggtgaaactcacccaggg

attggctgagacgaaaaacatattctcaataaaccctttagggaaataggccag

gttttcaccgtaacacgccacatcttgcgaatatatgtgtagaaactgccggaaat

cgtcgtggtattcactccagagcgatgaaaacgtttcagtttgctcatggaaaac

ggtgtaacaagggtgaacactatcccatatcaccagctcaccgtctttcattgcc

atacgaaattccggatgagcattcatcaggcgggcaagaatgtgaataaaggc

cggataaaacttgtgcttatttttctttacggtctttaaaaaggccgtaatatccagc

tgaacggtctggttataggtacattgagcaactgactgaaatgcctcaaaatgttc

tttacgatgccattgggatatatcaacggtggtatatccagtgatttttttctccatttt

agcttccttagctcctgaaaatctcgataactcaaaaaatacgcccggtagtgat

cttatttcattatggtgaaagttggaacctcttacgtgcccgatcaa

ampR gtaaacttggtctgacagttaccaatgcttaatcagtgaggcacctatctcagcg

atctgtctatttcgttcatccatagttgcctgactccccgtcgtgtagataactacga

tacgggagggcttaccatctggccccagtgctgcaatgataccgcgagaccca

cgctcaccggctccagatttatcagcaataaaccagccagccggaagggccg

agcgcagaagtggtcctgcaactttatccgcctccatccagtctattaattgttgc

cgggaagctagagtaagtagttcgccagttaatagtttgcgcaacgttgttgcca

ttgctacaggcatcgtggtgtcacgctcgtcgtttggtatggcttcattcagctcc

ggttcccaacgatcaaggcgagttacatgatcccccatgttgtgcaaaaaagcg

gttagctccttcggtcctccgatcgttgtcagaagtaagttggccgcagtgttatc

actcatggttatggcagcactgcataattctcttactgtcatgccatccgtaagatg

cttttctgtgactggtgagtactcaaccaagtcattctgagaatagtgtatgcggc

gaccgagttgctcttgcccggcgtcaatacgggataataccgcgccacatagc

274

agaactttaaaagtgctcatcattggaaaacgttcttcggggcgaaaactctcaa

ggatcttaccgctgttgagatccagttcgatgtaacccactcgtgcacccaactg

atcttcagcatcttttactttcaccagcgtttctgggtgagcaaaaacaggaaggc

aaaatgccgcaaaaaagggaataagggcgacacggaaatgttgaatactcata

ctcttcctttttcaatattattgaagcatttatcagggttattgtctcatgagcggata

catatttgaatgtatttagaaaaataaacaaataggggttccgcgcacatttcccc

gaaaagtgccacct

kanR tcgaaccccagagtcccgctcagaagaactcgtcaagaaggcgatagaaggc

gatgcgctgcgaatcgggagcggcgataccgtaaagcacgaggaagcggtc

agcccattcgccgccaagctcttcagcaatatcacgggtagccaacgctatgtc

ctgatagcggtccgccacacccagccggccacagtcgatgaatccagaaaag

cggccattttccaccatgatattcggcaagcaggcatcgccatgggtcacgacg

agatcctcgccgtcgggcatgcgcgccttgagcctggcgaacagttcggctgg

cgcgagcccctgatgctcttcgtccagatcatcctgatcgacaagaccggcttc

catccgagtacgtgctcgctcgatgcgatgtttcgcttggtggtcgaatgggcag

gtagccggatcaagcgtatgcagccgccgcattgcatcagccatgatggatact

ttctcggcaggagcaaggtgagatgacaggagatcctgccccggcacttcgcc

caatagcagccagtcccttcccgcttcagtgacaacgtcgagcacagctgcgc

aaggaacgcccgtcgtggccagccacgatagccgcgctgcctcgtcctgcag

ttcattcagggcaccggacaggtcggtcttgacaaaaagaaccgggcgcccct

gcgctgacagccggaacacggcggcatcagagcagccgattgtctgttgtgc

ccagtcatagccgaatagcctctccacccaagcggccggagaacctgcgtgc

aatccatcttgttcaatcatgcgaaacgatcctcatcctgtctcttgatcagatcttg

atcccctgcgccatcagatccttggcggcaagaaagccatccagtttactttgca

gggcttcccaaccttaccagagggcgccccagctggcaattcc

275

16. Plasmid Maps

276

277

278

279

280

281

282

283

284

285

17. List of strains used in this study

Figure Plasmids
Fig. 1B, Fig. S2.1, Fig. S2.5A LR123 + MR155 + MR159

Fig. 1G MR92 + MR159 + MR175

Fig. 2A MR113 + MR149 + MR170

Fig. 2D MR113 + MR138 + MR154

Fig. 2G, Fig. S3.4B MR79 + MR114 + MR126

Fig. 3C, Fig. S5.1 MR125 + MR153 + MR158

Fig. 3G, Fig.S6.5B MR153 + MR158 + MR338

Fig. 3G, Fig.S6.5D MR153 + MR158 + MR340

Fig. 3G, Fig.S6.5F MR153 + MR158 + MR339

Fig. 3G, Fig.S6.5H MR153 + MR158 + MR125

Fig. 4C, Fig. S7.11A LR7 + LR309 + LR313

Fig. 4F, Fig S7.14A, Fig. S9.4, Fig. S9.6 LR7 + LR218 + LR310

Fig. S2.5B MR83 + MR155 + MR159

Fig. S2.9A LR1 + LR93

Fig. S2.13A - OL Wild type, Fig. S2.14 RF303

Fig. S2.13A - APF Wild type LR324

Fig. S2.13B - OL mutated LR327

Fig. S2.13B - APF mutated LR325

Fig. S2.14 - PluxAAT LR172-5

Fig. S2.14 - PluxTGT LR172-1

Fig. S5.5 MR21 + MR35 + MR83

Fig. S5.8 MR149 + RF45

Fig.S6.4A, C MR35 + MR41 + MR378

Fig.S6.4A, D MR35 + MR41 + MR380

Fig.S6.4A, F MR35 + MR41 + MR379

Fig.S6.7B MR132 + MR343 + MR378

Fig.S6.7D MR132 + MR343 + MR380

Fig.S6.7F MR132 + MR343 + MR379

Fig.S6.7H MR132 + MR343 + MR20

Fig. S7.5A LR113 + YR3

286

Fig. S7.5A - Control LR329 + YR3

Fig. S7.7A LR7+LR113

Fig. S7.7B LR7+LR220

Fig. S7.7C LR7+LR329

Fig. S7.7D LR7+LR110

Fig. S7.9C LR7+LR285+LR309

Fig. S7.9D LR7+LR309

Fig. S7.13 LR7+LR171

Fig. S7.18A MR153 + MR158 + MR168

Fig. S.8.7 MR401 + MR402

Fig. S8.6 LKsg3: LK4 +RF42 + YLP1

Fig. S8.6 SG6: LK8 +RF42 + YLP1

Fig. S8.6 Control: YLP286 +RF42 + LR255

Fig.S8.8 Control: RF303+LR319

LR326+LR319

Fig.S8.10 Control: LR324+LR319

LR364+LR319

LR365+LR319

LR366+LR319

LR367+LR319

LR368+LR319

LR369+LR319

LR370+LR319

287

18. Supplementary References

1. T. Sambrook, J., Fritsch, E. F., and Maniatis, Molecular Cloning: A Laboratory Manual
(Cold Spring Harbor Laboratory Press, Plainview, New York, ed. 2, 1989).

2. R. Lutz, H. Bujard, Independent and tight regulation of transcriptional units in Escherichia
coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. Nucleic Acids Res. 25,
1203–1210 (1997).

3. G. Medina, K. Juárez, B. Valderrama, G. Soberón-Chávez, Mechanism of Pseudomonas
aeruginosa RhlR Transcriptional Regulation of the rhlAB Promoter. J. Bacteriol. 185,
5976–5983 (2003).

4. R. Daniel, J. R. Rubens, R. Sarpeshkar, T. K. Lu, Synthetic analog computation in living
cells. Nature. 497, 619–623 (2013).

5. D. Madar, E. Dekel, A. Bren, U. Alon, Negative auto-regulation increases the input
dynamic-range of the arabinose system of Escherichia coli. BMC Syst. Biol. 5, 111 (2011).

6. A. A. K. Nielsen, B. S. Der, J. Shin, P. Vaidyanathan, V. Paralanov, E. A. Strychalski, D. Ross,
D. Densmore, C. A. Voigt, Genetic circuit design automation. Science. 352 (2016),
doi:10.1126/science.aac7341.

7. M. B. Elowitz, A. J. Levine, E. D. Siggia, P. S. Swain, Stochastic gene expression in a single
cell. Science (80-.). 297 (2002), doi:10.1126/science.1070919.

8. P. S. Swain, M. B. Elowitz, E. D. Siggia, Intrinsic and extrinsic contributions to stochasticity
in gene expression. Proc. Natl. Acad. Sci. U. S. A. 99 (2002), doi:10.1073/pnas.162041399.

9. E. M. Ozbudak, M. Thattai, I. Kurtser, A. D. Grossman, A. Van Oudenaarden, Regulation of
noise in the expression of a single gene. Nat. Genet. 31 (2002), doi:10.1038/ng869.

10. P. R. Milo Ron, Biology by the Numbers (2008).
11. G. K. Ackers, A. D. Johnsontt, M. A. Shea, Quantitative model for gene regulation by A

phage repressor. Proc. NatL Acad. Sci. USA. 79, 1129–1133 (1982).
12. L. Bintu, N. E. Buchler, H. G. Garcia, U. Gerland, T. Hwa, J. Kondev, R. Phillips,

Transcriptional regulation by the numbers: models. Curr Opin Genet Dev. 15, 116–124
(2005).

13. R. S. Cox, M. G. Surette, M. B. Elowitz, M. B. Elowitz, Programming gene expression with
combinatorial promoters. Mol. Syst. Biol. 3 (2007), doi:10.1038/msb4100187.

14. N. L. Lee, W. 0 Gielow, R. G. Wallace, Mechanism of araC autoregulation and the domains
of two overlapping promoters, Pc and PBAD’ in the L-arabinose regulatory region
ofEscherichia coli. Biochemistry. 78, 752–756 (1981).

15. J. B. Andersen, C. Sternberg, L. K. Poulsen, S. P. Bjørn, M. Givskov, S. Molin, New unstable
variants of green fluorescent protein for studies of transient gene expression in bacteria.
Appl. Environ. Microbiol. 64, 2240–2246 (1998).

16. A. Tamsir, J. J. Tabor, C. A. Voigt, Robust multicellular computing using genetically
encoded NOR gates and chemical “wiresg.” Nature. 469 (2011),
doi:10.1038/nature09565.

17. R. Daniel, T. Lu, J. Rubens, Front-End Analog Signal Processing For Cellular Computation
(2017), pp. 1–12.

18. K. Jarrett, K. Kavukcuoglu, M. A. Ranzato, Y. LeCun, in IEEE 12th International Conference
on Computer Vision (IEEE, 2009), pp. 2146–2153.

288

19. V. Nair, G. E. Hinton, in ICML 27th International Conference on Machine Learning (ICML,
2010).

20. Smooth maximum - Wikipedia, (available at
https://en.wikipedia.org/wiki/Smooth_maximum).

21. T. S. Gardner, C. R. Cantor, J. J. Collins, Construction of a genetic toggle switch in
Escherichia coli. Nature. 403, 339–342 (2000).

22. T. H. Segall-Shapiro, A. J. Meyer, A. D. Ellington, E. D. Sontag, C. A. Voigt, A “resource
allocator” for transcription based on a highly fragmented T7 RNA polymerase. Mol. Syst.
Biol. (2014), doi:10.15252/msb.20145299.

23. A. A. K. Nielsen, C. A. Voigt, Multi-input CRISPR/Cas genetic circuits that interface host
regulatory networks. Mol Syst Biol (2014), doi:10.15252/msb.20145735.

24. D. E. Paschon, M. Ostermeier, Construction of Protein Fragment Complementation
Libraries Using Incremental Truncation. Methods Enzymol. 388, 103–116 (2004).

25. M. Kanwar, R. C. Wright, A. Date, J. Tullman, M. Ostermeier, Protein Switch Engineering
by Domain Insertion. Methods Enzymol. 523, 369–388 (2013).

26. J. C. Anderson, C. A. Voigt, A. P. Arkin, Environmental signal integration by a modular and
gate. Mol. Syst. Biol. 3 (2007), doi:10.1038/msb4100173.

27. D. Jeruzalmi, T. A. Steitz, Structure of T7 RNA polymerase complexed to the
transcriptional inhibitor T7 lysozyme. EMBO J. 17, 4101–4113 (1998).

28. Part:BBa B0031 - parts.igem.org, (available at http://parts.igem.org/Part:BBa_B0031).
29. D. E. Knuth, in The Art of Computer Programming (Addison-Wesley Professional, 2008),

pp. 64–74.
30. J. A. Anderson, An introduction to neural networks (MIT Press, 1995).
31. J. A. Snyman, PRACTICAL MATHEMATICAL OPTIMIZATION: An Introduction to Basic

Optimization Theory and Classical and New Gradient-Based Algorithms (Springer, Boston,
MA, 2005).

32. N. Qian, On the momentum term in gradient descent learning algorithms. Neural
Networks. 12, 145–151 (1999).

33. R. Daniel, L. Rizik, L. Daniel, in NanoCom ’17 Proceedings of the 4th ACM International
Conference on Nanoscale Computing and Communication (Washington, D.C., 2017).

34. R. H. Walden, Analog-to-digital converter survey and analysis. IEEE J. Sel. Areas Commun.
17, 539–550 (1999).

35. G. Avitabile, M. Forti, S. Manetti, M. Marini, On a class of nonsymmetrical neural
networks with application to ADC. IEEE Trans. Circuits Syst. 38, 202–209 (1991).

36. L. Danial, N. Wainstein, S. Kraus, S. Kvatinsky, Breaking Through the Speed-Power-
Accuracy Tradeoff in ADCs using a Memristive Neuromorphic Architecture. IEEE Trans.
Emerg. Top. Comput. Intell. 2, 396–409 (2018).

37. D. W. Selinger, K. J. Cheung, R. Mei, E. M. Johansson, C. S. Richmond, F. R. Blattner, D. J.
Lockhart, G. M. Church, RNA expression analysis using a 30 base pair resolution
Escherichia coli genome array. Nat. Biotechnol. 18, 1262–1268 (2000).

38. J. Georg, B. rn Voß, I. Scholz, J. Mitschke, A. Wilde, W. R. Hess, Evidence for a major role
of antisense RNAs in cyanobacterial gene regulation. Mol. Syst. Biol. (2009),
doi:10.1038/msb.2009.63.

39. M. Güell, V. van Noort, E. Yus, W.-H. Chen, J. Leigh-Bell, K. Michalodimitrakis, T. Yamada,

289

M. Arumugam, T. Doerks, S. Kühner, M. Rode, M. Suyama, S. Schmidt, A.-C. Gavin, P.
Bork, L. Serrano, Transcriptome complexity in a genome-reduced bacterium. Science.
326, 1268–1271 (2009).

40. J. A. N. Brophy, C. A. Voigt, Antisense transcription as a tool to tune gene expression.
Mol. Syst. Biol. (2016), doi:10.15252/MSB.20156540.

41. A. Chatterjee, L. Drews, S. Mehra, E. Takano, Y. N. Kaznessis, Convergent Transcription in
the Butyrolactone Regulon in Streptomyces coelicolor Confers a Bistable Genetic Switch
for Antibiotic Biosynthesis. PLoS One. 6, 21974 (2011).

42. A. Chatterjee, C. M. Johnson, C.-C. Shu, Y. N. Kaznessis, D. Ramkrishna, G. M. Dunny, W.-
S. Hu, Convergent transcription confers a bistable switch in Enterococcus faecalis
conjugation. Proc. Natl. Acad. Sci. 108, 9721–9726 (2011).

43. E. M. Fozo, M. R. Hemm, G. Storz, Small toxic proteins and the antisense RNAs that
repress them. Microbiol. Mol. Biol. Rev. 72, 579–589 (2008).

44. C. Lou, B. Stanton, Y.-J. Chen, B. Munsky, C. A. Voigt, N. B. Author, Ribozyme-based
insulator parts buffer synthetic circuits from genetic context. Nat Biotechnol. 30, 1137–
1142 (2012).

45. T. S. Moon, C. Lou, A. Tamsir, B. C. Stanton, C. A. Voigt, Genetic programs constructed
from layered logic gates in single cells. Nature. 491, 249–53 (2012).

46. J. R. Rubens, G. Selvaggio, T. K. Lu, Synthetic mixed-signal computation in living cells. Nat.
Commun. 7 (2016), doi:10.1038/ncomms11658.

47. B. Murmann, B. E. Boser, A 12-bit 75-MS/s Pipelined ADC Using Open-Loop Residue
Amplification. IEEE J. Solid-State Circuits. 38, 2040–2050 (2003).

48. T. Shopera, W. R. Henson, A. Ng, Y. J. Lee, K. Ng, T. S. Moon, Robust, tunable genetic
memory from protein sequestration combined with positive feedback. Nucleic Acids Res.
43, 9086–9094 (2015).

49. J. E. Ferrell, Signaling Motifs and Weber’s Law. Mol. Cell. 36, 724–727 (2009).
50. K. S. Nilgiriwala, J. Joséjiméjoséjiménez, P. M. Rivera, D. Del Vecchio, Synthetic Tunable

Amplifying Buffer Circuit in E. coli (2014), doi:10.1021/sb5002533.
51. H. M. Salis, E. A. Mirsky, C. A. Voigt, Automated design of synthetic ribosome binding

sites to control protein expression. Nat. Biotechnol. 27, 946–950 (2009).
52. H. Alper, C. Fischer, E. Nevoigt, G. Stephanopoulos, Tuning genetic control through

promoter engineering. Proc. Natl. Acad. Sci. U. S. A. 102, 12678–12683 (2005).
53. Y. Li, Y. Jiang, H. Chen, W. Liao, Z. Li, R. Weiss, Z. Xie, Modular construction of mammalian

gene circuits using TALE transcriptional repressors. Nat. Chem. Biol. 11, 207–213 (2015).
54. B. C. Stanton, A. A. K. Nielsen, A. Tamsir, K. Clancy, T. Peterson, C. A. Voigt, Genomic

mining of prokaryotic repressors for orthogonal logic gates. Nat. Chem. Biol. 10, 99–105
(2014).

55. X. Liu, S. T. P. Gupta, D. Bhimsaria, J. L. Reed, J. Jos´, J. A. Rodríguez-Martínez, A. Z. Ansari,
S. Raman, De novo design of programmable inducible promoters. Nucleic Acids Res. 47,
10452–10463 (2019).

56. A. Espah Borujeni, D. M. Mishler, J. Wang, W. Huso, H. M. Salis, Automated physics-based
design of synthetic riboswitches from diverse RNA aptamers. Nucleic Acids Res. 44, 1–13
(2016).

57. S. Zucca, L. Pasotti, N. Politi, M. Casanova, G. Mazzini, M. G. Cusella De Angelis, P. Magni,

290

Multi-Faceted Characterization of a Novel LuxR-Repressible Promoter Library for
Escherichia coli. PLoS One. 10, e0126264 (2015).

58. D. E. Cameron, J. J. Collins, Tunable protein degradation in bacteria. Nat. Biotechnol. 32,
1276–1281 (2014).

59. B. P. Landry, R. Palanki, N. Dyulgyarov, L. A. Hartsough, J. J. Tabor, Phosphatase activity
tunes two-component system sensor detection threshold. Nat. Commun. 9, 1–10 (2018).

60. M. Morel, R. Shtrahman, V. Rotter, L. Nissim, R. H. Bar-Ziv, Cellular heterogeneity
mediates inherent sensitivity-specificity tradeoff in cancer targeting by synthetic circuits.
Proc. Natl. Acad. Sci. U. S. A. 113, 8133–8138 (2016).

61. J. J. Hopfield, D. W. Tank, Neural computation of decisions in optimization problems. Biol.
Cybern. 52, 141–152 (1985).

62. B. H. Weinberg, N. T. H. Pham, L. D. Caraballo, T. Lozanoski, A. Engel, S. Bhatia, W. W.
Wong, Large-scale design of robust genetic circuits with multiple inputs and outputs for
mammalian cells. Nat. Biotechnol. 35, 453–462 (2017).

63. S. Haykin, Neural Networks: A Comprehensive Foundation (Pearson Education, Indian,
Bangladesh, ed. 2, 2004), vol. 19.

64. M. Prezioso, F. Merrikh-Bayat, B. D. Hoskins, G. C. Adam, K. K. Likharev, D. B. Strukov,
Training and operation of an integrated neuromorphic network based on metal-oxide
memristors. Nature. 521, 61–64 (2015).

65. E. Neftci, J. Binas, U. Rutishauser, E. Chicca, G. Indiveri, R. J. Douglas, Synthesizing
cognition in neuromorphic electronic systems. Proc. Natl. Acad. Sci. U. S. A. 110, E3468--
76 (2013).

66. L. Qian, E. Winfree, J. Bruck, Neural network computation with DNA strand displacement
cascades. Nature (2011), doi:10.1038/nature10262.

67. J. J. Hopfield, Neural networks and physical systems with emergent collective
computational abilities. Proc. NatL Acad. Sci. USA. 79, 2554–2558 (1982).

68. R. Sarpeshkar, Analog synthetic biology. Philos. Trans. A. Math. Phys. Eng. Sci. 372 (2014),
doi:10.1098/rsta.2013.0110.

69. M. Adler, U. Alon, Fold-change detection in biological systems. Curr. Opin. Syst. Biol.
(2018), , doi:10.1016/j.coisb.2017.12.005.

70. M. Müller, S. Ausländer, A. Spinnler, D. Ausländer, J. Sikorski, M. Folcher, M.
Fussenegger, Designed cell consortia as fragrance-programmable analog-to-digital
converters. Nat. Chem. Biol., 309–316 (2017).

71. J. W. Kotula, S. Jordan Kerns, L. A. Shaket, L. Siraj, J. J. Collins, J. C. Way, P. A. Silver, by D.
Richard Kolodner, Programmable bacteria detect and record an environmental signal in
the mammalian gut. Proc Natl Acad Sci. 111, 4838–4843 (2014).

72. L. Schukur, B. Geering, G. Charpin-El Hamri, M. Fussenegger, Implantable synthetic
cytokine converter cells with AND-gate logic treat experimental psoriasis. Sci. Transl.
Med. 7 (2015), doi:10.1126/scitranslmed.aac4964.

73. H. Ye, M. Xie, S. Xue, G. Charpin-El Hamri, J. Yin, H. Zulewski, M. Fussenegger, Self-
adjusting synthetic gene circuit for correcting insulin resistance. Nat. Publ. Gr. 1, 5
(2016).

74. Y. Soma, K. Tsuruno, M. Wada, A. Yokota, T. Hanai, Metabolic flux redirection from a
central metabolic pathway toward a synthetic pathway using a metabolic toggle switch

291

(2014), doi:10.1016/j.ymben.2014.02.008.
75. R. I. Kitney, P. S. Freemont, Engineering biology: a key driver of the bio-economy. Eng.

Biol. 1, 3–6 (2017).
76. Introduction to Fluorescent Proteins | MicroscopyU, (available at

https://www.microscopyu.com/techniques/fluorescence/introduction-to-fluorescent-
proteins).

77. B. Canton, A. Labno, D. Endy, Refinement and standardization of synthetic biological
parts and devices. Nat. Biotechnol. 26, 787–793 (2008).

