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Materials and Methods

Strains

All plasmids in this work were constructed using basic molecular cloning techniques. Escherichia
coli 10 B (araD139 D(ara-leu)7697 fhuA lacX74 galK (W80 D(lacZ)M15) mcrA galU recAl
endAl nupG rpsL (StrR) D(mrr-hsdRMS-mcrBC)).

Plasmid Construction

All the plasmids in this work were constructed using basic molecular cloning techniques(1). New
England Biolab's (Beverly, MA) restriction endonucleases and Thermo Scientific FastDigest
Restriction Enzymes, T4 DNA Ligase, and Taq Polymerase were used. PCRs were carried out
with a Bio-Rad S1000™ Thermal Cycler with Dual 48/48 Fast Reaction Modules. Synthetic
oligonucleotides were synthesized by Integrated DNA Technologies (Coralville, 1A). Plasmids
were transformed into E. coli 10B, with a standard heat shock protocol (1). Plasmids were isolated
with Qiagen QIAprep Spin Miniprep Kits (Qiagen, Hilden, Germany) according to the
manufacturer's recommendations. Modifications were confirmed by restriction digests. DNA
sequencing was done by the Macrogen Sequencing Service (Macrogen Europe, The Netherlands).
All devices (promoter-RBS-gene-terminator) were initially assembled in the Lutz and Bujard
expression vector pZE11G (2) containing ampicillin resistance and the ColE1 origin of replication.
Parts are defined as promoters, RBSs, genes, and terminators. Manipulation of different parts of
the same type was carried out using the same restriction sites. For example, to change a gene in a
device we used Acc651/Kpnl and BamHI/Xmal. To assemble two devices, we used a single
restriction site flanking one device and used oligonucleotide primers and PCR to add that
restriction site to the 5' and 3' ends of a second device. To assemble multi-devices, we used the
Gibson Assembly Master Mix from New England Biolabs to join the DNA fragments (Ipswich,
MA), following the manufacturer's instructions. The overlapping inserts were prepared by PCR
amplifications using the Phusion High-Fidelity PCR kit (New England Biolabs). Each assembly
reaction contained approximately 250 ng of each insert and 100 ng of the linearized vector and
incubated at 50°C for 60 min, followed by a transformation into heat shock E. coli 103 cells.
Colony PCR screening was carried out using forward and reverse primer pairs. Positive clones
were sequencing verified. After assembling devices in the ampicillin-resistant ColE1 backbone,
antibiotic-resistance genes were changed using Aatll and Sacl, and the origin of replications was
changed with Sacl and Avrll. Supplementary Information, Section 16, provides details regarding
plasmid maps. The references in Supplementary Information, Section 18, provide details
regarding the origin of the plasmids.

Circuit Characterization

Overnight cultures of E. coli strains were grown from frozen glycerol stocks at 37°C, in a Shel
Labs SSI5 shaking incubator at 250 r.p.m., in 5 ml of Luria—Bertani—Miller medium (Fisher) with
appropriate antibiotics: Carbenicillin (50 pg mL™?), Kanamycin (30 pg mL™), Chloramphenicol
(25 ug mL1). The inducers used were arabinose, IPTG - isopropyl-b-D-1-thiogalactopyranoside,
and AHL 30C6HSL (Sigma-Aldrich). Overnight cultures were diluted 1:100 into 5 ml fresh Luria—
Bertani medium with antibiotics and were incubated at 37°C, 250 r.p.m. for 30 min. Cultures (200
pl) were then moved into 96-well plates, combined with inducers, and incubated for 4 h and 20
min in a microplate shaker (37°C, 500 r.p.m.) until they reached an ODgoonm ~ 0.4-0.6. At least
10,000 events were recorded in all experiments, and these data were then gated by forward scatter
and side scatter using CyExpert 2.2 (Cytoflex S).




The geometric means of the gated fluorescence distributions were calculated using MATLAB.
Fluorescence values were based on geometric means of flowcytometry populations from three
experiments, each of which corresponded to 10,000 events.

Plate Reader/FACS set-up

GFP fluorescence was quantified by excitation at a wavelength of 484nm and emission at a
wavelength of 510nm. mCherry fluorescence was quantified by excitation at 587nm and emission
at 610nm. PE-TexasRed filter voltages on a BD LSRFortessa high throughput sampler to measure
GFP and mCherry expression levels, respectively. The FACS voltages were adjusted using
CyExpert 2.2 software so that the maximum and minimum expression levels could be measured
with the same voltage settings. Thus, consistent voltages were used across each entire experiment.
The same voltages were used for subsequent repetitions of the same experiment. GFP was excited
with a 488nm laser, and mCherry was excited with a 561nm laser. Supplementary Information,
Section 14, provides our FACS data.




1. Perceptual computing models

A single layer of the artificial neural networks (ANN) receives multiple linear-scale analog inputs
(-00,#+00). This network (Fig. S1.2): (1) multiplies each input x; by its corresponding analog scalar
ni, which represents the synaptic weight, (2) sums the multiplication products, y = Y’ x;n;, and (3)
contains a non-linear activation function, which is commonly described by a sigmoid function z =

1i£’;K z € [0,1]. This neural model is known as the perceptron (3). Asymptotically, the node or

the activation function acts as a decision-making function that determines the digital levels
corresponding to the analog inputs.
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Fig. S1.1. An artificial neural network. The non-linear digital elements in the network are called
artificial neurons, and are represented as nodes within the graphical abstraction of the network.
The strength of each analog signal is called an artificial synapse (weight) and is represented by an
edge. The interactions between nodes through the weights lead to the global behavior of the
network.

The simulation results of perceptron including the analog signal and the perceptron output signal
are shown in Figure S1.2. We present the results in the 2D contour curve and the 3D surface curve.
Every method has its benefits. For example, it is simpler to present the analog pattern in 2D contour
compared to the 3D surface curve. By contrast to the perceptron output signal, it is better
illustrated in the 3D surface curve.
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Fig. S1.2. (A) Anatomical structure of abstract perceptron model. The proposed model receives
analog inputs processed by analog-weighted elements that collectively interact through non-
linear nodes to make an assertive decision. The perceptron model operates in the linear domain,
which is widely used as the neuro-processing core in artificial neural networks. (B) Simulation
results of the analog signal (nixi+ nzx2) in 2D contour curve and 3D surface curve. (C)
Simulation results of the perceptron signal in 2D contour curve and 3D surface curve.



BOXZ1: Abstract model of perceptgene
The output of power-law and multiplication circuit can be approximated as:
Xi n;

Y= Y () 0

Where X; is the input concentration, K,,; is dissociation constant, or input dynamic range or

normalization. Y,,, has units of concentration, and it equlas the the maximum level of produced

transcription factors (See Supplementary Eq. S2.13). n; is Hill-coefficient of the input X;. The

promoter activity is initiated when the transcription factor Y binds, and is given by:

Y m
(=) ””m (1)

1+B+(1<_}:1)

Where £ is the basal level of the promoter, K, is the dissociation constant of binding Y to

promoter, and m is the Hill-coefficient (e.g. number of binding sites within the promoter). The

two equations yield an abstract model which is given by:

y = (I, B - x™)™

_ VB (1)

T 14B+y

x; is normalized input (1 < x; < IDR).

Where IDR is the input dynamic range
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The abstract model includes three computational components:

(1) Network Weights (n; and m): are represented by the effective Hill-coefficients and
depend on the biological cooperativity of proteins, number of binding sites in the
promoter, the protein quaternary structure (the number of subunits that interact
with each other and arrange themselves to form a final protein), design topology,
and some cases in other small molecules.

(2) Bias (B): is determined by the translation/transcription rates, mMRNA/protein half-
lives, rate of cell growth, binding affinities in protein-protein or protein-DNA
reactions. Bias constants are unit-less, B= Y /K.

(3) Activation functions or network nodes (z;- the output of each perceptgene layer)
which depend on promoter activity and are given by the normalized Michaelis-
Menten model with a basal level.

The basal level has two significant roles in determining the behavior of perceptgene model.
First, it preserves the output dynamic range in the logarithmic scale—log(). Second, it sets the
effective threshold of the perceptgene (See Supplementary Information, Section 4).




Two models of perception can be considered in this work, the perceptgene model (Fig. S1.3A) and
Michaelis-Menten (MM)-based perceptron model (Fig. S1.3B). Both models include the bindings
between transcription factors (TFs) and DNA, with promoter activities modeled as activation
functions. The perceptgene model is a logarithmic transformation of the perceptron and it operates
in the logarithmic domain. The MM-based perceptron model is similar to the perceptron and
operates in the linear domain. The MM-based perceptron model is advantageous in its simple
design. For example, the summation will be implemented by expressing common proteins by the
inputs (4), and the weight n; is represented as the affinity at ribosome-binding site (4). Our analysis
showed that such a model requires a much higher Hill coefficient (m) to operate than the
perceptgene model.
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Fig. S1.3. (A) Perceptgene model, (B) Michaelis-Menten (MM)-based perceptron model.

The two systems accept two inputs in the range of x; < x;,x, < xy . For simplicity, we assume
that n, = n, = n, and the basal level (5) of every promoter is very low. As in Madar et al.(5) and

illustrated in Fig. S1.4, for systems that can be described by a Hill functionan:;m, we define the

output dynamic range (ODR) as the difference between the 90% and 10% of the maximal output
Zmax @nd the input dynamic range (IDR) as the ratio of the input concentrations required for 90%
and 10% of the maximal output. For simplicity, we assume that z,,,, = 1.

1.1. Perceptgene model

For low-value inputs x; = x, = x;, we get:
yp=2x"x"

Z; = % =0.1
t 1 m
@ n-m-log(x,) = 0.5-log (3) + = - log(K) (S1.1)

For high value inputs x; = x, = xy, we get:
Yo =Xy xg"

Zh = e = 09

= n-m-log(xy) = 0.5-log(9) + % -log(K) (S1.2)
The IDR can be expressed as (Fig. S4):
IDR = log(xy) — log(x;) (51.3)
Substituting Eq. S1.1 and Eq. S1.2 into Eq. S1.3, the IDR of perceptgene is given by:
IDR =—-0.5-log(81) ~ — (S1.4)



1.2. Michaelis-Menten (MM)-based perceptron model

For low-value inputs x; = x, = x;, we get:
yp=n-x,+n-x

_ " —
ZL = gy 0.1 1
= m-log(x;) = log (5) + m - log(K) — m-log(2) — m-log(n) (S1.5)

For high-value inputs x; = x, = xy, we get:
Yy =N Xy +n-xy

g =2 =09
H ™ gmayym '
= m-log(xy) =log(9) + m-log(K) — m-log(2) — m-log(n) (S1.6)
Substituting Eq. S1.5 and Eq. S1.6 into Eq. S1.3, the IDR of MM-based perceptron is given by:
IDR ==E8) o 2 (SL1.7)

The Hill coefficient values (m, n) of synthetic biological parts often are between 1 — 2 (4, 6).
Therefore, the IDR of the MM-based perceptron is approximated as 1.333 fold (for m = 1.5), and
the IDR of perceptgene is approximated as 0.667 fold (for n = 1,m = 1.5) and 0.333 fold (for
n = 2,m = 1.5), respectively. Therefore, Eq. S1.4 and Eq. S1.7 show that the MM-based
perceptron model requires a higher value of m than the perceptgene model to operate.
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Fig. S1.4. Definition of Input Dynamic Range and Output Dynamic Range.

Figs. S1.5 and S1.6 show the simulation results of the perceptgene model and the MM-based
perceptron model for n=1 and 0.5, respectively. The MM-based perceptron model fails to act as a
binary classifier (there is no clear separation between "0" and "1" states). By contrast, the
perceptgene shows a distinct separation between "0" and "1" states.
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Fig. S1.5. (A) Michaelis-Menten (MM)-based perceptron model that combines linear operations
and biochemical reactions. The model operates in the linear domain. Simulation results of the
MM-based perceptron model, with n; =n, =1,m=1. (B) Simulation results of the
perceptgene model, withn; =n, = 1,m = 1.
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Fig. S1.6. Simulation results of (A) Analog signal (Y /K) for MM-based perceptron model, n =
1. (B) Analog signal (Y/K) for perceptgene model, n = 1. (C) Output signal for MM-based
perceptron model, n = 1. (D) Output signal for perceptgene model, n = 1. (E) Analog signal
(Y/K) for MM-based perceptron model, n = 0.5. (F) Analog signal (Y/K) for perceptgene
model, n = 0.5. (G) Output signal for MM-based perceptron model, n = 0.5. (H) Output signal
for perceptgene model, n = 0.5. In all the simulations, we assumed that m = 1.



1.3. 3D-Plane: Simulation of perceptron and perceptgene models include basal level

The perceptron model includes MM as the activation function failed to classify the analog
pattern into two non-linear levels even for high hill coefficient in the activation function
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Fig. S1.7. Simulation results of (A) Analog signal (Y /K) for MM-based perceptron. (B) Output
signal for modified perceptron model, m = 1. (C) Output signal for modified perceptron model,
m = 2. In all the simulations, we assumed that n;, = n, = 1, § = 0.01.



The perceptgene succeed to classify the analog pattern into two non-linear levels even for
low Hill coefficient in the activation function
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Fig. S1.8. Simulation results of (A) Analog signal (Y /K) for perceptgene. (B) Output signal for
perceptgene model, m = 1. (C) Output signal for perceptgene model, m = 2. In all the
simulations, we assumed that n;, = n, = 1, § = 0.01.

1.4. Sensitivity analysis for perceptgene circuit

Sensitivity measures the fold change in the output as a function of the fold change in the input and

is given by:
AOut/{Out)

Sout-in = “gr0 (S1.8)

Where In is the input and Out is the output (Fig. S1.9A). "< >" denotes the mean of the signal. In

this section, we analyze the signals' sensitivity that propagate through the perceptgene (Fig.

S1.9B). The signals are given by:

n
y=B- (ﬁ) Y0+ 0y (51.9.1)
Z=Zmax y,,’;vw + 2o+ 0, (S1.9.2)

Where B is the bias with concentration units, IDR is the input dynamic range, x is the perceptgene
input (unitless), y, is the background signal, z, is the promoter basal level, n and m are Hill-
coefficients, o, and o, are random numbers, Z,,,, is the maximum protein expressed in the
system.

We calculate the sensitivity of three systems (Fig. S1.9B):

10



e An analog system maps the analog input signal (x) to collective weighted analog output
signal (y) using a power-law and multiplication function:

Syx = 2 jg; (S1.10)
e A digital system maps analog signal (y) to output levels (z) with a sigmoidal activation
function:
rmy = f;fﬁz (S1.11)
e A neuromorphic system combines the analog and digital systems:
Spx = 123 (S1.12.1)

Az/(z) Ay/(y)

Se-x = 5700 a0 (S1.12.2)
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Fig. S1.9. (A) A circuit that has an input In and output Out. (B) Perceptgene with one input (x).
y is the collective analog signal and z is the output.

Using Eq S1.9.1and S1.9.2, we get:

AY 1=y A

<y> n-( <y>) <x> (S1.13.1)
Az <z>-zo\ Ay

== (-5 -5 ¢ (51.13.2)
Therefore, accordlng to the definition of sensitivity, we get:

Sy-x=n-(1- <3;)>) (S1.14.1)
SZ -y =m:- (1 — ) ( <;> ZO) (81142)
Seme=mome(1- 20 (-2 -5 (51.14.3)

Our simulation results (Fig. S1.10) based on the set of equations S1.14.1- S1.14.3 show the
influence of the background level (y,) on the analog, digital and neuromorphic systems and their
sensitivity. When y, increases, the effective input dynamic range (IDR.sf) decreases (Fig.
S1.10A). Based on Eg. S1.9.1 when y, =0, the IDR.sf = IDR, meaning that the effective
(actual) input dynamic range is equal to the theoretical input dynamic range. While increasing the
background level decreases the sensitivity of the analog system (S,,_, Fig. S1.10D), it almost does
not affect the sensitivity of the neuromorphic system (S,_,, Fig. S1.10F). More interestingly, the
sensitivity of the neuromorphic system (S,_,, Fig. S1.10F) is higher than the sensitivity of digital
system (S,_,,, Fig. S1.10E). These results strongly depend on the value of basal promoter level
(zo). In case where z, = 0, the digital system's sensitivity can be higher than the sensitivity of the
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neuromorphic system. However, since synthetic biological parts always have basal levels, we
expect that the neuromorphic system's sensitivity will not be affected by the background level as
compared to the digital system. Therefore, in conclusion, the main contribution of increasing the
background level (y,) on the performance of a neuromorphic (perceptgene) system is decreasing
the input dynamic range.
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Fig. S1.10. Simulation results show the influence of the background level (y,) on the signals and
sensitivity of perceptgene. (A) Simulation results of a weighted and collective analog signal (y)
versus input level (x). (B) Simulation results of the output signal (z) versus collective signal (y).
(C) Simulation results of the output signal (z) versus input signal (x). (D) Sensitivity of the analog
system (S,_,), where x level is the input and y is the output. (E) Sensitivity of the digital system
(52—y), where y is the input and z is the output. (F) Sensitivity of the neuromorphic system (S,_,),
where x is the input and z is the output. IDR. s is the effective input dynamic range when the
background signal (y,) is higher than zero. Simulation parameters: n = 1.5,IDR = 100,B =
100, Zpgr = 100,m = 2,2, = 1.

In summary: The analog system maps input levels to output levels using a power-law and
multiplication function. The digital system maps input levels to output levels with a
sigmoidal activation function in the logarithmic domain. The neuromorphic system
combines analog and digital systems to carry out perceptgene computation. Our analysis
shows that the analog system's sensitivity is reduced significantly with an increase in basal
expression, meaning that analog operation in the low concentration regime is highly prone
to errors. The digital system is designed to be insensitive in the low concentration regime,
and hence less affected by an increase in basal expression. The neuromorphic system
combines the best features of both, namely the ability to perform analog computation while
being insensitive to the low concentration regime's noisy aspects, as shown in the sensitivity
analysis (Fig. S1. 10).
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1.5. Noise analysis for analog signals in perceptron

Here we will evaluate the noise that generates during the signal aggregation in genetic perceptron.
If we assume that their "I" signals that aggregate and each of them has a noise of AX, then the
system should satisfy two boundary conditions:

1. 1-AX,"X, (S1.15.1)

2. AXy'"X, (S1.15.2)
Where X is defined as a low signal and X4 is defined as a high signal. In the first condition, we

request that the total noise that is generated by the "I" signals is smaller than the low signal X.. In
the second condition, we inquire that the noise that is generated by the high signal (Xn) is smaller
than the low signal itself. Signals often originate from the transport of discrete random carriers in
systems; in biology, it is the diffusion of biochemical molecules and proteins. Naturally, these
signals propagate with random fluctuations inside the networks. These fluctuations follow the
Poisson process and generate shot noise that scales as the square root of the molecular count.
Typically, there are two orthogonal sources of noise in any biological system (7, 8). The first
source is the intrinsic noise, which is inherently generated by the system itself. The second source
is the extrinsic noise, which is generated by random fluctuations in the input or another
environmental parameter. Here we consider the influence of the intrinsic noise only on the
perceptron. A stochastic model for intrinsic cellular noise may be greater than the Poisson process,
with the addition of burst size (b;,;) is given by (9):

AX, =1+ biy) - X, (S1.16.1)
AXy =~/(1+ b)) - Xy (S1.16.2)
Substituting Eq. S1.15.1 into Eq.S1.16.1 and Eq. S1.15.2 into Eq.S1.16.2, we obtain:
v "y " XL
L+ by - XX, > l (HbLmt) (51.17.1)
-2

VOt bine) XX D> K" (51.172)
Therefore, there is a tradeoff between number of inputs and system accuracy

XL Dint Maximum | Maximum Xn

10 0 ~3 100

100 0 10 10000

10 3 1 25

100 3 5 2500

100 9 3 1000

1000 9 10 100000

Table S1.1: The relations between the maximum number of inputs that are allowed and burst size in
perceptron.

The burst size relies on the translation rate, the number of amino acids (aa) in the synthesized
protein, and mRNA half time. Typically, in Escherichia coli, the translation rate ranges between
10-20 aa/sec, depending on growth condition (10), and mRNA half time is around 3-5 min (10).
Therefore, the burst size in Escherichia coli can be ranged between 3-15.

13



The main limitation for scaling the perceptgene beyond 2 inputs, is the construct itself.

Table S1.2 List of parameters used in this section

Symbol Description
m Hill coefficient of binding transcription factor to promoter
n Hill coefficient of binding inducer to transcription factor
X Inputs
y Summation or multiplication of inputs (analog signal)

Zmax Maximal output

B Basal level
S Sensitivity

Table S1.3 List of abbreviations used in this section

Symbol Description
MM Michaelis-Menten
TFs Transcription factors
IDR Input dynamic range
ODR Output dynamic range
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2. Biophysical models and analysis of single perceptgene networks

In the following sections, we model the genetic network motifs using biophysical models at
steady state d/dt=0. Our models involve detailed biochemical reactions, such as the bindings
between inducers and transcription factors (TFs), as well as between TFs and promoters that
consist of multiple binding sites. Our models focus on the effects of negative and positive
feedback loops. These detailed biochemical models can accurately capture the behavior of
the various proposed circuit topologies by solely changing the parameters that are expected
to vary between experiments (e.g., plasmid copy number). In the models, we assume that the
concentration of chemical species is uniformly distributed and the behaviors of our genetic
circuits can be analyzed at the steady states.

2.1. Model of auto-negative feedback (ANF) loops and combinatorial promoter:

In this section, we present a model of ANF loops with a combinatorial promoter (Fig. S2.1, Fig.
S2.2A), which yields the loops' behavior resembling a power-law and multiplication function. But
first, we show that the experimental results of this circuit fit the power-law and multiplication
function.

Fitting experimental results of ANF loops and Pi;¢o,et0-based combinatorial promoter to power-
law and multiplication function:

log(GFP) = ¢ 4+ ny - 1log(IPTG) + n, -log(aTc)

PTG PTG
LO™  [O"]
LCP McP
PlucO P!EIO
ep 4C-_
P, laco/tetR
Results o
Linear model Poly11: [
f(x,y) = p00 + p10*x + p01*y a ¥
Coefficients (with 95% confidence bounds): "6 8‘
p00 = 1.888 (1.84, 1.935) - :
p10 = 0.523 (0.5011, 0.5449) % ©
p01 = 0.8659 (0.844, 0.8877) TTJ 8
E 3
Goodness of fit: ‘6 2
SSE: 0.2219 = 9
o
3
=

R-square: 0.9929
Adjusted R-square: 0.9927
RMSE: 0.06032

-1.5

o5 3 2% log(IPTG)
Fig. S2.1. Matlab surface fits the experimental results of P,.o and Pto ANF loops and
combinatorial promoter (Piaco,tet0- GFP) to power-law and multiplication function

log(GFP) = ¢ + ny -log(IPTG) + n, - log(aTc). The data appears in Fig. 1C in the main text
and is reproduced here for clarity.
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The combinatorial promoter in this section includes two binding sites with different repressors. In
this system, we assume that:
e The Hill coefficient of binding R, repressor to P ;(promoter within ANF) is equal to the
Hill coefficient of binding R, to P ,(combinatorial promoter), n,

e The Hill coefficient of binding R, repressor to P, (promoter within ANF) is equal to the
Hill coefficient of binding R, to P, /, (combinatorial promoter), n,

e The binding affinity of R, repressor to P; (promoter within ANF) is equal to binding
affinity to P, /, (combinatorial promoter), K4

e The binding affinity of R, repressor to P, (promoter within ANF) is equal to binding
affinity to P, /, (combinatorial promoter), K,

e The Basal levels (5;) of P, , P, and P, are very low.

The binding of TFs to promoters is modeled according to the Shea-Ackers formalism (11, 12).
Therefore, the total level of expressed Ry; (i = 1,2) repressors in the case of ANF loops can be

expressed as:

Ry = Rmaxi ﬁ
()

Where R,,,4: 1S the maximum protein level achieved by P; which is proportional to (transcription

rate x translation rate) x (MRNA half-life x protein half-life). R; is the level of repressors that are

bound to P;. The induction of the repressors by x; inducers is given by:

R; = Ry 'fi(lxi) (S2.2)
filx)) = ——=; (S2.3)
1+(Kn‘”_>

Where K ,,,; dissociation constant and h ;Hill coefficients of binding x; to R;. The formed new
complex (Inducer-repressor) prevents the repressors from binding to P; and P,. By substituting
Eq. S2.1 into Eq. S2.2 we get:

Ri  Kgi 1

(S2. 1)

—- = Rpax:i —— (S2. 4)
Kai fi(xp) Mmaxi | (Ri\™
d x 1+(Kdi)
By developing Eq. 2.4, we get:
R\ _ fi(xi)
(E) = Rynaxy B2 = 1 (S2.5)

The binding states for P, ,, combinatorial promoter is shown in fig. S2.2B. The probability for

P, /, promoter being in open complex P is described by the following equations(11-13):
1

P1/2 = R+ \™ /R, \"2 R+ \™ [ R, \"'2 (52 6)
i) 7)) 7)

Then, the expression level of the output protein at steady is given by:

Y = Yax * - (S2.7)

R nq R np R nq R np
v e ) 7D
Where Y4, is the maximum protein level achieved by P,,, promoter. In case that the two
repressors do not interfere with their bindings to P, ,, promoter (6 = 1), we substitute Eq. S2.5

into Eqg. S2.7 and get:
Y = Yoy () - () (S2. 8)

Rmax1'f1(x1) Rmax2:f2(x2)

Substituting Eq. S2.3 into Eq. S2.8, we get:
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Y=Ymax-( Rry )( Rra ) (S2.9)

Rmaxl Rmaxz

Therefore, in an ANF loop motif that regulates a combinatorial promoter, with 6 =1, the
expressed signal is effectively the multiplication of the two repressors. Substituting Eq. S2.2 into

Eq. S2.1, we get:
1

RTi = Rmaxi Rpif(x) n;
1+(F0LL0)
di

oL (FOD\™
RTi + RTl‘n 1 (K_dl,) = Rmaxi

Rri- (28)™ 4 Ry = R, - (A)" (S2. 10)

When Kj;is very small (high binding affinity between repressors and promoters), we get:

1/(n;+1) Kg; \M/ (it
Ry = (Rmaxi) : (Tzl)) (S2.11)
Substituting Eq. S2.3 into Eq. S2.11:

1/(ng+1) o L YR\ D
Rp; = (Rmaxi) + (K™t D) (1 + (Kx_ml) ) (52.12)

Substituting Eq. S2.12 into Eq. S2.9: we get:

1/(ny+1) x; \M "1/(”1“)\
(Rmaxl) ' ' (Kdl)nl/(n1+1) ' (1 + (K_nlu) )

Rmaxl /

1/(ny+1) x, \h2 "2/("2“)\
/(Rmaxz) i ) (Kdz)nZ/(n2+1) ) (1 + (K_nzlz) )

I
Rmaxz /

nl/(n1+1) nz/(n21+1) h Tll/(n1+1)
E>Y=ymax.<Kd1) (M) .(1+(Kx_7;)1) .

Rmaxq Rmax,

ho\N2/(M2+1)
(1 +(2) 2) (S2. 13)

Km2

By applying a Iogarithmic operation to Eq. S2.13, we get:
h
log(Y) = log(Yiax) +——lo g( Kaz > —v “lo g( Kaz )+ -log (1 +( ) 1) +

Y =Yax-

Rmax1 Rmaxz
hz

w1 L0g (1 +(32) ) (S2. 14)
We define:

C = log(Ymar) + r:il -log (R:Z;) + n:il -log (%) (S2. 15)
Then, we get:

h h

log(¥) = (1 (&) ) +2 . log (1 +(2) ) (S2. 16)

In case that xl/Kml > 1, the ANF loops and combinatorial promoter circuit act as power-law and
multiplication function, and are linearly separable in the log-log scale as follows:
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log(Y) = C + 222 log (Kml) + Z";—i‘j -log (Kx—njz) (S2. 17)

Eqg. S2.17 and Flg. S2.3 show that the coefficients of the power-law functions are set by the
cooperativity, number of binding sites and Hill coefficients (n; and h;). Therefore, in our circuit
motif, the cooperativity effectively acts as weights in the perceptgene model, equivalent to synaptic
weights in the perceptron model.

(A) (B)
=m sae  fem
Binding site of R, Binding site of R, +1 0 1

| | [ |
I_n_l — ~ . (R/K )"

CP#1 CP#2 +1
— £ 2 mmm
+1

l J_ Ii.—l V_”—| P 3 (R/de)nl —(RZ/KdZ)ﬂz
+1

Fig. S2.2. A theoretlcal model of linearly separable function at the log-log scale. (A) ANF loops
and combinatorial promoter circuit motif, CP#=Copy number of plasmids. (B) The binding
states of P, ,, hybrid promoter.

C P#3

(A)

Normalized Y level at log-scale

h1-1 25, hy=1

‘I

X, level X, level
(B)
Normalized Y level at log-scale
n,=1 n,=1.5
I 1 1.5
10° 10 102 10° 102
X, level X level X, level

Fig. S2.3. Theoretical results of ANF loops and combinatorial promoter using Eq. S2.3. (A)
Effect of h: Kjpy = 1, Ky = 1, K31 = 1,Kg5 = 1, Rypgxr = 1000, Rppgsr = 1,y = 1,n, = 1.
(B) Effectof n: K;py = 1, Kz = 1, Kz = 1,Kgp = 1, Rppaxr = 1000, Rpparz = 1,n, = 1.
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Then we tested the influence of other biophysical and design parameters on the behavior of the
system as shown in Fig. S2.4. We expanded our models to include other mechanisms such as the
basal levels ( 5; ) of promoters, as well as the asymmetry between the combinatorial promoter
(P 1/2) and ANF promoters (P ; & P ;) :

e ANF loops that are based on Eq. S2.1 and include g;:
1
1+ﬁi+(KR—;i>ni
e The induction process that is based on Eq. S2.3 can be described as follows:
R; = Ry; ﬁ (S2.19)
1+(K—n‘u_>

e For asymmetric combinatorial promoters, we assume that K;; # Ky, and Kz, # Kgon
1

Y = Ymax - T1h Toh o Ton (S2. 20)
) ) e ()
Fig. S2.4A shows the influence of increasing K, (the dissociation constant of binding inducer X;
and repressor R;). When K,,, decreases, the input dynamic range increases.
Fig. S2.4B shows the influence of increasing Kj; (the dissociation constant of binding repressors
to P ; & P , promoters, respectively). When K, increases, the input dynamic range decreases.
Fig. S2.4C shows the influence of increasing K, (the dissociation constant of binding repressors
to P, ,, combinatorial promoter), without changing the K,;; of ANF promoters. Our simulations
show that there is a tradeoff between the width of theK,, and the input dynamic range. For
example, the input dynamic range with K, = 10 is wider than the input dynamic range with
K4n = 100. To demonstrate, we cloned the combinatorial promoter on HCP and ANF loops on
LCP/MCP, which gave a higher K, value compared to Kj;.
Fig. S2.4D shows the influence of increasing h (Hill coefficient of binding inducer to repressors).
When h increases, the slope of the log-log scale increases. Therefore, the Hill coefficient acts as a
weight, resembling the synaptic weight in the perceptron model. These results match our
theoretical model (Eq. S2.23).
Fig. S2.4E shows the influence of increasing n (Hill coefficient of binding R repressorto P ; & P,
promoters). When n increases (while n,, of binding repressors to P 4/, is constant), the slope of
the log-log scale increases. Remarkably the maximum protein level which is achieved by the
circuit (R,,4,) has an inverse effect than decreasing K.
The interference between the binding of different TFs on combinatorial promoter (13) is
represented by 6 in Eq. S2.6, (8 = 1 when there is no interference). When the binding between
one TF and the combinatorial promoter affects the interaction between other TFs, then 6 < 1 (Eqg.
S2.6). Fig. S2.4F shows the influence of increasing 8 on the ANF loops and combinatorial
promoter circuit. As in Fig. S2.4F, even for a very low 6, which means a high interference between
the two repressors, the input-output transfer function of the circuit motif can be fitted to a power-
law and multiplication function.

(S2. 18)

Ry = Rmaxl'
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(A) Normalized Y level at log-scale
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Normalized Y level at log-scale

10° 10° 10? 10° 10°
X, level X, level
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Fig. S2.4. Simulation results of ANF loops and combinatorial promoter circuit motif.

A. Effectof K,,;: K,, = Ky = Koy hy = 1L,hy, = 1, kg1 = 1, Ky = 1, Kgqn = 1, kgon =
1, Rygxr = 1000, Rypgyy = 1,0y = 1,0y, = L,ny, = 1,0y, = 1,0 = 1,8 = 0.001.

B. Effectof K;: Ky = Kg1 = Kg» = Kgin = Kagno Konp = LKz = 1, by = 1,h, = 1,
Riax1i = 1000, Rppgrz = 1,ny = 1,0y, = 1,0y, = 1,0y, = 1,0 = 1,8 = 0.001.

C. Effectof Kyp: Kgp = Kgin = Kaon ka1 = LKy = LKy = 1, Ky = 1, hy =
1,hy =1, Rpger = 1000, Rppgy = 1L,y = L,ny, =1L,ny, =1Ly, =1,0 =1,8 =
0.001.

D. Effectof h: K,y = 1, Ky = Lkgs = 1L,LKgo = 1,Kg1n = 1, kgon = 1, Ripaxs =
1000, Rpgyr = 1,y = 1,0, = 1,0y, = 1,ny, = 1,0 = 1,8 = 0.001.
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E. Effectofn: Ky = 1L, Ky = Lkgs = 1L, Kgo = 1, Kgin = Lkaon = 1, Rypaxr =
1000, Rpgx2 = L,hy = 1L, hy, = 1,0y, = 1,0y, =1,06 =1, = 0.001.

F. Simulation results show the influence of interference between transcription factors
(TFs) on the ANF loops and combinatorial promoter circuit motif.
Km = K1 = Kma2,hi = Lhy = Lkas = LKy = 1, Kgan = L kazn = 1, Rmaxa =
1000, Rppaxz = 1,ny = 1,n, = 1,ny, = 1,0y, = 1,6 = 0.001.

2.2. Computed transfer function of power-law and multiplication function based on ANF

The simulations are based on Eq. S2.18, Eq. S2.19, and Eqg. S2.20. Parameters that were used in
simulations:
Based on Py,.o Within ANF loop — Fig. 1E
Kp1 =0.8,Ky =1,Ky1 = 10,K40 = 5,Kgqp = 45, Kgon = 4,hy = 1, hy = 1.4, Rppgst

= 2000, Rppaxz = 3000,ny =2,n, = 2,04, = 1,ny, = 1,0 =1,

B = 0.001
Based on Py,.01 Within ANF loop - Fig. 1F

Km1 = 08, sz = 1'Kd1 = 90, KdZ = 6, Kdlh = 45'Kd2h = 4‘, h1 = 1, hZ = 14‘, Rmaxl
= 2000, R0y = 3000,y = 1,0, = 2,0y, = 1,0y, = 1,60 = 1,8 = 0.001

The parameters that were used in our simulation fit well with the values that were reported in the
literature. For example, the binding dissociation constant of Lacl is known to be 10 times larger
than of TetR. The interference parameter was set to & = 1. Furthermore, the maximum level of
protein achieved by Pj,.o in our simulation is smaller than Pieto (Rimaxt < Rmaxz), Which is
consistent with our construction that P, is located on LCP and P and is located on MCN.
The binding dissociation constant of Lacl and TetR to their promoters within the ANF loop (Piaco
and Pieto, respectively) is different than their values within the combinatorial promoter, because
the promoters were located on different plasmid copy numbers.

|Lac| binding site| ttgaca| Lacl bmdlng 5|te|gatact| [ ttgaca|Lacl binding site [gatact
o1 -35 . ., 35 o1 1o
‘ IPTG IPTG aTc

1~ 1 1

J: lacl — MCP _— _CJ: lacl  — MCP -
'PlacD l Plnco.l P,

teto
pﬂaw/mn P laco/tetR

HCP J‘—J_C nfp —
Fig. S2.5. (A) The circuit that was used to produce the computed transfer function from Fig. 1E,
power-law and multiplication based on P,.o. (B) The circuit that was used to produce the
computed transfer function from Fig. 1F, power-law and multiplication based on Py,.01.
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Results
Linear model Poly11:
f(xy) = p00 + p10*x + p01*y
Coefficients (with 95% confidence bounds):

p00 = 2405 (2328, 2.482) 2
p10= 07625 (0.727, 0.798) .
pO1 = 09825 (0.947, 1.018) 1

Goodness of fit:
SSE: 0.5857
R-square: 0.9877
Adjusted R-square: 0.9873
RMSE: 0.09799

Normalized GFP
fluorescence at log-scale
[

w

0.5 ~ : -1.5

/og - -2
ey 05 -3 2% g(IPTG)

Fig. S2.6. Matlab surface fits the experimental results of Pj,.0;and P,ero ANF loops and
combinatorial promoter ( Pacoteto - GFP) to power-law and multiplication function

log(GFP) = ¢ + n3 - log(IPTG) + n, - log(aTc) . The data appears in Fig. 1D in the main
text and is reproduced here for clarity.

Results o
Linear model Poly11: S
fxy) = p00 + p10*x + pO1*y o D o5
Coefficients (with 95% confidence bounds): "G g’ >
p00 = 1.888 (1.84, 1.935) - :
p10=  0.523 (0.5011, 0.5449) g ®© 1.5
p01 = 0.8659 (0.844, 0.8877) T_U § 1
Goodness of fit: g é 0.5
SSE: 0.2219 = 9 0
R-square: 0.9929 o
Adjusted R-square: 0.9927 ,‘—2 1.5
RMSE: 0.06032 1 : 5
/o, : ) -2
Ylory © o5 3 25 76)
’ log(IP

Fig. S2.7. Matlab surface fits the simulation results of P,.q and Pi.to ANF loops and
combinatorial promoter (Pi,co,teto- GFP) to power-law and multiplication function

log(GFP) = ¢ + ny - log(IPTG) + n, - log(aTc). The data appears in Fig. 1E in the main
text and is reproduced here for clarity.

Results
Linear model Poly11:
f(xy) = p00 + p10*x + pO1*y 3
Coefficients (with 95% confidence bounds): 2.5
p00 = -0.05081 (-0.05439, -0.04723) 2 =
p10 = 0.756 (0.7545, 0.7575)
pO1 = 0.9211 (0.9196, 0.9225)

Goodness of fit:
SSE: 25.97
R-square: 0.9934
Adjusted R-square: 0.9934
RMSE: 0.03951

Normalized GFP
fluorescence at log-scale
=
v

0.5

tog, or) 2

o5 3 25 log(IPTG)
Fig. S2.8. Matlab surface fits the simulation results of Py,.0; and P.etoANF loops and
combinatorial promoter (Paco,teto- GFP) to power-law and multiplication function

log(GFP) = ¢ + n3 - log(IPTG) + n, - log(aTc). The data appears in Fig. 1F in the main
text and is reproduced here for clarity.
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2.2.1. A simple mode for Auto-negative feedback

IPTG

1
—C w L

lacO_ANF

Con T

P lacO_Rep

Fig. S2.8.1. Auto-negative feedback loop circuit.

1171
Lacly 1+(L£_:)n11 (S2.20.1)
a1 is the production rate of Lacl by the Piaco_anrF
n11is the Hill-coefficient of binding Lacl to Piaco_anr promoter
Kaq is the binding affinity of Lacl with Piaco_ane promoter (promoter within ANF), which equals
(our assumption) to the binding affinity of Lacl with Pi.co rer promoter regulating GFP

7, Is Lacl half-life

Lacl = Lacly - f(IPTG) (S2.20.2)
IPTGM
f(IPTG) = W
h1 is the Hill-coefficient of binding IPTG (x1) to Lacl (R1)
GFP = —272 S2.20.3
e (52:209)

az1 is the production rate of GFP by the Piaco Rrep
no1 is the Hill-coefficient of binding Lacl to Piaco_rep promoter
T, IS GFP half-life

. n
Lacly + Lacl;"1*! (%;”’T“) RS (S2. 20.4)
nqq+1
Lacl + K, - (%) U = FUPTG) - ayy - 1 (S2. 20.5)
d
FOT Kd K all " Tll
1
K Nqq1+1
> Lacly = (ayq - 1)Vt . (f(T(;'G)) 11+ (S2. 20.6)

: 1/(ny1+1)
-)Laclde-(%(”’TG)) 11
d

(S2.20.7)
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- GFP = 217 (S2. 20.8)

1+(dll"f1'f(IPTG))nZl/(n11+1)
Ka
GFPax

1+(M)”21/ (r11+D
Ka

= GFP =

(S2. 20.9)

f(IPTG) is the induction function, GFP, = @21 " T2, Laclyax = @11 ° Ty
.Incasethat ny; = 1 (€.9., Placo,teto- GFP ), the Hill- coefficient of IPTG — GFP is proportional

to 1/(nq; + 1). Increasing the n,, leads to decrease the Hill coefficient of IPTG — GFP transfer
function.

2.3. Characterization of Prap Promoter

It has been reported that the behavior of the Arabinose-inducible promoter Pgap is strongly
affected by the arabinose concentration (14). Using the characteristic of Pgap, We constructed a
graded auto-positive feedback (APF) circuit (Fig. S2.9A) to tune the expression level of AraC. The
purpose of the graded APF is to increase the dynamic range of P, which can regulate the AraC
level to a very wide range. The analysis for the APF circuit and linearization is provided in the
next sections. We added a ssrA degradation tag (15) (LAA) to AraC to ensure low basal in the
absence of the input (AHL). The circuit was first induced with different concentrations of
Arabinose (0.7mM, 0.2mM, 0.07mM and 0.02mM). Then the experimental results (Fig. S2.9B)
AHL™eff

m Meff
AHLeff +K,p ¢

presence of a low level of Arabinose (0.02mM), the input dynamic range of AHL to Pgup
decreased with msr = 3, Korp = 120nM,a = 165 (a.u.),b = 1 (a.u.). Whereas with a high
level of Arabinose (0.7mM), the input dynamic range increased with m.cr = 1.5, K.pf =
200nM,a = 170 (a.u.),b = 1 (a.u.). As a result, the Hill-coefficient of binding Arabinose-
AraC complexto Pgap increases when Arabinose is decreased. The relation between the effective
dissociation constant Kefr and mett is summarized in Fig. S2.9C and can be well fitted using the
power-law function (K,rr = a X meff‘b). The transfer function of Pgop promoter with respect to
AraC is shown in Fig. S2.9D. The level of AraC is evaluated by the GFP signal from Fig. S2.13C.

were fitted to Hill-function (a - + b). Our experimental results show that in the
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(A) (B)
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1033 AAA Arab=0.2mM
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Effective Hill-Coefficient

Fig. S2.9. (A) The Characterization of Pgop promoter by tuning the expression level of AarC by
mutated APF. (B) Experimental results of AHL — GFP transfer function for a low Arabinose
(0.02mM) and a high Arabinose (0.2mM). The dotted lines are a Hill-function fitting. (C) The
relation between the effective dissociation constant and effective Hill-coefficient is described
by a power-law function. (D) AraC -Pg,p the transfer function for low and high Arabinose
levels.

Nonlinear fitting models of AraC -based synthetic perceptgene circuit

(B)

R?=0,9997

>

n

at log-scale
at log-scale

o =S !
o v = N O
L 1 | I

Normalized fluorescence

Normalized fluorescence

s = @ A8 I == T
log(aTc) 1og(IPTG) log(aTc) ; 1og(IPTG)

Fig. S2.10. (A) Fitting experimental results of ANF loops and Pi5c01,/teto-based combinatorial

promoter to non-linear models (Quadratic) using locally weighted scatterplot smoothing (Circuit

from Fig. 1B, Data based on Fig. 1D). (B) Fitting experimental results of perceptgene based

ANF loops and Piyco1/teto COMbinatorial promoter to non-linear models (Quadratic) using

locally weighted scatterplot smoothing (Circuit from Fig. 1G, Data based on Fig. 1H).
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2.4. Model of AraC -based synthetic perceptgene circuit

The Pgap promoter is activated by the AraC -TF when it is induced by arabinose (Arab). The
probability of the Pgap promoter being induced by the arabinose-AraC complex is described by

(4):

P = AraCC+AraC (82 21)

T+Bat Kaz = Kga

where AraCc is the concentration of the Arabinose-AraC complex, AraC is the concentration of
free AraC —TF, K5 is the dissociation constant for binding of the Arabinose- AraC complex to
Pgap promoter, K4, is the dissociation constant for free AraC binding to Pgsp, and g, is the basal
level of Pgop promoter. The concentration of the arabinose- AraC complex is given by (4, 16):

()™
W (S2.22)

Kms3

With, AraCt is the total concentration of AraC, K,,5 is the dissociation constant of binding
arabinose to AraC and h 5 is the Hill coefficient (~2.8 (16)). The concentration of the free AraC is
given by:
AraC = AraCr — AraC, (S2.23)

In the perceptgene circuit the AraCr is equal to the output of the power-law and multiplication
function () at steady state:
AraCr =Y (S2. 24)

AraC, = AraCr -

Normalized GFP fluorescence

102

10’

Normalized aTc

0
10
10° 10’ 102
Normalized IPTG

Fig. S2.11. The computed transfer function of synthetic perceptgene based on AraC system.
Parameters that were used in simulation: AraCt = 30, K,,;3 = 0.09, K;5 = 3, Kz4 = 30, hy =
2.8 (16), B, = 0.002. The ratio between K5 and K, fits well to the values that were reported
in the literature (4).
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2.5. Model of APF, ANF loops and combinatorial promoter

In this section, we present a model that describes the behavior of APF, ANF loops with a
combinatorial promoter (Fig. S2.12A), which results in power-law and multiplication function:
e The Hill coefficient of binding A activator to P; (promoter within APF) is equal to Hill
coefficient of binding A to P, /,(combinatorial promoter) and are equal to, n,
e The Hill coefficient of binding R repressor to P, (promoter within ANF) is equal to Hill
coefficient of binding R to P, /, (combinatorial promoter), n,
e The binding affinity of A activator to P; (within APF) is equal to binding affinity to P, /,
(combinatorial promoter), K,
e The binding affinity of R repressor to P, (within ANF) is equal to binding affinity to P, /,
(combinatorial promoter), K,
e The pof P, isvery low.
The binding states for P, ,, combinatorial promoter is shown in Fig. S2.12B. The probability for
P, /, promoter being in the open complex is described by the following equations:

()"
Kdi

P1/2= 4\ R \™2 4\ / g \"2

(1) ) ) &)
For simplicity, we assumed that n; = 1. Then, the expression level of the output protein at a steady
state is given by:

(S2. 25)

A

Z = Zax " 1 R TII(zd1 4/ R \2 (S2. 26)
() o)

Where Z,,,, is the maximum protein level achieved by P, /, promoter.

A graded Positive feedback model: The first step toward implementation of synthetic power-law

and multiplication function in living cells, is to broaden the input dynamic range of genetic

synthetic parts. It has shown that a graded PF loop increased the input dynamic range by more than

three orders of magnitude (4) (Fig. S2.12C). TFs bindings to promoters are modeled according to

the Shea-Ackers formalism (11, 12). Therefore, the total level of expressed A activator (Fig.

S2.12C) in the case of APF loops can be expressed as:

A=A Ray (S2. 27)
T — ' .
max ]‘.4"‘31"!'1{2
—+f2
_ . _Kaz
Y = Yy e (S2. 28)

Where A, and Y4, are the maximum protein levels achieved by P; and P, respectively, ;
and [, are the Basal levels of P; and P; respectively, and A is the level of activators that are bound
to P, and P,. The induction of the activator by x inducers is given by:

A=A; gx) (S2. 29)
glx) = 15’2)h (S2. 30)

Where K, is the dissociation constant and h the Hill coefficient of binding inducer to activator.
Substituting Eq. S2.29 into Eq. S2.27 we get:
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K 1
A=A W (S2. 31)
d1i
Ar + Ar ﬁl + Ar o) = Amax Ar9() + Amax 'ﬁl
K Kdll( Kaa K
Ar- 9&1) T ﬁl ' g&l) + ATZ = Amax " Ar + Amax 'ﬁl .g(licl)
 (Kdx CKar 2 _ .p . Kaa
. Kai _ Amaxg(x) 2 _ ]  Kai
Ap 2 (14— 2me80) 4 407 = A By 2 (S2. 32)
In case that Amax/Kqd1<1, we can approximate Eq. S2.32 as:
Ap ~ —Amaxbs (S2. 33)
(1+p1-2mexg(n)
(A) (B)
m State Term
J_ [ ] [ | — 0 1
Binding site of A Binding site of B +1

— 1 A/Kyy
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(E) 100 Analytical Model (Eq. 2.33)
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Fig. S2.12. (A) APF and ANF loops combined with a hybrid combinatorial promoter,
CP#=Copy number of plasmids. (B) The binding states of P, ,, promoter. (C) APF loop circuit.
(D) Simulation results of APF loop circuit using a detailed model K,,, = 100, m = 1.5, 4,4 =
1000,8; = 0.1,K;, = 10, Z0x = 1, B, = 0.01. (E) The detailed and analytical models of APF
(K; = 3000).

The Simulation results for the exact model of APF (Eq. S2.27-Eqg. S2.30) and the approximated
model based on Eq. S2.33 are shown in Fig. S2.12D and 2.12E. When the ratio
Anmax/ K4 decreases, the input dynamic range increases.
By applying a logarithmic operation to Eq. S2.33, we get:
Amax
log(Ar) ~ 10g(Amax * B1) — log (1 + By = "2 g(x)) (s2. 34)
By substituting Eq. S2.30 into Eq. S2.34, and assuming that ;"1, we get:
h h
log(Ar) ~ 10g(Ayay - B) + log (1 + (&) ) — log (1 + (&) (1- “‘Km—)) (S2. 35)

di
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In case that x/K,, >> 1 and (im)h - (1 — A’”“’“) < 1, we can approximate Eq. S2.35 as:
(1 — e (2" (S2. 36)

Ka1 Km

(%) -
log(Ar) = log(Amax - B1) + h - log (L) — (1 _ M) el ln(Km)
()

Kai
_(1—AK’”—d“1x)-<1+h-ln(%))
108(47) = 10g (Amax - B2) + h-Tog () ~ 23 (1 = 22). (% ‘- log (me>>
log(Ar) ~ 10g (Amax - 1) — (1 - Am—) [1-23-(1- A""“‘)] h-log (= ) (S2.37)

log(AT) log(Amax ﬁl) +h- log

Eq. S2.37 shows that a graded APF loop, when A4,,,,../K; << 1, can be approximated as a power-
law function. The power-law coefficient is mainly set by Hill coefficient h and the ratio of
Apmax/Kg. The simulation results of Fig. S2.12D show that the power-law coefficient in the case
of strong APF (A,4x/K4 = 10) is 1.5, and for a graded APF (A,,qx/Kq = 1) is 1.35.

Experimental Results of APF: To test our approach, we first created various synthetic libraries
that permute the sequence features affecting DNA binding site affinity. This was achieved by
creating random mutations in the TF-DNA binding site sequence within the promoter. The
synthetic P, promoter was selected due to its simple structure (16). The promoter consists of a
single LuxR binding site upstream to the -35 location. First, we constructed an open-loop gene
circuit consisting of two components: a constitutive promoter regulating the expression of the
LuxR gene, and a P, promoter regulating the expression of GFP (Fig. S2.13A). Then we ran a
random mutation on the first 7 nucleotides of the LuxR binding site sequence (17), resulting in a
new promoter called (P, xms6)- TO test the new promoter, we reconstructed an open-loop and APF
circuits with the Pyuxmse promoter (Fig. S2.13B). The positive feedback circuit consisting of a
positive feedback loop based on the a mutated Py, promoter regulates the expression of the LuxR
gene and a wild type P4 promoter, which regulates the expression of GFP. As shown in Fig.
S2.13C, the mutated promoters (P,xmse IN Open circuit) exhibited weaker TF-DNA binding than
the wild type promoter (P, in open circuit), with a lower GFP signal and a wider input dynamic
range. In particular, the mutated promoter (P, xmse6) gives rise a graded APF transfer function with
a broad region of linearity for more than four orders of magnitude without losing its magnitude.

The measured transfer functions of multiple circuits were fitted using Hill function a -
(AHL)meff

k

meff
(1 (2y™)
constant of binding LuxR to P4 0r Puxmse, affects the input dynamic range and the effective Hill
coefficient meff, as well as the power-law coefficient. Our experimental results showed that the
influence of dissociation constant on mes is much larger than our theoretical analysis. This is
because our theoretical analysis is based on Michaelis-Menten model, which assumes that the TF
concentration is much larger than promoter concentration. It has been shown that, when these
assumptions are violated, detailed biochemical reaction models can capture the behavior of graded
APF accurately (4). Fig. S2.14 shows the experimental results of AHL — GFP transfer function for
other mutated Py, promoter.

+ b (Fig. S2.13C). The strength of a PF loop, which is set by the dissociation
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Fig. S2.13. (A) The construction of open-loop (OL) and APF circuits based on P, promoter.
(B) The construction of OL and APF circuits based on mutated P, promoter (Puxmse)- (C)
Measured transfer functions of multiple circuits, dots are experimental data, and dashed-line is
a Hill function fitting with the below parameters:
K =30,m,sr = 1,a = 25 x 10%,b = 600

K =7mer=2,a=30x10%b =800
K =500,mgsr = 0.3,a =5x 103 b = 100
APF circuit — Mutated Pyyymse: K = 500,mgsr = 0.5,a = 30 X 103,b = 100

OL circuit — Wild type Pyy:
APF circuit — Wild type Pyy:

OL circuit — Mutated Pyxmse:

Fig. S2.14 shows the experimental results of AHL — GFP transfer function for other mutated Py«

promoter.
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Fig. S2.14. AHL — GFP transfer function of mutated P, promoters (Puxaat, Pluxtet). DOts are

experimental data, and the dashed line is a Hill function fitting.

Power-law and multiplication function based on ANF and graded APF loops: The

combination of graded APF and ANF loops with a combinatorial promoter is shown in Fig.

S2.12A. A set of equations that describes the behavior of this system at a steady state is given by:
e APF loop equation:

A
A = A K (S2. 38)
T1 max1 1+[gl+i :
Ka1
e Induction of X; (AHL) and Y; (LuxR) equation (4):
A~ Ar X1 242X, Ar+Knm1 2 (S2.39)

e ANF loops equation:
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1

RT = Rmax ﬁ (82 40)
1+ﬁ2+(K—dZ)
e Induction of X, and R:
R =Ry ﬁ (S2. 41)
1+(K—mz)
e The a ctivity of combinatorial promoter:
+B12

P, = e (S2. 42)

1+haz :Kdm : (th2> 6 Kdh1 (th2>

Where 3, is the basal level of combinatorial promoter.
e The mass balance between the complex and the promoter; the sum of free TF concentration
and complex concentration is equal to the total concentration of TF (A + Complex = Ar):

A A A R \™2
Kauﬂ))1 Kdni 6 Kdni \Kdnz
A+PT1'1+ +A'+P'1"12' 2 R nze A R n2=AT (8243)
o 144y ( ) + ( )
Kaa Kgn1 \Kgn2 Kqn1 \Kqn2

Py, and Prq, are the total concentration of P, and P;, promoters. For simplicity, we
assumed that & ~ 1, and P,, >> Pr;. Therefore, we can write:

A

A + PTlZ * Kdl}; = AT (82 44)
1+Kd1h

A* + A (Kgip + Pria —A) =Y, - Kgip (S2. 45)

Simulation results of Py ero -based power-law and multiplication function (Fig. 2C):
Parameters were used: K1 =1,Ky, =1,kg1 =200,K45 =5,Kg1p =10, kgon = 40y =
1,hy, =14, Anax = 200, Rppux = 500, ny, = 2,0y, = 1,0y, = 1,0 = 1,Pry, =30, B2 =
0.001, B, =0.002, B, = 0.001.

Now we will show that the experimental results of this circuit fit power law and
multiplication function:

Fitting experimental results of APF, ANF loops and Py, teto-based combinatorial promoter to a
power-law and multiplication function.

log(mCherry) = ¢ + ns - log(AHL) + ng - log(aTc)

Results i
Linear model Poly11: ? 8 3
fixy) = p00 + p10*x + p01*y (] g’ 25
Coefficients (with 95% confidence bounds): 6 Q :
pO00= 1334 (1305,1364) EL 2
pl0=  1.094 (1053, 1.135) < 15
p01= 08179 (0.7827, 0.8531) o 3
Hoe 1
Goodness of fit: © 8 0.5
g a Y
SSE: 0.1796 o
R-square: 0.9924 2 B 0
Adijusted R-square: 0.992 = 14
RMSE: 0.06786 s 0.6 05
/09/07 0.2 02 — 05 0
o 0. -1 log(AHL)

Fig. S2.15. Matlab surface fits the experimental results of APF (P,uxtgT) and ANF (Pieto)
loops and combinatorial promoter (Pyyx/teto- mCherry) to power-law and multiplication

function. The data appears in Fig. 2B in the main text and is reproduced here for clarity.
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Fitting simulation results of APF, ANF loops and Py, teto-based combinatorial promoter to a
power-law and multiplication function.

Results

()]
Linear model Poly11: e 8
f(xy) = p00 + p10*x + p01*y o ¥ 3
Coefficients (with 95% confidence bounds): o= g’
p00 =  0.4059 (0.4026, 0.4091) LE) =
p10= 0.9637 (0.9619, 0.9655) © 2
p01 = 0.8355 (0.8337,0.8373) 8 8
N
Goodness of fit: © g‘ 1
SSE: 2.148 € o
R-square: 0.9979 5 2 0
Adjusted R-square: 0.9979 z S 1.8
fres

RMSE: 0.02291

0.67
log(AHL)
Fig. S2.16. Matlab surface fits the simulation results of APF (P xtct) ahd ANF (Peero) l00OpS
and combinatorial promoter (Py,x/tet0- mCherry) to power-law and multiplication function.
The data appears in Fig. 2C in the main text and is reproduced here for clarity.

/o 6 = =
Yar, 0.2 02 02

Simulation results of Py ero-based perceptgene circuit (Fig. 2D) are shown in Fig. S2.17.
We used the same equations and parameters that describe the Pg5p System (Eq. S2.21-S2.24), and
assumed that AraCr is proportional to the output of Py /rec0-based power-law and multiplication
function.

Normalized GFP fluorescence

[¢2] [e:]

aTc [ng/mL]
S_I.

B~

V]

10°

AHL [uM]

Fig. S2.17. The computed transfer function of synthetic perceptgene based on AraC system.
Parameters that were used in simulation: AraC; = 8,K;3 = 3, K3, = 30, m3 = 2.8 (4, 16). The
ratio between K5 and K, fits well to the values that were reported on literatures(4, 16).
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Further analysis of 3D surface plot which compares the power-law and multiplication
circuit based on ANF and APF loop versus perceptgene is provided:

(A) (B)

R2=0.9998 |

R?=0.9984

at log-scale
at Jog-scale
- @

e
[

Normalized fluorescence
Normalized fluorescence

05 T 05 -
05 3 05 0 ' o5

T 05 0
log(aTc)

! 0
log(AHL) log(aTc) Jog(AHL)

Fig. S.2.18. (A) Fitting experimental results of APF, ANF loops and Py teto -based
combinatorial promoter to non-linear models (Quadratic) using locally weighted scatterplot
smoothing (Circuit from Fig. 2A, Data based on Fig. 2B). (B) Fitting experimental results of
perceptgene based APF, ANF loops and Py, /teto-based combinatorial promoter to non-linear

models (Quadratic) using locally weighted scatterplot smoothing (Circuit from Fig. 2D, Data
based on Fig. 2E).

Table S2.1 List of parameters used in this section

Symbol Description

R; The level of repressors which are bound to P;

A The level of activator which are bound to P,

X; The level of repressors/activator which are bound to P;
P, Promoter within ANF

Pin VVombinatorial promoter

Bi Basal level of promoter
n; Hill coefficient of binding of repressor/activator to P ; & P , promoter
Kyi Dissociation constant of binding repressor/activator to P ; & P , promoter
Ry Total level of expressed R;

Rinax; | The maximum protein level achieved by P;
Ar Total level of expressed A

Amax The maximum protein level achieved by P;

Inducer

Hill coefficients of binding x; to ¥;

xl

K i Dissociation constant of binding x; to ¥;
h;
Y

The expression level of the output protein

Yinax The maximum protein level achieved by P,,, promoter
0 Combinatorial promoter binding interfere

Kgn Dissociation constant of binding repressors to P ; ,,combinatorial promoter

ny, Hill coefficient of binding repressors to P ; ,, combinatorial promoter

AraC. | Concentration of the Arabinose-AraC complex

AraC; | The total concentration of AraC

Meft Effective Hill coefficient
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Basal level of P ; ,, combinatorial promoter

Pr; Total concentration of P;
Pri, Total concentration of P;,
Kett Effective dissociation constant
Table S2.2 List of abbreviations used in this section
Symbol Description
TFs transcription factors
ANF auto-negative feedback
Pgap AraC promoter is activated by the AraC when it is induced by arabinose (Arab)
oL open-loop
APF auto-positive feedback
AHL Free N-(B-Ketocaproyl)-L-homoserine Lactone 30CgHSL concentration
Arab Free arabinose concentration
IPTG Free Isopropyl 1-B-D-1-thio galactopyranoside concentration
aTc Free anhydrotetracycline
Puux LuxR promoter is activated by the LuxR when it is induced by AHL
Placo Lacl promoter is activated by the Lacl — IPTG
Preto TetR promoter is activated by the TetR — aTc
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3. Smooth logical functions

Minimum and maximum functions perform logical operations ("if" loop) to a set of analog/digital
numbers. While smooth minimum and maximum functions perform the analog operation to a set
of analog numbers (x;). To implement smooth logical functions between two analog numbers, we
used rectifier activation functions (Fig. S3.1), which is widely used in artificial neural networks,
and is given by (18, 19):

+ <
min(ups, ) + finax = {1; m N Zzi (S3.1.1)
max
+ foni >
max(ugy, U) + finin = {1; ' fmin Z - Zzi (S3.1.2)
min

We first will prove two mathematical identities:

(D) min(ugq, x +y) = min(up; —y,x) +y

Computing the left side:
1. Foruy; — (x +y) <0, we obtain min(ugq, x +y) = ugy
2. Foruy, — (x +y) > 0, weobtain min(ug;, x+y) =x+y

Computing the right side:

1. Forugy, — (x +y) < 0, we obtain min(uy; — y, x) = uyy — v, and, thus
min(uy; —y,x) +y = Upq
2. Foruy, — (x +y) > 0, we obtain min(uy; — y, x) = x, and, thus min(uy; — y, x) +
y=x+y
Therefore, we obtain that the left side and the right side are equal in all the conditions.
(2) max(ugz, x + y) = max(up, —y,x) +y
Computing the left side:

3. Foruy, — (x +y) <0, weobtain max(ug,, x +y) =x+y
4. Forug, — (x +y) > 0, we obtain min(ug,, x +y) = g,

Computing the right side:

3. Foruy, — (x + y) < 0, we obtain min(uy, — y,x) = x, and, thus min(uy, — y, x) +
y=x+ty

4. Forug, — (x +y) > 0, we obtain min(ugy, — y,x) = uy, — y, and, thus
min(up; —y,x) +y = Uz

Therefore, we obtain that the left side and the right side are equal in all the conditions.

An analytical expression that approximately describes Egs. S3.1 can be given by (20):

ea'(u_uo)

Sa(ugpu) = (U —up) "Trea@ouy T f (S3.2.1)

When a < 0, Eqg. S3.3.1 finds the smooth minimum between uo and u
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(u—ugq) .
S_ja)(Uo1, u) = W-(zl—uol)_" fmax » When a——o0 = S, (up,u) = min(uyy, u)

(S3.2.2)

When a > 0, Eq. S3.3 finds the smooth maximum between up and u

Sia(Uoz, U) = % + fmin, When a — o = S5 (upz, u) = max(ugp, u)  (S3.2.3)

The Pgap promoter can exhibit S_;q = min{uy,, u} for high Arabinose level, and S, =
max{ugy,, u} for low Arabinose level (Fig. S.3.1C). This data is based on Fig. S.2.9.

(A) max(uyy ,U)+fi (B) min(Uo; ,U)+f max
frnax
A
u u
Up2 Upg

Ug,=log(3) Uo,=log(40) Arab=0.7mM (High level)

(®) 3 7 : : 0 Arab=0.02mM (Low level)
——— 1 L
= 2 A : .El'lqlm (u — uoy)
O : ol : ’ [1 + e—lal-u—u )‘I'fmax]
— e e 01
§11 | 8 (u = 1)
— ! ’l' ! U — Upz
0 : s + farn]
. lal (u—ugz)
O IIEr ] ] I 1 . te
0 0.5 1 1.5 2
log(AraC)

Fig. S3.1. (A) negative-rectifier activation function. (B) positive-rectifier activation function. (C)
Fitting the induced Pgap with low Arabinose (0.02mM) to negative rectifier Eq. S3.2.2 (a =
—10, uy; = log(40), fmax=0.56, and with high Arabinose (0.2mM) to positive rectifier Eq. S3.2.3
(a = 4,uy, = log(3), fmin=0.1. This data is based on Fig. S.2.9.

Analyzing log-transformed negative rectifier:

For simplicity, we assumed that uy = 0,x =r,and y = —v. First, we plotted the function
min(0,u =r —v) + cont (Fig. S3.1.1A). Then, we subtracted the function output by the input v
which brings all the plots to the same initial point: min(0,r — v) + v + const (Fig. S3.1.1B). In
the next step, we graphed the function min(r, v) (Fig. S3.1.1C), and by comparing Fig. S3.1.1B
to Fig. S3.1.1C, we concluded that these two graphs are equivalent. Therefore, eventually, the
function min(0, r — v) + cont , which can be implemented by a negative rectifier with a threshold
that is controlled by the second analog input can be used to compute the minimum between two
analog numbers. For further study of the relation between perceptron and minim function, we
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ew-(r+v—c)

plotted a 2-input perceptron using a sigmoid function - (Fig. S3.1.1.D), and a 2-input

+ew (r+v-c)
ew-(r+v—c)

perceptron that is normalized by second input (W — v) that brings all the curves to the
same initial point. In our simulation, we designed the sigmoid to act as a negative rectifier in the

operating dynamic range w = 7 and large ¢ = 7. We obtained that min(0,r — v) + cont and
perceptron have similar behaviors, however, in an opposite dependency concerning the second

input.
. n3.pnayp . . .
Then, we plotted the perceptgene of two inputs PR YT (Fig. S3.1.1D, only in this case we

assumed that n; = n, = 1.5, bais = 0.001, 8 = 0.01).

baisr

For operating in partial swing, the perceptgene can be approximated as shifted and biased log-
transformed negative rectifier (NR). The NF receives the collective analog signal k; - log(r) +
k, -log(v) + log(AraC,qy) » Where AraCmax is the maximum AraC level. Using Eq. S3.2.2, when
the bias depends linearly on the v level,

the output of the NR:

_ kq-log(r)+k;-log(v)+log(AraCmax)—1og(Uo1)
NR —

+ 2 - w; -log(v) + const (S3.3.3)

b k |al
1+(—-rk1-v 2)
Uo1

Whel’e u01 = lOg(Uol),

AraCmax

(1) when: @ « —1, and T crkiopke &1 D fyp = ky - log(r) + ky - log(v) +
o1l

log(AraCp,qy) — log(U,,) + 2 - wy - log(v) + const . In this case, we can claim that the
fnr is equal to the analog argument bias - r™s - v™ at the log-scale, where n; and n, are
the weights of the two inputs as calculated by the power-law and multiplication function.

(2) when: @ « —1, and ZL&max . pki . ke 55 1 D f0 = 2wy - log(v) + const

o1
In the case of the Pg4p as shown in Fig. S3.1C, since the promoter activity is approximated
as twice the negative rectifier, we expect that

= 2 kl = ns,
= 2-(ky+wy) =ny
= log(bias) = log(AraC,qy) —log(U,1)
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0.8 farpr = min(0,7 —v) + cont 0.8 - fairrn =min(0,r — v) + v + const 1 min(r, v)
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Fig. S3.1.1. Calculations of several functions related to smooth minimum calculations

First, we normalized the measured data of three circuits from Fig. 1H and Fig. 2E, and Fig. 2H, by
the minimum level achieved for each circuit. Second, we transformed Eq. S3.3 operates in the
linear-scale, to the logarithmic-scale, by a logarithmic operation to the normalized data. Then, we
normalized the inputs for every circuit by its input dynamic range value (x;/IDR;).

1. Smooth minimum function — Pi,c0,tet0-based Perceptgene circuit. Fig. S3.2A shows the
experimental data of Fig. 1H in the linear-scale, which is well matched to Eq. S3.3:
Where:
u=04-x,+02-x,—-1
b=03"x,+0.6
a = —10 < 0 = Soft minimum
x1 = log(IPTG/IDR;3), x, =log(aTc/IDR,)

We can also build the model that that b depends on x; (IPTG)

fi=5_10(0,04-x; +02-x,—1)+03-x,+0.6 (S3.4.1)
Where fy is the normalized data of Fig. 1H. We can write:

fi =min(0,04-x; +02-x,—1)+03-x, +0.6 (S3.4.2)
_(0.4-x;+05-x, —0.4 04-x,+02-x,—1<0

_{0.3-x2+0.6 04-x,+02-x,—1>0

A general formula to Eq. S3.4 is:

fi=min(0,ky ~x; +ky-x—y)+2-w;-x,+a, (S3.5)

kl'x1+k2'x2—)/<0

_{kl'x1+k2'xz—y+2'W1'x2+a2
B kl'x1+k2'x2—)/>0

2 " Wl " XZ + az
We can write Eq. S3.5 as:
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_ _ . . _ kl'x1+k2'x2—}/ kl'x1+k2'x2—)/<0
fp=HA—-2-wm xz"‘az)—{o ko x +ky xy—y >0
ki x ki xy<y—ky, x
=fi—-(%—-7Y)— Q2w x,+a ={11 1 2 72 (S36
fa=fi—(kyx—v) —( 1" X2 2) Y=k, x, ky x>y —ky o xy ( )
Eq. S3.6 can be viewed as a smooth minimum logical function between two analog numbers that
are proportional to system inputs x; and x, (Fig. S3.2B):

: kix ki x;<y—ky, x
f3=m1n(y—k2-x2,k1-x1)={1 ! pasym R

S3.7
Y — k- x; ki x>y —ky x; ( )

Fig. S3.2B and Table in Fig, S3.2C give similar results with a little bit of difference, and this is
because that each one is calculated in a different way.

The IPTG weight n; = 0.75 (Table S.4.2), and k; = 0.4 =» n; = 1.875 - k, as we expected
The aTc weight n, = 1 (Table S.4.2), and k, =0.2, w; =03 =2 n, =2-(k,+w;) as we
expected.

For a more general case: an ideal minimum function is observed when min(r,v) =
min(0,r — v) + v. Thus, if we assume that r = k; - x; and v = y — k, - x,, we can find that the
perceptgene computes:

min(0,r —v) + v+ 0.5 x, — 0.4 ==>min(r,v) + 0.5 x, — 0.4 (S3.7.1)
log(GFP) o log(IPTG) log(GFP) e log(aTc) 1.2
Data 21 — S
§ 12 | ModelEq. f1s | 8% T 09 1 N
= 46.3,a<0) | 15 | & [CR % T3
S u 212 58 S § g 3
53809 09 | §= 202 S8
oD g R 0 = - 5 0.6 - s @
29 ioe | — & S 3 R
T §06 &g 8%
£ 8 : g 037
g = xo. "
£ o3 2
2 § -k log(aTe/IDR) 0 ‘ w w w w
0 : i 0 0.5 1 1.5 2 2.5
T T T 1
0 0.5 1 15 2 25 log(IPTG/IDR)- linear-scale
log(IPTG/IDR)- linear-scale
fleTe) j
Smooth
Min _’
g(IPTG) m
p-kraTe| 058 064 070 076 082 0.88
k,-IPTG
0.84 0.58 069 076 085 0.87 086
0.72 060 067 070 0.75 0.75 074
0.60 0.57 060 061 057 059 057
0.48 0.54 046 045 044 046 047
0.36 037 034 030 032 030 034
0.24 026 023 019 o021 020 0.27

Fig. S3.2. The perceptgene circuit calculates the smooth minimum between the analog inputs
(log(IPTG) and log(aTc)). (A) the raw data, Where y = 0.5 -log(B5), k, = 0.5 - (ng — wy).
(B) the raw data after bringing all the curves to the same initial minimum point, Similar to Fig.
S3.1.1. (C) Raw data using Eg. S3.7.
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We then calculated the errors between the transformed data of the perceptgene circuit and the ideal

data of smooth functions.

Table S3.1. Transformed experimental data (D,,,) of Fig. 1H (Fig. S3.2)

Experimental
Results 0.58 0.64 0.70 0.76 0.82 0.88
0.84 0.58 0.69 0.76 0.85 0.87 0.86
0.72 0.60 0.67 0.70 0.75 0.75 0.74
0.60 0.57 0.60 0.61 0.57 0.59 0.57
0.48 0.54 0.46 0.45 0.44 0.46 0.47
0.36 0.37 0.34 0.30 0.32 0.30 0.34
0.24 0.26 0.23 0.19 0.21 0.20 0.27
Table S3.2. Ideal (Expected) data for minimum function (D,,;,_,) based on Table S3.1
Expected MIN 0.58 0.64 0.70 0.76 0.82 0.88
0.84 0.58 0.64 0.70 0.76 0.82 0.84
0.72 0.58 0.64 0.70 0.72 0.72 0.72
0.60 0.58 0.60 0.60 0.60 0.60 0.60
0.48 0.48 0.48 0.48 0.48 0.48 0.48
0.36 0.36 0.36 0.36 0.36 0.36 0.36
0.24 0.24 0.24 0.24 0.24 0.24 0.24

Table S3.3. Calculation of the error between measurement data (Table S3.1) and Ideal data for the minimum

function (Table S3.2) using:

Error; = abs(

Dmin-1

(Dexp _Dmin—1)>

Error(i) 0.58 0.64 0.70 0.76 0.82 0.88
0.84 0.001622052 | 0.086931 | 0.089926 | 0.122127 | 0.06111 0
0.72 0.040504146 | 0.054275 | 0.007044 | 0.036687 | 0.037627 | 0.029814
0.60 0.017410123 | 0.007701 | 0.015816 | 0.050489 | 0.011948 | 0.049949
0.48 0.127994603 | 0.031549 | 0.059475 | 0.077629 | 0.042186 | 0.025321
0.36 0.441393616 | 0.312972 | 0.158067 | 0.219982 | 0.163661 | 0.317077
0.24 0.013971729 | 0.124459 | 0.282187 | 0.205529 | 0.217792 | 0.038107

The error for the experiment is calculated as the:

Error = 100 X %Z?’zl Error;

= 10%
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Table S3.4. Ideal data for maximum function (D,,,4,—1) based on Table S3.1

Expected MAX 0.58 0.64 0.70 0.76 0.82 0.88
0.84 0.84 0.84 0.84 0.84 0.84 0.88
0.72 0.72 0.72 0.72 0.76 0.82 0.88
0.60 0.60 0.64 0.70 0.76 0.82 0.88
0.48 0.58 0.64 0.70 0.76 0.82 0.88
0.36 0.58 0.64 0.70 0.76 0.82 0.88
0.24 0.58 0.64 0.70 0.76 0.82 0.88

Error; = abs(

Table S3.5. Calculation of the error between measurement data (Table S3.1) and Ideal data for the maximum
function (Table S3.4) using:

(Dexp _Dmax—l))

Dmin-1
Error(i) 0.58 0.64 0.70 0.76 0.82 0.88
0.84 0.310123265 | 0.173461 | 0.093065 | 0.014157 | 0.035065 | 0.019391
0.72 0.163899995 | 0.064676 | 0.02237 | 0.017875 | 0.088913 | 0.157425
0.60 0.050163119 | 0.067919 | 0.128017 | 0.250386 | 0.277035 | 0.352238
0.48 0.066487225 | 0.272256 | 0.354118 | 0.41745 | 0.439328 | 0.468357
0.36 0.353858034 | 0.465573 | 0.569227 | 0.582638 | 0.631034 | 0.610863
0.24 0.557987327 | 0.643623 | 0.732991 | 0.728207 | 0.751983 | 0.693287
The error for the experiment is calculated using Eq. S3.25 = 32%
Table S3.6. Ideal data for the average function (D,,._;) based on Table S3.1
Expected
Average 0.58 0.64 0.70 0.76 0.82 0.88
0.84 0.71 0.74 0.77 0.80 0.83 0.86
0.72 0.65 0.68 0.71 0.74 0.77 0.80
0.60 0.59 0.62 0.65 0.68 0.71 0.74
0.48 0.53 0.56 0.59 0.62 0.65 0.68
0.36 0.47 0.50 0.53 0.56 0.59 0.62
0.24 0.41 0.44 0.47 0.50 0.53 0.56
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Table S3.7. Calculation the error between measurement data (Table S3.1) and Ideal data for average function
(Table S3.6) using:

Error; = abs (—(De}g’_?a”eﬂ))
Error(i) 0.58 0.64 0.70 0.76 0.82 0.88
0.84 0.1846358 | 0.06281 | 0.011806 | 0.063495 | 0.046108 | 0.001974
0.72 0.074591661 | 0.010556 | 0.009607 | 0.007547 | 0.030918 | 0.074359
0.60 0.034569811 | 0.040348 | 0.063066 | 0.162957 | 0.165873 | 0.230545
0.48 0.021381523 | 0.170205 | 0.235228 | 0.28638 | 0.293251 | 0.312616
0.36 0.202458539 | 0.317255 | 0.432002 | 0.433788 | 0.487469 | 0.448044
0.24 0.374242173 | 0.482392 | 0.602825 | 0.586875 | 0.61635 | 0.518199
The error for the experiment is calculated using Eq. S3.25 =» 22%
Table S3.8. summarized the data
Std err Smooth Min Smooth Avg Smooth Max
(experimental vs. expected) (expected) (expected) (expected)
Smooth Min (experimental) | 10% 22% 32%

Analyzing log-transformed positive rectifier:

For simplicity, we assumed that uy, = 0,x =r,and y = —v. First, we plotted the function
max(0,u = r — v) + const (Fig. S3.3.1A). Then, we subtracted the function output by the input
v which brings all the plots to the same initial point: max(0,r — v) + v + const (Fig. S3.3.1B).
In the next step, we graphed the function max(r, v) (Fig. S3.3.1C), and by comparing Fig. S3.3.1B
to Fig. S3.3.1C, we concluded that these two graphs are equivalent. Therefore, eventually, the
function max(0,r — v) + const , which can be implemented by a positive rectifier with a
threshold that is controlled by the second analog input, can be used to compute the maximum
between two analog numbers. For further study of the relation between perceptron and maximum

a-(r+v-c)
function, we plotted a 2-input perceptron using a sigmoid function m (Fig. S3.3.1D), and

a-(r+v-c)

a 2-input perceptron that is normalized by second input (m — v) that brings all the curves

to the same initial point. In our simulation, we designed the sigmoid to act as a positive rectifier in
the operating dynamic range @« = 7 and large ¢ = 1.5. We obtained that max(0,r — v) + const

and perceptron have similar behavior, however, in an opposite relation with the second input.
7 M1 9,7
Then, we plotted the perceptgene of two inputs % (Fig. $3.1.1D, only in this case we

assumed that n, = n, = 1.5, bias = 0.00005, 8 = 0.01 ).
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For operating in partial swing, the perceptgene can be approximated as shifted and biased log-
transformed positive rectifier (PR). The PF receives the collective analog signal k; - log(r) + k -
log(v) + log(AraCy, ), Where AraCmax is the maximum AraC level. Using Eq. S3.2.3, when the
bias depends linearly on the v level, the output of the PR:

_ kqlog(r)+k;-log(v)+log(AraCmax)—10g(Uo2)

NR = —lal
1+(m.rk1.vk2)
Uo2

+ 2w, -log(r) + const (S3.8)

Where uOZ = lOg(Uoz),

AraCpmax

(3) when: a>»1 , and T crkipka > 1 0 fpr = ky - log(r) + ky - log(v) +
02

log(AraCp,qy) —log(U,,z) + 2 - w, - log(r) + const . In this case, we can claim that the
frr 1S equal to the analog argument bias - r™s - v™¢ at the log-scale., where ns and ne are
the are the weights of the two inputs as calculated by the power-law and multiplication
function.

(4)

= ki =nq,

2 k,+k;=n,

(5) B = bwhen: a » 1, and 5

In case of the Pgap as shown in Fig. S3.1C, since the promoter activity is approximated
as twice the positive rectifier, we expect that

AraCmax

crkpke K1 fop = 2w, - log(r) + const

= 2 - kz = TL6,
= 2'(k1+W2)=Tl5
= log(bias) = log(AraC,qy) —log(U,,)

Smooth maximum function — Py, 0 -based Perceptgene circuit. Fig. S3.3A. shows the
experimental data of Fig. 2E in the linear-scale, is well matched to Eq. S3.3, where

u; =0.25-x;+0.38-x, — 0.2

b=0.25"x +0.1

a = 4 > 0 =>» soft maximum

x1 = log(AHL/IDRs), x, = log(aTc/IDRy)

We can also build the model that b depends on x> (aTc)

fi = 8,(0.25x; + 0.38-x, — 0.2) + 0.22 - x; + 0.1 (S3.8.1)
Where fy is the normalized data of Fig. 2E. We can write:
fi = max(0,0.25-x; + 0.38-x, —0.2) + 0.22-x; + 0.1 (S3.8.2)
3 {0.25 +x; +0.38-x, — 0.2 0.25-x; +0.38-x, —0.2> 0
~1022-x,4+0.1 0.25-x; +0.38-x, — 0.2 <0

Similar to Eq. S3.7 we can write Eq. S3.8 as:
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fi :kmax(kz 'xz»Vk— ki xi) = ];é —(ky xy—y)— 2wy x1 +ap)
1'% 1' X1 >V~ Ky X
= S3.9
{V—kz'xz ki-x1 <y—kz x; (53.9)
Eq. S3.9 can be viewed as a smooth maximum logical function between two analog numbers that
are proportional to system inputs x; and x, (Fig. S3.3B).

The aTc WEIght Ng = 08, and kz = (0.38 9 Ng = 2 k2
The AHL weighng = 1,and k; = 0.25, w, =0.22 2 ng = 2 (k; + wy)

For a more general case: an ideal maximum function is observed when max(r,v) =
max(0,r — v) + v. Thus, if we assume that r = k, - x, and v = y — k; - x;, we can find that the
perceptgene computes:

max(0,r —v) + v+ 0.47 - x; — 0.1 max(r,v) + 0.47 - x; — 0.1 (S3.9.1)
1.5 - max(0,7 — v) + cont 0.8 max(0,r — v) + v + const 1 A max(r, v)
0.6 —_/ 0.8 - E—
1 - Y
V 04 v ‘ 06 n
0.5 - 0.2 0.4
0.2 +
0 O T T T T 1
T ' ' ' 0 025 05 075 1 0 ' - ' -
0 025 05 075 1 rlevel 0 025 05 0.75 1
r level r level
) e (rev=ec) . . e r+v=c) brpn g
Sigmoid = m Sigmoid = 71 e -p-v 1 ) P
1 1 A é
0.8 0.8 3
0.6 0.6 - |
1 v
0.4 v 04 4 | \ 0.1 3
0.2 02 -
0 . : : s 0
0 025 05 075 1 T T T 1 0.01 T T T TTmm =TT TTTTT T TTTIm
rlevel 0 0.25 0.5 0.75 1 0.1 1 10 100
r level r level

Fig. S3.3.1. Calculations of several functions related to smooth maximum calculations.
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Fig. S3.3.2. The perceptgene circuit calculates the smooth maximum between the analog inputs
(log(AHL),log(aTc)). (A) the raw data, where y = 0.5 - log(B3), k, = 0.5 - (ns — w, (B) the raw
data after bringing all the curves to same maximum point, Similar to Fig. S3.3.1. (C) Raw data

using Eq. S3.9.

Similar calculations of error were performed to the maximum circuit.
Table S3.9. summarized our results

Std err Smooth Min | Smooth Avg | Smooth Max
(experimental vs. | (expected) (expected) (expected)
expected)

Smooth Max | 470% 256% 23%

(experimental)
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A simple model for the average function:
The output of the power-law and multiplication circuit (Fig. S3.4A) is given by:

AHL\"7  (IPTG\™8
Y'="Yy (IDRl) ' (IDRZ) (53.10)
Where Yy is a normalized parameter with a unit of concentration, IDR; are the input dynamic
ranges. Applying log operation, we get:

log(Y) = log(Yy) + n, - log (IDR ) +ng - log (jZZ) (S3.11)
In case that n7=ng=0.5, we get:
AHL IPTG
log—==)+log|—=
Out = log(Y) —log(Yy) = (iom,)*to9(iom,) (S3.12)

2
Therefore, conceptually, we can implement average only with the power-law and multiplication,

without the need for activation function. However, it is challenging to obtain IPTG weight around
0.5. We can solve this challenge by applying a linear activation function using AraC, Pgpp and
Arabinose (Fig. S3.4B). Equations that describe circuit from Fig. S3.4B are:

AHL\™ (IPTG\™8
AraCy = AraCy (le) : (IDRZ) (S3.13.1)
AraCT+ .
GFP = GFPmaledj—mCT (S3.13.2)
+
K3

Eqg. S3.13.2 is driven from Eq. S2.21, and Eq. S2.22, where the arabinose concentration is very
high (Arab>>Kms), fa <<1, is the basal level of Pgpp promoter, GFP,,, iS the maximum
GFP achieved by Pgap promoter, AraCyis corresponding to Yy. The Eq. S3.13.2, or the Pgap
promoter can operate in two linear ranges:

1. A:{aCT « 1, in this range, we can approximate Eq. S3.13.2 as:
a3
GFP = GFP, ., (‘“‘“CT + 34) (S3.13.3)
Substituting Eq. S3.13.1 into Eq. S3.13.3, we get:
GFP__ _ (AraCy\  (AHL\"7 (IPTG\"8

GFPmax ( Kas ) (IDRl) (IDR2> + B (S3.14)
Applying a log-operation into 3.14 and in case that n = n, = ng, we get:

GFP AraCy IPTG
log (GFPmax N '84) —lo ( Kas ) =n <l0g (1DR1) +log (1DR2)> (S3.15)

In this working range, the linear activation function based on Pgap could not solve the challenge
of achieving low weights. These are two solutions, (1) working with an activation function with
very low hill coefficient, which is not simple to create. (2) working with another working range:

2. Second analog working range: £, < AT9CT < 1. For simplicity, in this analysis, we neglect the

basal level, and applying a log operation to Eq. S3.13.2, we get:

GFP _ AraCr AraCr
log (Gppmax) = log( = ) —log(1+ = o) (S3.16)
The slope in the log-log is equal:
N L. s I il (83.17)
eff = d[log(AIr(tzzr)] 1 +A1T<Z(;T .
AraCr

Our goal now is to approximate Eq S3.17 when B, < <1

Kas

By applying Taylor series around 22T ~ 1, we get (Fig. S3.5):
d3
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AraCp

B~ t2-In (AT“CT) (S3.18)
Kas
Substitutlng Eq S3.18 into Eq. S3.17, we get
Megs =5 = D) (53.19.1)
me
GFP = GFPmax : (A;“CT) 1 (53.19.2)
d3
Substituting Eq. S3.13.1 into Eq. S3.19.2, we get:
GFP _(Aracy\™eff  ( AHL\“7Meff (IPTG\"'&™Meff
GFPmax = GFBnax ( Kgs ) (IDRl) (IDRZ) (53.20)
Applying log operation, we get:
GFP ) AracN\ _ ) AHL ) ) IPTG
log (GFPmax) ~ Mesy log( Kis ) =Ny Mess - log (IDRl) +Ng My - log (IDRZ)
(S3.21)
So that Eq. S3.21 computes the average, we require:
1. n,=ng=n
2. n- meff = 0.5 (Substituting from Eq. S3.19.1)
. l 1 AraCr _
> n-(3—3-In( 3))_0.5
AraCT — . _ l
> lop(222) - 2-(1-2)
o Aracr _ ,2(1) (53.22)

Numbers: n = 1.65,m = 1 (These numbers are based on our measurements Fig. S4.6)
=> AraC =~ 2K, m.sr = 0.33 .Under these conditions:

IOg( GFP ) Const = 0.5 109( ) +0.5-1lo (IPTG)

GFPmax IDR,

(S3.23)
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Fig. S3.4. (A) APF (Piuxaat), ANF (Piaco1), and Py 1aco-based Combinatorial promoter.
(B) Preceptgene based on linear activation function to implement average.
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Fig. S3.5. The approximation of Eq. S3.18, the inset Fig S3.5. is a representation in the log-log
scale.
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Experimental results of APF (Pyxaa1 ), ANF (Paco1) and Py iqc0-based Combinatorial
promoter:

Normalized GFP fluorescence at Jog-scale

4

107"
35
3
25
2
15

1072 4
0.5

107" 10°

AHL [pM]
Fig. S3.6. Experimental results of circuit Fig. S3.4. The data represent means calculated from
three experiments.

IPTG [mM]

Fitting experimental results of P xaar-based APF, Pi;co1-based ANF loops and Py, /1aco-based

combinatorial promoter to power-law and multiplication function ( log(GFP) =c +n, -
log(AHL) + ng - log(IPTG) )

P
Results e : ~_
Linear model Poly11: =
f(xy) = p00 + p10*x + p01*y
Coefficients (with 95% confidence bounds):
p00 = 5.099 (4.667, 5.53)
p10 = 1.892 (1.604, 2.18)
p01 = 1.633 (1.395, 1.872)

Goodness of fit:
SSE: 2.895
R-square: 0.9334
Adjusted R-square: 0.9285
RMSE: 0.3275

Normalized GFP
fluorescence at log-scale
o =N WD

0.2

/O,Iz;//p 1.8 = 0.2
. 1 “log(AHL
Fig. S3.7. Matlab surface fits the experimental results of APF (Pjyxaat) and ANF (Paco1)

loops and combinatorial promoter (Py,x/1aco-GFP) to power-law and multiplication function.

2. Average function — Py, 1ac0-based Perceptgene circuit. To implement the average function
between two analog numbers, we used a linear activation function (Fig. S3.8A). A linear
activation function is a special case of Eg. S3.3 with @ = 0. Fig. S3.8B shows the
experimental data of Fig. 2H in the linear-scale, which is well matched to Eq. S3.3 with
a ~ 0 (Fig. S3.6B):
fi=055-x; +0.51-x, —0.25

= f, +0.25 =%

The power-law and multiplication functions set the input dynamic range of the smooth logic
functions. For example, the average function has an IDR of log(32) order of magnitude for IPTG
and the multiplication function has a IDR of log(16) order of magnitude for AHL.
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IPTG/IDR at linear-scale
Fig. S3.8. The perceptgene circuit calculates the average
(log(AHL),log(IPTG)).

between the analog inputs

Similar calculations of error were performed on the average circuits.

Table S3.10 summarized our results

Std err Smooth Min | Smooth Avg | Smooth Max
(experimental vs. | (expected) (expected) (expected)
expected)
Smooth Avg | 66% 8.5% 24%
(experimental)
Table S3.11 summarized all the results
Std err Smooth Smooth Smooth Circuits
(experimental vs. | Min Avg Max
expected) (expected) | (expected) | (expected)
Smooth Min | 10% 22% 32% Inputs: IPTG, aTc

(experimental) ANF (Piaco1 ), ANF (Peero ),

combinatorial promoter
(PlacO/tetO)l AraC /Pg5p-GFP
Arabinose-low

Circuit — Fig. 1G

Results: Fig. 1H

Transformed results: Fig. 1J
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(experimental)

Smooth Max | 470%

256%

23%

Inputs: AHL, aTc

APF (Puxrer ), ANF (Preto ),
combinatorial promoter
(Plux/tetO)’ AraC /Pgap-GFP
Arabinose-high

Circuit — Fig. 2D

Results: Fig. 2E

Transformed results: Fig. 2F

(experimental)

Smooth Avg | 66%

8.5%

24%

Inputs: AHL, IPTG

APF (Puxaat), ANF (Paco),
combinatorial promoter
(Plux/teto)’ AraC /Pgap-GFP
Arabinose-high

Circuit — Fig. 2G

Results: Fig. 2H

Transformed results: Fig. 21

Table S3.12 List of abbreviations used in this section

Symbol Description
X; Analog numbers

Piaco tero | COmbinatorial promoter
IPTG Free Isopropyl 1-B-D-1-thio galactopyranoside concentration
aTc Free anhydrotetracycline
IDR Input dynamic range

Py jteto | COmbinatorial promoter

Pruxjiaco | cOMbinatorial promoter
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4. Calculations of parameters for a single perceptgene

Promoter
Activity

Linear-scale

=)

Log-scale

Fig. S4.1. Basic structure of perceptgenes.

The output of power-law and multiplication circuit can be approximated as:

V=1 Y () (541)

Where X; is the input concentration, K,,; is the dissociation constant or scalar normalization or
input dynamic range. Y,,, has units of concentration, and it equals the maximum level of produced
transcription factors. n; is Hill-coefficient of the input X;. The operation range of the circuit is

defined X;; < X; < Xy;, whereIDR = log(%). Then we can rewrite Eq. S4.1 as:

. ) Li
S (;_L)” : (If_;)" (S4.2)

Assuming that X;; = K,,; , relevant parameters used in models are listed in Table S4.1

System [Inpul, Input2] [IPTG, aTc] [AHL, aTc] [AHL, IPTG]
X 1uM 90 nM 90 nM
K1 1 uM (21) 125 nM (16) 125 nM
X1 0.4 ng/mL 0.4ng/mL 1uM
Ko 1.7 ng/mL (16) 1.7 ng/mL 1uM

Table S4.1. The Lowest input values were used in our circuits, and the dissociation constants for binding IPTG -
Lacl, AHL -LuxR, and aTc -TetR

The measured signal of the power-law and multiplication circuit is given:
~ TNy (X
GFP ~ & TIL Y (55) (S4.3)

Where ¢ is the efficiency of converting GFP molecules to optical signals. The minimum measured
signal achieved is when X; = X;;:

N XL\
GFPoin = & TIIL, Yo - () (S4.4)
Then, the normalized signal of the power-law and multiplication circuit is given by:
GFP X\
GFPy = GFPo i1 (X_u)
=n. YN Xi
log(GFPy) =n; - Y=, [log (xu)] (S4.5)

The promoter activity is initiated when the transcription factor Y binds and is given by:
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Y m
(72) +#
1+ﬁ+(Kld)
B is the basal level of the promoter, K is the dissociation constant of binding Y to promoter, and

m is the Hill-coefficient (number of binding sites within the promoter). Substituting Eq. S4.2 into
Eq. S4.6 gives:

x;\ i\
Hliv=1ym'(x_£i)
Kg +ﬁ
P =

i\ ™
H?I—1Ym'(%> l
148+ T ML
Kq

.. m

(L (E))

P = (54.6)

b= ..l
m [ Xi t
v (M2 () )
y = (l'[’i"?B xt)™ (S4.7)
__yt
rT 1+6+y (848)

where x; = X;/X;;,and B =Y, /K,

The minimum promoter activity is P,,;,, = B, and the maximum promoter activity is B4, =~ 1.
The perceptgene is designed as a modular, meaning that the output of the first layer acts as the
input of the second layer. Also, the decision at the perceptgene output should be made at the
logarithmic-scale. Therefore, we normalized the promoter activity by the basal level:

1 < B. < 1/B = linear-scale/log transform: 0 < log(P.) < —log(B) (54.9)

In analogy to perceptron, we approximated the activation function as a step function:

m-n;- YN ,x; —m-B >log(Th) log(P.) = —log(B) (S4.10)
Otherwise log(B.) =0
We define the Th is the effective threshold of the activation function and is set by the Basel level
(Fig. S4.2):

1+Th+B

10t9®B)/2 — g
Th=——""—7—

1 — 10lg(B)/2
The measured signal of the perceptgene circuit in steady state is given:
GFP = &+ GFP,y - P. (S4.12)
where GFP,,, IS the maximum GFP achieved by the promoter. Then the normalized signal of the
preceptgene circuit is given by:

GFP “GFPmax Py

GFPN - GFPmin =1+ f'GFimax'(BN_'-m"'ﬁ) (8413)
Here GFPy,i, 1S the minimum GFP achieved by the perceptgene (x; = 1). The maximum fold
change of the perceptgene (GFPy max) IS achieved when the normalized inputs equal to /DR (input
dynamic range), then we can assume that the promoter activity is approximately 1. Therefore, the
maximum fold change is given by:

1
GFPN_max = m
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1- 1
m___ 1B (S4.14)
GFPN_max GFPN_max
(A) 5 1
4 Ve
é o Jogld) agn Pron:m'ter
- S 102 Activity
1 ¢ >
o a0
£ 2 B —
Th
Log-scale
B
®) 5 log(x,) n,-log(x,) © 0 A T —
E '_g' ol gy /' Promoter
4 log o Activit
2 loalx) 5 2 J 1| Ay
c
I3 = log(p)
log(Th)
Liner-scale

Fig. S4.2. Description of the perceptgene model in the (A) logarithmic-domain and (B) linear-
domain.

In this work, we used the fundamental properties of ANNSs to create genetic circuits that
encoded the calculations of smooth maximum, the smooth minimum, and the average of two
analog inputs (Supplementary analysis, Section 3). In our implementation the cooperativity,
represented by the Hill coefficient, acts as a weight (m, n;), and the node threshold is set by
the basal level. Additionally, the bias is set by a linear function of the
translation/transcription rates, the mRNA/protein half-life and cell growth rate divided by
the binding affinities of protein-protein/protein-DNA reactions (Supplementary
Information, BOX1). Correspondingly, the logarithmic equivalent product of m-};n; -
(X;/IDR;) + Bias > Threshold sets the operation type shown in Table S7 (e.g., the
maximum function uses a positive rectifier activation, the minimum function uses a negative
rectifier function, and the average function uses a linear activation function; Supplementary
Figs. 3.1, 3.4). To enable different operation types, we controlled the Hill coefficient of the
Pran promoter (m) by adjusting the arabinose concentration (Supplementary Fig. S2.11).

Table S4.2. shows the calculations used to define the operation of each perceptgene circuit

System [IPTG, aTc] [aTc, AHL] [AHL, IPTG]
ny 0.75 0.8 1.9
n, 1 1 1.65
IDR, at log-scale log(128) = 2.1 | log(64) = 1.8 | log(16) = 1.2
IDR, at log-scale log(128) = 2.1 | log(32) = 1.5 | log(32) = 1.5
M 2 1 1
Maximum Fold Change 16 10 14
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Bias at log-scale (B) log(1/16/2) log(1/10) log(1/14)
=—0.6 =— =-1.1
B — Basal level 0.001 0.001 0.001
log(Th) —1.5 —1.5 —1.5
B-m—Th -2.7 -2.5 -2.6
Tl1 " m1 - IDRl + B m — Th 045 '1 '03
le 'mz 'IDRZ +B 'm_Th 15 ‘1 '02
m—Th
Operation type Minimum Maximum Average
A _
= -
et
9
>
5 max(x,,x,)
Q —
=
— 1
Working range
B) .
o
e
@
>
= average(x,,x,)
o —
£
—p 1
Working range
©) _
o
g3
S
5 min(x,,x,)
g- —

—

Working range

Fig. S4.3. Operation type of perceptgene. (A) Maximum, (B) average, and (C) minimum.
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Fitting experimental results of the power-law and multiplication functions with respect to
their input dynamic ranges (IDRs ):

Results

Linear model Poly11:

f(xy) = p00 + p10*x + p01*y 3
Coefficients (with 95% confidence bounds): 2.5
p00 = -0.2912 (-0.3495, -0.2329) 2
p10 = 0.7625 (0.727, 0.798)
p01= 09825 (0.947, 1.018)

Goodness of fit:
SSE: 0.5857
R-square: 0.9877
Adjusted R-square: 0.9873
RMSE: 0.09799

Normalized GFP
fluorescence at log-scale
=
v

1.5

1.5

0.5

y/ 1
09/075 -, 2 0.5

log('PTG/'DR)

Fig. S4.4. Matlab surface fits the experimental results of P .0; and Pio ANF loops and
combinatorial promoter (Paco,teto-GFP) to power-law and multiplication function with respect
to IDR axis.

Results

Linear model Poly11:
f(xy) = p00 + p10*x + p01*y
Coefficients (with 95% confidence bounds):
p00 = -0.1243 (-0.1735, -0.07511)
p10= 1.094 (1.053, 1.135)
p01 = 0.8179 (0.7827, 0.8531)

Goodness of fit:
SSE: 0.1796
R-square: 0.9924
Adjusted R-square: 0.992
RMSE: 0.06786

Normalized mCherry
fluorescence at log-scale
=

1.4 15

91 ©° o :
aTc//o,?/ 0.2 0 |og(AHL/'DR)

Fig. S4.5. Matlab surface fits the experimental results of APF (P, xrgt) and ANF (Peto) l00pS
and combinatorial promoter (P, ,tet0- mCherry) to power-law and multiplication function with
respect to IDR axis.

Results o
Linear model Poly11: 3
f(xy) = p00 + p10*x + p01*y & '& 4
Coefficients (with 95% confidence bounds): (9 &
p00 = -0.7792 (-1.057, -0.501) -5 3
p10= 1892 (1.604,2.18) 9 S 2
p01 = 1.633 (1.395, 1.872) T ©
{ =
E o 1
Goodness of fit: 5 2
SSE: 2.895 29 0
R-square: 0.9334 9
Adjusted R-square: 0.9285 = 1.5
RMSE: 0.3275 i 1.2
©911pre 04 :
77 R
G//Dﬁ/ 0 o ,og(AHL/lDR)

Fig. S4.6. Matlab surface fits the experimental results of APF (Pjuxaat) and ANF (P,c01) l0oops
and combinatorial promoter (P /1aco-GFP) to power-law and multiplication function with
respect to IDR axis.
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Circuits that calculate minimum and maximum input values can be used to construct conjunction
and disjunction logic functions (Fig. S4.7). For example, the minimum between {“0”, “1”} is 0,
i.e., “0” AND “1”; the maximum between {“0”, “1”} is I, i.e., “0” OR “1”. Therefore, we can
apply maximum/minimum perceptgene-based circuits to implement logical computation functions
in living cells. Controlling the weights can be achieved via processes such as splitting proteins
(22-25).

X, X, AND=min(x,x,) OR=max(x,x,)
o (8] (8] (1)
o 1 o 1
1 (o) (o) 1
1 1 1 1

Fig. S4.7. Truth table of AND/OR logic gates demonstrate minimum/maximum functions,
respectively.
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5. Design and model of multilayer perceptgene networks

In this section we present a biophysical model that describes the behavior of multilayer
perceptgene network at steady state. We show that biophysical models can be described in a similar
fashion to neural networks with three components: (1) weights that are represented by Hill-
coefficients and cooperativity, (2) bias constants that are proportional to the ratio of the total
synthesized proteins and promoter binding affinities and (3) activation functions that are
represented by a promoter activity and are described by Michaelis-Menten Kinetics
(Supplementary information, Section 1, Box1).

AHL IPT aTc

l 1 1

mcp —C’ luxR — LCP _C—[ lacl — m_ LcP
P luxM56 | P laco1 | P tetO

HCP —;C araC =—

(9}

P MCP
lux/lacO |
Arabinose ; : T7-Tag+SupD ==y T7SupD
Lce ——C T7-Tag — ——C gfp — HCP
BAD Py

Fig. S5.1. Multilayer perceptgene network accepts three analog inputs (AHL, IPTG and aTc).

In the first layer, the AraC protein is regulated by a circuit consists of a graded APF, an ANF loop

and a combinatorial promoter (Pyx/aco). The first layer circuit displays a power-law and

multiplication function (Fig. S.5.5-5.7). The APF loop is induced by AHL and the ANF loop is

induced by IPTG. A weak mutated P,,.mse Promoter was used in the APF part to broaden the IDR

of AHL (Fig. S2.13). The activity of AraC protein upon inducers AHL and IPTG is described by:
ny n;

YVi=Ym1" (2_5:) ' (IPTG) (85.1)

Kma2

Where y,,, has units of concentration, and it depends on the binding affinity between transcription
factors and the corresponding promoter, as well as the maximum level of transcription factor (Eq.
S2.13). The experimental results of Py,x 1ac0-based power-law and multiplication circuit are shown
in Fig. S.5.5-5.7, which are well fitted using Eq. S5.1.

The AraC proteins are expressed as the output of the first layer. Subsequently, they interact with
the Pgap promoter, which further regulates the T7-RNA polymerase. The activity of the T7-RNA
can be modeled in the following way

_ (y1/K1)"™+B4
“ = Zmi1 1+B1+(y1/K1)™ (55.2)
K]_ =a- ml_b (853)

Where K; is the dissociation constant of Arabinose- AraC complex binding to Pgsp promoter, 3
is the basal level of Pg5p, and m, is the effective Hill-coefficient. We have shown that K; and m,
can be tunable by the Arabinose concentration level (Fig. S2.9) with a power-law relation.
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The amber suppressor tRNA supD is regulated by Pi..o-based ANF, and is given by:
Tc\™3
Y2 = Yma (o) (85.4)

m3
where y,,, has units of concentration. The experimental results of P...o-based ANF are shown in

Fig. S.5.8, which are fitted well to a power-law function using Eq. S5.1. The biochemical binding
reaction between T7 RNA polymerase and supD is given by(26):

T7gna + supD & T7gnaSupD (S5.5.1)
T7gnaSupD + supD & T7gnaSupD, (S5.5.2)

A simple solution to the set of Eq. S5.5.1 and Eq. S5.5.2 at the steady-state gives:

Y3 = VYm3 " (v2/K2) 2'2?(21/1(3) 3 (S5.5.3)

Here we assumed that there are two amber stop codons in the open reading frame, which should
lead to m, = 2 (26). However, as the first biochemical reaction in Eq. S5.5 (T7gy4 + supD <
T7grnaSupD) can also bind to T7 promoter with a probability larger than zero, the effective value
of m, can be reduced to less than 2. m5; depends on the protein quaternary structure (the number
of subunits that interact with each other and arrange themselves to form a final structure of the
protein). Since the T7 RNA polymerase is a single subunit (26, 27), m; = 1. K,, K5 and K, are
the dissociation constants of biochemical reactions in Eg. S5.5. The T7 RNA polymerase was
regulated by a ribosome binding sequence with a very low binding affinity (BBa_B0031) (4, 28).
The binding of T7zy4SupD, complex to T7 promoter, actives it and expresses GFP. This process
demonstrates the output of the second perceptgene layer, and is given by:
- (y3/Ks5)™4+B> (S5.6)
1+ B2 +(y3/Ks)™4

Where K5 is the dissociation constant T7zy,SupD, complex to Pr , S, is the basal level of Py,
and m, is the effective Hill-coefficient. Rewriting the set of Eq. S5.1-Eq. S5.6, gives:

Zy = Z

_ AHL\™  (IPTG\"2\™

n=6 () () ) (5.7)
_ y1tP

7 =20 (S5.8)
— (B, (Z\")"

v = (B (&) ) (85.9)

y3 = (B, 'ﬂ}’z " (Bs rz)™3)™ (S5.10)
_ Y3th2

7, = 22 (S5.11)

Where: B, =2z % p =fm p =¥m p =Ymi., b

Ks K,' Ky
An abstract model of the set of Eq. S5.7-Eq. S5.11 is shown in Fig. S5.2, and is built from three
computational components:

(1) Network Weights (n; and m;): are represented by effective Hill-coefficients, which depend
on biological cooperativities of protein interactions and protein quaternary structure (the
number of subunits that interact with each other and arrange themselves to form a final
protein).

(2) Bias constants (B;): are represented by translation/transcription rates, mMRNA/protein half-
lives, rates of cell growth, binding affinities in protein-protein or protein-DNA interactions.
Bias constant is unit-less.
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(3) Activation functions or network nodes (z;- the output of each perceptgene) which are
represented by a promoter activity and is given by a normalized Michaelis-Menten model
yi/ (1L +y)).

As in Fig. S5.2, each input is normalized and fed into a power-law function with an exponent n;.
Then the product is multiplied with a bias constant, giving rise to an analog signal (y;). Applying
a logarithmic operation to the signal, we get: log(y;) = m; - log(B;) + m;- Xjn; - log(Iy;) (In;
is the normalized input). The bias acts as a reference level.

% AHL-LuxR
IPTG-Lacl Arab-AraC Vi Z
;| m m, LA ‘ { IR, .
%‘ 2 Y —

T7 RNA-SupD Z
(5, o m P mL| { “2. vk
B \]/

aTc aTc-TetR SupD Y2
o2 (m) (m;

Fig. S5.2. Abstract model of Multilayer perceptgene in analogy to abstract models of artificial
neural networks. Comparing to Fig. 3B, the only difference is that Bs is included in Ba.

5.1. Design of 3-input majority function

The 3-input majority function (also called the median operator) describes a logic function from
three inputs to one output. The output is a high- “1” if and only if the majority of the inputs are
high- “1”. Otherwise, the output is a low- “0”. The majority function can be found in various
applications such as adders and subtractors (29). The truth table and the implementation of the 3-
input majority function using a logic gate design are shown in Fig. S5.3A and B. The early works
with artificial neural networks were based on a linear threshold unit (LTU) and were targeted to
serve as a computational model that can implement any Boolean logic function (30). The
implementation of a 3-input majority function (Fig. S5.1) using a two-layer perceptgene network
is based on using principles of artificial neural networks (Fig. S5.2). First, we solved the set of Eq.
S5.7-Eq. S5.11, and then converted them to the linear domain using a logarithmic transformation.
Subsequently, an activation function was applied to the transformed output. For simplicity, we
approximated the activation function of the last layer as a step function in the log-scale:

10 y;>1
2y = {1 o (S5.12)
And the activation function [(y; + B1)/(1 + y, + B1)] inthe hidden layer was approximated (e.g.
Fig. S5.3C) as:

1 yi=Qa
Zy = {:31 <z1<1 1l/asy;<a (S5.13)
B y1 <1l/a
e We assumed that the normalized input (x;) is between 1 and 10
e We define:

__AHL __IPTG _ aTc

X1 = X, = _—
Yo Kmi ' 7?7 Kma! Km3

Ay =log(222), y=log(a), by =log(h)
As = log(B,) + m; - log(B;) + m3 - log(Bs)
BS = 1OA5 = B4_ " Bzmz - B3m3
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B, = 1041 -m,?
A simplified model of the set of equations shows that the network consists of two-layers
perceptgene, as shown in Fig. S5.3D.
State 0: x; = 1,06, =1,x3 =1, z, = 1;
We require that y; = B,™ < 1/a
= m, -log(B;) < —log(a)

>m; - (log (%) +b- log(ml)) < —log(a)

= my - (4; +b -log(m,)) < —y (S5.14.1)
We require that z; = f5;
y2 =By

¥3 = (By B (B3 f)™)™ < 1
> m, - (log(B,) + m; - log(B,) + m3 - log(B3) + m3log(B;)) <0
= my - (As+mz-by) <0 (S5.14.2)
State 1: x; =1,x, =1,x3 =10, z, = 1;
We require that y; = B;™ < 1/a
= my - (4 +b - log(my)) < —y
We require that z; = 4
Y2 = B, - 10™™2
¥3 = (By- B2 - 10™™2 - (By - z)™3)™ < 1
> m, - (log(B,) + m; - log(B;) + m3 - log(B3) + m; - ng+mzlog(f;)) <0
= my(As+my-n3+mg-b) <0 (S5.14.3)
State 2: x; = 1,x, =10, x3 =1, z, = 1;
We require that 1/a<yi1<a:
y1 = (B - (10)"2)™
e 1/a < (B;-(10)")™ < «a
=2 —log(a@) < m; - (log(B,) + n,) < log(a)

= —y<my-(A;+b-log(my) +n,) <y (S5.14.4)
We require that: §; < z; <1
Y2 =B,

y3 = (Bs B, (B3 z))™)™ < 1
>m, - (log(B,) + m, * log(B,) + m3 * log(B3) + mzlog(z,)) <0
= my - (As + mglog(z;)) <0 (S5.14.5)
State 3: x; =1,x, =10,x3 =10, z, = 10;
We require that 1/a<yi1<o:
y1 = (B - (10)"2)™
—y <my - (4; +b - log(my) +n,) <y
We requirethat: §; <z; <1
Y, = B, - 10™M2
¥3 = (B B, - 10™™2 - (B3 - z)™)™ > 1
= m, - (log(B,) + m, -log(B,) + ms - log(B3) + m, - ng+mslog(z;)) =0
= my - (As + my-ng + mylog(z,)) =0 (S5.14.6)
State4: x;, =10, x, =1, x3 =1, z, = 1;
We require that 1/0<y1<a:
y1 = (B - (10)™)™
2 1/a <(B;-(10)"M) ™M <
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=2 —log(a) < my - (log(B;) +ny) < log(a)

= —y<my-(A4;+b-loglmy) +ny) <y (S5.14.7)
We require that: g, < z; <1
Y2 = B,™

y3 = (By B (B3 z)™)™ < 1
= my - (As + mylog(z;)) <0
State 5: x; = 10,x, = 1,x3 =10, z, = 10;
We require that 1/a<yi<a:
y1 = (By - (10)™")™
= —y<my-(A4;+b-log(my) +ny) <y
We require that: g, < z; <1
y; = B, - 10™™2
y3 = (By+B,"? - 10™™2 - (B3 - z1)™3)™+ > 1
= m, - (log(B,) + m, - log(B,) + ms - log(B3) + m, - ng+mslog(z;)) =0
= my - (As +m, -n3 + mglog(zy)) =0 (S5.14.8)
State 6: X1 = 10,x7 = 10,x2 = 1, Zy = 10.
We require that y1>a
2> y; = (B (10)™ - (10)"2)™ > «
=2 m; - (log(By) + ny +ny) > log(a)

= my - (A;+b-log(my) +ny +ny) >y (S5.14.9)
We require that z; = 1
Y2 = B,

y3 = (Bs* B, (B3)™)™ =21
2> my - (log(B,) + m; - log(Bz) + m3 - log(B3)) = 0
= my-(45) =0 (S5.14.10)
State 7: x; = 10,x, = 10,x3 = 10, z, = 10;
We require that y1>a
y1 = (By-(10)™ - (10)"2)™ = a
= my - (A;+b-log(my) +ny +ny) >y
We require that z; = 1
Y, = B2 - 10™s™M2
y3 = (By - B, - 10™™2 - (B3)™3)™ > 1
= m, - (log(B,) + m, -log(By) + ms -log(B3) + m, -n3) =0
= my(Ag+my-n3) =0 (S5.14.11)
Summary: The design conditions of A, are set by:
. A< —le— b -log(m,)

. —L—b'log("h)_nz<A1<L_b'10g(m1)_n2
mq m
. A; >-=—blog(m;) —ny —ny
1

Therefore, Aipmin < 41 < Aimax (S5.15.1)
where:

Aimax = min {— mll —b- log(ml),mL1 — b -log(m;) — max(nq,n,) } (S5.15.2)

Aipmin = max {le —b-log(my) —ny —ny, — le — b -log(m;) — min(ny,n,) } (S5.15.3)
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We require that A,,,;;, < Amax. T0O gain deeper insights into the effects of A; on the behavior of
the network, we consider two asymptotic cases:
1. y « 0; astep function is used as the activation function in the hidden layer
Aimax = —b -log(m,) — max(ny, ny)
Aimin = —b -log(m;) — min(nq, n,) (S5.16.1)
Aimax < A1min, Unachievable condition. Therefore, we cannot implement a majority
function using two perceptgene layers with a step function in the hidden layer
2. y > 0, an analog function is used as the activation function in the hidden layer

Ajmax = — le —b- log(ml)
Aimin = le —b-log(my) —n; —n,

Aimax > Aimin, Which is achievable when:

L o (S5.16.2)
1
We now continue with the first condition in Eqg. S5.15.1, we assume that:
— X _p-log(m) <X — b -log(m,) — max(ny, ny)
my my
= 2-y >max(ng,n,) -my (S5.17.1)

Under these conditions, we get:
- Aimar = — mll — b -log(m,) (S5.17.2)
According to the second condition in Eg. S5.15.2, we should require:
le —b-log(my) —ny —ny, > — le — b -log(in;) — min(ny, ny)
= 2y > (ng +n, —min(ny,ny)) -my (S5.17.3)

The conditions in Eq. S5.18.1 and Eq. S5.18.3 are similar
Under these conditions we get:

= Atmin = mll —b-log(my) —ny — n, (S5.17.4)
As a summary, we get:
mL —b-log(my;) —n; —ny, <4; < —mL — b -log(m,) (S5.18)

1 1

Summary; The design conditions of A are set by:
. As<-m3-by
. As;<-my,-nz—ms3-b;
. A < —mglog(z,)

V. A5=>0

V. A5 = —m, - ng

VI. As = —-m,-n; — mylog(z;)
Therefore Asmin < As < Asmax (S5.19.1)
where

Asmax = min{—by, —m; ' ng — by, —mzlog(z,) }

Asmin = max{0, —m; - nz, —m, ' nz — mzlog(z,) }
The Basal level of promoter often is 8; < 1, and therefore b; < 0, and log(z;) < 0, therefor:
0<As; <—my-ng—b (S5.19.2)
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The simulation results as in Fig. S5.4A show that for m; = 2, a 3-input majority function can be
implemented by a two-layer perceptgene network. Parameters used: b = 0.73,a = 10,n, =
1,n, = 1.5,n; =0.7,my = 1,m, = 1.5,m3 = 1 (T7 RNA polymerase is a single subunit), B, =
0.05(0.006 < B; < 0.2, margin of two orders), B; = 1.25, §; = 0.001, 8, = 0.002. We used a
Michaelis-Menten model to model the activity of z;. The simulation results also show that for low
m, (e.g. my = 1), it is challenging to implement a 3-input majority function using a two-layer
peceptgene network, because the design parameters do not satisfy the conditions in Eq. S5.18-Eq.
S5.19 (B, = 0.05,0.03 < B; < 0.1, with a very small margin).

Compared with a one-layer network, a two-layer perceptgene network design has the
following advantages:
e Use less number of parts compared to digital design. In our design we used 7 proteins
and 8 promoters, total of 15 parts to implement a 3-input majority function in E. coli.
In digital design, the same circuit has been implemented in E. coli using 10 proteins
and 12 promoters (total of 22 parts) (6).
e Sigmoid functions can have benefits. For example, the state [1,1,0], which displays a
“1” logic state in the output, requires that the hidden layer acts as AND logic gate
with a very low value of B;. Simultaneously, the state [1,0,1], which displays a “1”
logic state in the output, requires that the hidden layer acts as OR logic gate with a
high value of B;. By contrast, sigmoid functions can solve such conditions very

smoothly.
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X, X5 X | Z Xy Xz X3 22X Xy #X K HX X5 e
o o o |o g o0s
o o 1 |o g ek,
2 06 1+y B,
(1] 1 0 0 S ——— Approximated
0 1 1 |1 ,  fo04
1 0o o |o - < 02
i1 0 1 |1 < o Ta o
1 1 o0 |1 ' ‘ ‘
— 0.01 0.1 1 10 100
1 1 1 1 y, - log scale
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Fig. S5.3. (A) Truth table of 3-input majority function. (B) The implementation of 3-input
majority function by digital design. (C) The approximation of Michaelis-Menten model by a
linear function in the log-scale. (D) A simplified abstract model based on two-layer perceptgene
to implement a 3-input majority function. (E) Simulation results for majority function based on
Fig. S5.3D. The error function for the asymmetric weights is 12% and for the symmetric weights
is 11%. The other parameters are shown at right side. We used a quadric Error function at the
log-domain: E = (log( Z,) — log(Zp))?/2. Z), is the expected data and equal to Z,,, = 1, and
Zpy = 100.
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Fig. S5.4. (A) Simulation results for the analog output (y5) of 3-input majority function based
on the two-layer perceptgene network. The threshold was calculated as 1071°8(F2)/2 (B)

Simulation results for the output (z,) of 3-input majority function based on perceptgene network.
The simulation were performed with X;i =[1-16]

5.2. Experimental results of 3-input majority circuit

First, we showed the experimental results of P ymse-based APF, Pi,.01-based ANF loops and
Plux/1aco -based combinatorial promoter circuit and fitted the data to power-law and

multiplication function (log(GFP) = c + ng - log(AHL) + n,, - log(IPTG) ). This circuit (Fig.
S5.5) is used as the majority function's first layer (Fig. S5.1).
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Fig.S5.5. Pyxmse-based APF, Piyco1-based ANF loops and Py, /iqc0-based combinatorial
promoter circuit.
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Linear model Poly11:
f(xy) = p00 + p10*x + p01*y
Coefficients (with 95% confidence bounds):
p00 = 4.899 (4.535, 5.262)
p10 = 09582 (0.783, 1.133)
p0l= 1817 (1.612,2.023)

Goodness of fit:
SSE: 4.457
R-square: 0.9191
Adjusted R-square: 0.915
RMSE: 0.338
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Fig. S5.7. Matlab surface fits the experimental results of APF (P, xmse) and ANF (Paco1)
loops and combinatorial promoter (Py,x/1ac0-GFP) to power-law and multiplication function.

Second, we showed the experimental results of P...o-based ANF loop and fitted the data to
power-law function (log(GFP) = ¢ + ny; - log(aTc)). This circuit (Fig. S5.8) is used to
regulate the third inputs aTc of the majority function.
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Mcp 0.1 1 10 100

P, tetO

aTc [ng/mL]
Fig. S5.8. Experimental results of Po-based ANF loop circuit, that fits to a power-law
function.
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Each input (e.g., inducer-transcription factor) has its input dynamic range (IDR). However,
occasionally when multiple inputs are aggregated at the same computational node,
transcription factor binding interference can effectively reduce the dynamic range for
neuromorphic computation. Since this disturbance affects the final computation, we
characterize every synthetic part separately and combine it with other inputs. For example,
we characterized TetR alone and with hybrid promoters TetR/Lacl and
TetR/LuxR. The IDR for TetR was observed to be 2.1 orders of magnitude (Fig. S5.8),
remained the same for TetR/Lacl (Fig. S2.1, Fig. S2.6), and was reduced to 1.8 orders of
magnitude for TetR/LuxR (Fig. S2.15).

The 3-input majority function accepts AHL [0.1875-0.3 uM], IPTG [7.8125-125 uM] and aTc
[1.5625-25 ng/mL]. The three inputs have a dynamic input range from 1 to 16. The simulation
results of the two-layer perceptgene network are shown in Fig. S5.4B. We used a Michaelis-
Menten model as an activation function to calculate the activities of z; (the hidden layer) and z,
(the final layer). We used a consistent set of model parameters as in Fig. S5.4A and Fig. S5.4B
except that B, is changed to 0.0025 and Bs is changed to 1. We normalized each measurement by
the minimum activity of [0,0,0] state. The experimental results of the 3-input majority circuit (Fig.
S5.1 and Fig. S5.9). To keep B, very low, we located AraC on a low-copy-number plasmid and
added an ssrA degradation tag(15) (LAA) to AraC. To keep Bs very low, a ribosome binding
sequence with a low binding affinity (BBa_B0031(28)) was used to regulate the T7 RNA
polymerase. A low Arabinose concentration was set as 0.03125 mM, and a high Arabinose was
set as 0.25 mM. Based on biochemical reactions described in Eq. S5.7-Eq. S5.11, our model could
capture well the experimental results.

o i
S 100 - i I
5 ] | , III | Arab=0.250mM
= 1 I I Arab=0.125mM
o I p } . 1 | T Arab=0.062mM
O 10 - } Arab=0.031mM
9 ; } I I :_ B Arab=0.015mM
= ] . ik ek Arab=0.007mM
£ Ll i O W ‘ |
2 1 r e L L AL

0 0 0 0 1 1 1 ot

0 0 1 1 0 0 1 ’

0o 1 0 1 0 1 o 1 2%

Fig. S5.9. Experimental results of majority circuit for various Arabinose concentrations (0.250,
0.125, 0.062, 0.031, 0.015, 0.007 mM).
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Table S5.1: Truth table of the linear-domain perceptron-based 3-input majority function and
evaluation of constraints on the design parameters. B; and B; are the biases of the first layer and
second layer perceptgenes, respectively. The three input weights are n1, nz, and ns, while m is the
weight of the first layer perceptegene output (Z:) that serves as an input to the second layer
perceptgene. yL1, yL2 and yn1 and yH2 are the low and high thresholds of the piecewise-linear first
and the second activation functions fai and faz. The yh2- yi2, and yni- yL1 are defined as the input
dynamic ranges of the activation functions.

_______________________

7 Piecewise linear "\
= | function i
.E-, : e L Ty T ~
= I ! Piecewise linear
o i : " functi !
S ! : . unction !
E Y1 V1 ! !
a | = TTTTTTToommmmmmmmmmeeeT L. Out
c P H 1
— 1
T2 Tu2 ]
/I,
Constraints on Design
Ini Inz Ing | Out Y1 VAl Y2 parameters
0 0O 0 Design constraints subsumed by 001 case
Bi<
00 1 0 B. 0 Bo+ns Lo
Bat+ns < yL2
010 0 Bi+n:2 0<fa1(B1t+nz)<1 B2+mxfai(B1+ny) B2tmxfai(B1+nz) < yL2
Bit+nz >
011 1 Bit+nz 0<fa1(B1+n2)<1 Bat+nz+mx fai(B1+n2) HR AL
Bz+nztmxfai(Bi+nz) > yh2
1 00 0 Bi+n1 0<far(B1+n1)<l B2+mx fa1(B1+na1) Ba+mx fai(Bi+n1)< yL2
Bitni> vy
1 01 1 Bit+ni 0<fa1(B1+n1) <1 B2+nz+mx fai(Bi+n1)
B2+nsz+tmx fai(Bi+ni) > yrz
Bi+ni+nz >
110 1 |Brtnutn: 1 Bz+m LT v
Ba+m > y22
1 11 1 Design constraints subsumed by 110, 101, 011 cases

Majority analysis for the first activation function:

To satisfy state [001], we require Bi<yu

To satisfy state [011], we require Bitnz> vy = Bi>yu-n2

To satisfy state [101], we require Bitni>yu = Bi>yu-m

The last three conditions yield to yLi-min(ng,n2)<Bi < yu1

To satisfy state [110], we require Bi+ni+n2> y =P B1> yhi- Ni-n2
The last and first conditions yield YH1-N1-N2<B1 < y11

Thus, the input dynamic range of the first activation function should be yu1-yL1<ni+n;
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Majority analysis for the second activation function:

To satisfy state [110], we require B2otm >y = B2 > yH-m

To satisfy state [011], we require Bao+nz+mxfai(Bi+n2) > vz = B2 > yup-nz-mxfai(B1+ny)
To Satisfy state [101], we require Bz+n3+meA1(Bl+n1) > YH2 = B;> sz-ng-meAl(Bl+n1)
The last three conditions yield to B2 > yro-min(m,nz+ mxfai(Bi+ny), ns+ mxfai(Bi+ny))
To satisfy state [001], we require Botns <y = B2<1yi2-n3

To satisfy state [010], we require Batrmxfai(B1+n2) < y12 P Bo< y12-mxfai(Bit+nz)

To satisfy state [101], we require Batmxfai(Bi+n1) < y12 P Bo< y1o-mxfai(Bit+ny)

The last three conditions yield to:
YhHz- Min(m,nz+ mxfai(B1+n2), N3+ mxfai(B1+n1))<Ba< yi2-max(ns, mxfai(Bi+nz), mx fai(Bi+ni))
Thus, the input dynamic range of the second activation function should be
YHz- YLz < min(m,nz+ mxfai(B1+n2), ns+ mxfai(Bi+ni))-max(ns, mxfai(Bi+nz), mx fai(Bi+n))
The analysis of the last condition yields that: m>n;
There are three cases: (for simplicity, we assumed that ni<ny):
1. When m<njs, the last equation yields that yu- yL.2 <m-nz<0
2. When m=n;3, the last equation yields that ynz- yL2 <O
3. When m>ns, the last equation yields that ynz- yL2 <M-nz Or yh2- Y2 < MX(1-fai(B1+ny))
The condition of [001] and [010] yields for ns>yw2- y12; thus we obtain m>ns>yuz-yio.

Table S5.2: Truth table of perceptgene-based majority function and evaluation of the design
parameters. D.C. = Don’t care.
m=myXm,=1x1=1

n;=nxm=1x2=2
Tl'2=n2><m1=1.5 X2=3
n's=nyxXxmy,xm, =07 x1.75x1=1.25

B;x45%x1073=B,x1,y;=-1y, =1

|n1| n:nz out Yi 71 Ys Constpr:; 2’::1 :tr; r[\:e3|gn
log(1) BotmxZi<y:
B1 BotmxZ;
log(1) | «p» log(4.5%107%)=- D.C. log(1)+1xlog( IOg(l)I;r;:ZI?)EL(_le)< -1
log(1) 23 1) 7,<0.79
(1) Bi<m
log(1) log(4.5x107%)<1
log(1) % Br+ny’ ,
“0” | log(4.5%x1073)=- 0 | (2) B2+ng’+mxlog(Z1) < v1
53 0g(1)+1.25 | jog(1)+1.25+1xlog(Z1) < -1
log(10) log(Z1)<-2.25
Z1<0.005
log(1) , BotmxZ1 < y1
Bi+nz Bo+mxZ;
109(10) | <5~ | 1oga.5x10%)+3 | D.C | log(1)+Lxlog( Iog(l%;é?zl?)%-sz -1
log(1) -2.:3+320.7 21) 21<0.79
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log(1) () Brena > 1
5 -3
l0g(10) | ..y Butn; 3 Interme Bo+nz’+m 1og(4.5x107)+3> -1
1 |Og(45x10 )+3 d |0g(1)+125+1 (2) Bz+n3’+m><|0g(21) > v2
log(10) -2.3+1.5=0.7 1og(1)+1.25+ log(Z1) >1
Z1>0.56
log(10) ; BotmxZ;<yi
Bi+nz Bo+mxZ;
09(1) | o | log@a5x10%+3 | D.C. | log(1)+1xlog( '09(1%;’1("2'0)%_211)< -1
log(1) -2.3+3=0.7 Z1) zgl<5.79
log(10) &) B >
log(1) | .. Bl+n1’_3 Interme Bo+ns’+m 10g(0.004)+2>-1
1 log(4.5%10°)+2 q log(1)+1.25+1 (2) Bo+nz’+mxlog(Z1) > vz
log(10) -2.3+2=-0.3 1og(1)+1.25+log(Z1)>1
Z1>0.56
log(10) Bi+ni’+ny’ (1) Bi+ni’+n2’ > y2
log(10) | .., log(4.5%10° 1 Bat+m log(4.5%10%)+2+3>1
$+2+3 log(1)+1 (2) B2+m > 2
log(1) -2.3+5=2.7 log(1)+1>1
log(10) Bi+ni’+ny’ (1) Bi+ny’+n2’ > y2
log(10) | ;- log(4.5x10° 1 B2+nz’+m log(4.5x107%)+2+3>1
3+2+43 log(1)+1.25+1 (2) B2+nz’+m > 2
log(10) -2.3+5=2.7 log(1)+1.25+1>1

Table S5.3 List of parameters used in this section

Symbol | Description
Vi The power law and multiplication signal (analog signal)
Yoni Fitting parameter that has concentration units
K i Dissociation constant of binding x; to Y;
n;m; | Hill coefficient
z; The expression level of the output protein proportional to the promoter activity
Zmi The maximum expression level of the output protein
Bi The basal level of the promoter
K; Dissociation constant of complex binding to promoter
a Dissociation constant of binding Arabinose—AraC complex to Pgap
b Fitting parameter to the effective dissosciation constant of binding Arabinose—
AraC complex to Pgap
B; Bias
I Normalized input
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Table S5.4 List of abbreviations used in this section

Symbol Description
ANF Auto-negative feedback
APF Auto-positive feedback
IDR Input Dynamic range
LTU linear threshold unit
AHL Free N-(B-Ketocaproyl)-L-homoserine Lactone 30CsHSL concentration
IPTG Free Isopropyl1-B-D-1-thiogalactopyranside concentration
aTc Free anhydrotetracycline
AraC AraC protein
LAA sSrA degradation tag
T7ana T7 RNA Polymerase
tRNA supD | Amber suppressor tRNA
Prxmse Mutated LuxR promoter is activated by the LuxR when it is induced by AHL
Prux/iaco Combinatorial promoter
Pr, T7 promoter
Preto TetR promoter is activated by the TetR — aTc
Pruxmse teto | COmbinatorial promoter
Pruxmse/iaco1 | Combinatorial promoter
Prx/teto Combinatorial promoter
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6. Gradient descent and backpropagation algorithms in living cells

The perceptron weights can be adjusted in small steps through iterations, following a first-order
optimization algorithm known as a gradient descent (31). This process converges to the global
minimum of the gradient descent of the mean square error metric function or cost function (C).
Typically, this ensures that a high resolution of weight adjustments in tradeoff with training time
and number of samples (32). Likewise, we developed a perceptgene-based rule that minimizes the
output error, following log-linear domain's gradient descent. We defined a logarithmically
quadratic cost function for each state or sample i as:

1
Ci =5 (log(Zp;) — log(Z;))* (S6.1)
Zp; 1s the desired output of every state, and Z; is the actual network output for every state. The
cost function of network is the average of cost functions over individual samples:

<C>==3¥, ¢ (S6.2)

N is the number of samples and is also called the batch size. Substituting Eq. S6.1 into Eq. S6.2,
we get:

< € >=—3(log(Zpi/Z:))? (6.3)

We call C the logarithmically (average) quadratic cost function of the network, and it is a function
of the weights and biases. We can see that < C > function is non-negative, since every term in
the sum is non-negative. Following the gradient descent, at every iteration, the network output is
adjusted toward the desired value and accordingly, the average-cost function decreases (the cost
function becomes small when the output is approximately equal to the desired value for all the
samples i (< C >~ 0 when z; = zp;). Fig. S6.1 shows the average-cost function of a perceptgene
network for two inputs and one output. In this case, there are four input states. We attempted to
find an algorithm that minimizes the cost function on average with respect to the weights (9 <
C >/0m; ord < C >/dn; (m; and n; are network weights). In this work, we optimized the m, of
the majority circuit, which consists of two layers (Fig. S5.1 and Fig. S5.2). Therefore, we used a
chain-rule in addition to gradient-descent to update the m,.In particular at every iteration, we
calculated the average error or cost at the output and distributed it back through the network layers

which is essentially backpropagation algorithm (7):
0<C> 1oy 09C

(S6.4)
aml N aml
We can write the set of equations that describe the majority circuit as: (we assumed that, the Basal
levels are much lower than 1 (8, , << 1):

AHL\™  (IPTG\"2\™
1= (51 (o) D)) (56.5)
Z) = 1+;1 + B (S6.6)
ns m;
v = (B (K"_;) ) (S6.7)
Y3 = (54 "y - (Bg - zy)™3)™ (56.8)
Zy = 1+;3 + B, (S6.9)
= Yms Ks = Zm = Ym2 =Ymi, b
WhereBAf_K5 K4,Bg_K3 ,BZ_K2 , By = PR}
Using a chain rule, for every state we can get:
0Ci _ 9Ci 073 0ys 071, Oy (S6.10)

6m1 - 622 6y3 621 6y1 6m1
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Z_C =log(Z2) i (S6.11)
Zﬁ = (2, —B2) (1 —2,) y% (S6.12)
%”3 - (S6.13)
= =B (1= 2) yi (S6.14)
=y (1og (Yo s x,m2) 4 b - (log(m,) + 1)) (S6.15)

The partial derivative of the average-cost function of every sample or input state with respect to
my IS:

ac; Ym

o=y -y - log(2) - (2252) - (1= 2) - (2) - (1 = 22) - (log (B2 ™ - 3™ + b -
(log(m,) + 1)) (S6.16.1)

We normalized the partial derivative by log(z’"‘”‘z) term, because the output dynamic range

depends on the Arabinose level:

% — 1y my - 10;5%’;) ' (ZZ_BZ) “(1—2z)- (Zl ﬁl) (1-2z)- (log (% Xy -xznz) +b-

Z2

Zmin2

(log(m,) + 1)) (S6.16.2)
The weights adjustment in m, to minimize the average-cost function is:

aC;
Amy = ={ TN 1 3ms (S6.17)

Where { isa scalar and it determines the rate of m, being updated (also known as learning/training
rate). The direction of the update is opposite to the partial derivative of a cost function, which
guarantees that the weights adjustment is in the direction of a minimum, not a maximum, of the
average-cost function. This technique calculates the average error at the output and distributes it
back through the network layers. Therefore, it is also called “backward propagation of errors”.

X3
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% flny,m, b)) L Z .
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<C>=

x x|lz]lzn] G

“0” “0” 209 | 251 |Ci=[108(2p1/ 200/ ]?/2
“0” “1" |20y | 202 |Co=ll09(2)5/20,)]%/2
“17 0" | 219 | 203 | C3=ll0g(2p3/210)]%/2
“17 1" | 211 | 2pa | Co=llog(zpa/211)1%/2

C;— cost function of each sample

I I ‘
log(zp;) oglel

Fig. S6.1. Logarithmically quadratic cost function of the perceptgene-based network.

Eq. S6.16 and Eq. S6.17 have two important implications:
e The cost function of the network can be written as an average over cost functions for
individual samples or input states.
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e The cost function can be written as a function of the outputs of each layer independent on
the analog signals of the network.

6.1. Calculation the experimental average (normalized) cost function

First, we calculated the average-cost function of the majority circuit based on Eqg. S6.1-Eq. S6.3
using experimental results and compared the outcome of Eq. S6.16-Eq. S6.17. Subsequently, we
changed m, by inducing the circuit with varying Arabinose concentrations (0.250, 0.125, 0.062,
0.031, 0.015, 0.007 mM). The relation between arabinose concentration and the weigh m, , was
calculated based on the experiment in Fig. S2.9A, and is shown in Fig. S6.2A. Since the maximum
level is measured strongly depends on the arabinose concertation (Fig. S6.2B), we defined a
normalized average cost function. In this way, we can compare the average cost functions for the
different Arabinose concentrations compatible. The process that describing the calculation of
average normalized cost function is given by:

1. Given and eights measured outputs: Z,.» = {Z000» Z001, Z010» Z011» Z100» 2101, 2110, Z111.}-
Here each element of Zxxx is average of three experiments.

2. Find the minimum between
Zipin = minimum {Zy0, Zoo1, Zo10, Zo11, Z100, 2101 2110, Z111}-

3. Normalized the measured outputs by Z,,in

_{Zooo Zoo1 Zoio Zo11 Zio0 Z101 Zi110 Z111

Z ) ) ) ) ) ) )
nxxx Zmin Zmin Zmin Zmin Zmin Zmin Zmin Zmin
4. The lowest desired value Z,,,in = minimum{Z, .} = 1.
5. The highest desired value Z, 4 = maximum{Z,,,}.

| o - log(7e)
6. Define normalized signal in the linear domain as i
1 0 (gxi)
7. <C,>= ﬁzfv Zpi—— M), Zp = {0,1}. (S6.18)

Then, we simulated the process of updating m, by applying the backpropagation algorithm (Eqg.
S6.16-Eq. S6.17), as shown in Fig. S6.3. We used desired values (zp;) that are similar to
experimental results: “0” =1 a.u., “1” = maximum normalized GFP (zp,;,) for each Arabinose
concentration. Therefore, we fitted the maximum normalized GFP (zp14) to polynomial function
as shown in Fig. S6.2B. Hypothetically the relationship between maximum normalized GFP and
Arabinose affects the partial derivative of the cost function (9C/dm,).
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The cost function in Fig. 3 in the main text are based on the experimental results in Fig. S5.9
Eq. S6.18.

(A) (B)

Weight  -ece- - 250 Zpgy1=-226-%3-977°X2 -
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= 11 y = 1.1841x 0168 £ 50 :

® R?=0.9935 &

g 0t > 0 F e
Arabinose (miV) 1.6 -135 1.1 085  -06

log(Arabionse)

Fig. S6.2. (A) The relation between Arabinose concentration and the weigh m,, and which was
calculated with new Arabinose values based on the experiment Fig. S2.9A. (B) The maximum
normalized signal achieved for each Arabinose concentration, was used as the “1” logic desired
value for calculating the cost function.

Cooo
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AHL I f(m,) G
log Majority

Fig. S6.3. An algorithm for estimating and simulating cost function.

6.2. Backpropagation algorithm for two weights

Our next step is to use the backpropagation algorithm for programming two weights (m, for
Pgap/AraC and n, for P,/LuxR ) within the majority function. To control the P,,/LuxR
weight, we introduce random mutations to the operator sequence of a LuxRtranscription factor.
Fig. S8.8 describes seven modulations of transcription factor LuxR’s DNA binding affinity via
Lux operator sequence changes. Here, our backpropagation described in the following equations
shows that it was enough to use less than four mutations TCTA, GTTG, GAGC and TGGG
(PluxM56) for the APF loop of the first layer (Fig. S6.4) to reach a majority function.
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(E) Linear model Poly11:
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Coefficients (with 95% confidence bounds):
po0 = 7.274 (7.093,7.455)
p10= 0613 (0.5014, 0.7246)

po1 = 2815 (2.704, 2.927)

Goodness of fit:
SSE: 0.2885
R-square: 0.9924
Adjusted R-square: 0.9917
RMSE: 0.1145
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Fig. S6.4. (A) Puunnwn -based APF, Pj,co; -based ANF loops, and Py iqc0 -based
combinatorial promoter circuit, similar to circuit in Fig. S5.5. (B) AHL — GFP transfer function
for four different mutations (TCTA, GTTG, GAGC, and TGGG (Piuxwss)) within Py, promoter
regulating LuxR by APF loop. IPTG = 0.125mM. (C) Matlab surface fits the experimental
results of APF (Piuxrcra) and ANF (Piac01) loops and combinatorial promoter (P, /1aco-GFP)
to power-law and multiplication function,the weight of AHL is 0.228, and the weight of IPTG is
2.8. (D) Matlab surface fits the experimental results of APF (Piuxcttg) and ANF (Paco1) loops
and combinatorial promoter (P iaco-GFP) to power-law and multiplication function, the
weight of AHL is 0.45, and the weight of IPTG is 2.8. (E) Matlab surface fits the experimental
results of APF (Piuxgacc) and ANF (Piaco1) loops and combinatorial promoter (Pyyx/1aco-GFP)
to power-law and multiplication function, the weight of AHL is 0.61, and the weight of IPTG is
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2.8. The results of Pyyxmse and ANF (Piac01) loops and combinatorial promoter (P iaco-GFP)
are presented in Fig. S5.7.

Next, we modified the three-input perceptgene network from Fig. S5.1 in the APF loop by
changing the first four nucleutides in the Piux promoter sequence as followed; TCTA ,GTTG,
GAGC (Fig. S6.5). Then, we measured the GFP signal for all the four different circuits
including Piuxwss across (Fig. S5.1) the eight states of the inputs [AHL, IPTG, aTc]=[0,0,0],
[0,0,1], [0,1,0], [0,1,1], [1,0,0], [1,0,1], [1,1,0], [1,1,1].The measured signals are presented in
their absolute values (without normalization) and normalized values (Fig. S6.5).
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Fig. S6.5. (A) Three-input perceptgene network accepts three analog inputs (AHL, IPTG and
aTc) including four Piux mutations (TCTA, GTTG, GAGC, TGGG (Piuxwmss)) within the APF in
similar to Fig. S5.1. (B) and (C) Experimental results of 3-input perceptgene network with
TCTA for various Arabinose concentrations (0.250, 0.125, 0.062, 0.031, 0.015, 0.007 mM). The
data is presented by absolute signals as measured by the Flow analyzer (B) and normalized
signals (C). (D) and (E) Experimental results of 3-input circuit with GTTG for various Arabinose
concentrations (0.250, 0.125, 0.062, 0.031, 0.015, 0.007 mM). The data is presented by absolute
signals as measured by the Flow analyzer (D) and normalized signals (E). (F) and (G)
Experimental results of 3-input circuit with GAGC for various Arabinose concentrations (0.250,
0.125, 0.062, 0.031, 0.015, 0.007 mM). The data is presented by absolute signals as measured
by the Flow analyzer (F) and normalized signals (G). (H) and (1) Experimental results of 3-input
circuit with TGGG for various Arabinose concentrations (0.250, 0.125, 0.062, 0.031, 0.015,
0.007 mM). The data is presented by absolute signals as measured by the Flow analyzer (H) and
normalized signals (1).

The AHL — GFP transfer functions for the four Py« mutations show that each modification has
its slope (i.e., weight) and bias. Thus, there is a disturb between weight programming and bias
levels. The AHL-GFP transfer functions for the four mutations can be written as:

GFP x B-n; % -x,™ (S6.19)

Where = 3.7 . Fig. S6.6 shows the dependency of the bias on the weight based on the data from
Fig. S6.4B. The next step is to calculate the derivative of Eq. S6.19:
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Tl By ™ (log () — ) (S6.20)

Eq. S.620 shows that update in the weight also changes the bias. Based on that, we modified

Ym1 b

Eq. S6.5 to B, = —=my -n,~%. The partial derivative of average-cost function of every
sample or input state with respect to n, is:

a<c> _ 121\] ac;

6111 =1 6111

=

2t = M3zt My - lolg(if%;z) : (Zz_ﬁz) (1—2)- (%) "(1—2z) -my- (log(xl) - nil)

ony Z2
(S6.21)
In Eq. S6.21, we normalized the error log(z’”““) by output dynamic range log(-2%2 m“"z) and this

is because the output dynamic range depends on the Arabinose level. The partlal derlvatlve of
average-cost function of every sample or input state with respect to m; is similar to Eq. S.6.18
with a one modification; we included the —d - log(n,):
acC; lOg(;_z)

="Mz " Mmy- lOg(ngxz) ) (ZZ 52) (1 Zz) (Zl '81) (1 — Z1) (b . IOg(m1) +n, -

Zmin2

log(x,) +log( ) +n, - (—d -log(n,) + log(x;)) + b)

6m1

(S6.22)

To calculate the update weights, based on Eq. S6.21 ad Eqg. S6.22, we measured the output
signals of the first layer (Z;) as shown in Fig. S6.7 and the output signals of the Three-input
perceptgene network (Z,) as shown in Fig. S6.5. We also measured the basal level of each
activation function (81 and 2) by measuring Z; and Z, when no inducers (AHL, IPTG and aTc)

were added to the networks (Table S6.1). The parameters (b=0.37, % = 0.0001) are estimated

from the data shown in Fig. S2.9, d = 3.7 is estimated from Fig. S.6.6, n, and n, are estimated
from Fig. S6.4 and Fig. S5.7 (TCTA: 0.23, 2.8, GTTG: 0,45, 2.8, GAGC: 0.65, 2.8, TGGG:
0.95, 1.85), m3; = m, = 1. The first layer is the perceptgene of two inputs (AHL and IPTG)
with four Piux mutations of the APF loop; TCTA, GTTG, GAGC and TGGG (Puxwss) (Fig.
S6.7A). The experimental results of backpropagation algorithms based on Eg. S6.21 and Eqg.
S6.22 are presented in Table S6.2. Based on these results, we built an optimized pathway to
reach the best majority results. We first update m, and then n,, which reach a minimum cost
function. We marked the optimized pathway in Table S6.2.
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Fig. S6.6. (A) Experimental results of Pj,yyny-based APF, P,.01-based ANF loops, and
Prux j1aco-Pased combinatorial promoter circuit fit power-law function for IPTG = 0.125 mM.

(B) The scalar number in the power-law fitting from (A), which is proportional to bias, is also a
function of the power-law coefficient. The power-law coefficient is proportional to weight.
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Fig. S6.7. (A) The first perceptgene layer from the three-input perceptgene network (Fig. S6.5).
The layer accepts two analog inputs (AHL, IPTG) including four P, mutations (TCTA, GTTG,
GAGC, TGGG (Puxwss)) within the APF. (B) and (C) Experimental results of 2-input circuit
with TCTA for various Arabinose concentrations (0.250, 0.125, 0.062, 0.031, 0.015, 0.007 mM).
The data is presented by absolute signals as measured by the Flow analyzer (B) and normalized
signals (C). (D) and (E) Experimental results of 2-input circuit with GTTG for various Arabinose



concentrations (0.250, 0.125, 0.062, 0.031, 0.015, 0.007 mM). The data is presented by absolute
signals as measured by the Flow analyzer (D) and normalized signals (E).

(F) and (G) Experimental results of 2-input circuit with GAGC for various Arabinose
concentrations (0.250, 0.125, 0.062, 0.031, 0.015, 0.007 mM). The data is presented by absolute
signals as measured by the Flow analyzer (F) and normalized signals (G). (H) and (I)
Experimental results of 2-input circuit with TGGG for various Arabinose concentrations (0.250,
0.125, 0.062, 0.031, 0.015, 0.007 mM). The data is presented by absolute signals as measured
by the Flow analyzer (H) and normalized signals ().

Arabinose(mM)
0.2500 | 0.1250 0.0625 0.0313 | 0.0156 | 0.0078
TCTA B2 Average | 1573 | 1739 1506 1651 | 1484 | 1603
STDEV | 97 78 37 49 76 47
P Average | 2403 | 2003 1722 1453 | 1629 | 2512
STDEV | 33 430 97 159 311 | 1490
GTTG B2 Average | 1469 | 1435 1491 1488 | 1530 | 1499
STDEV 1 53 75 17 6 3
P Average | 2185 | 1886 1643 1645 | 1378 | 1314
STDEV | 122 161 12 40 0 131
GAGC B2 Average | 1443 | 1453 1448 1501 | 1504 | 1581
STDEV | 108 174 95 70 114 134
B Average | 2317 | 2105 1743 1507 | 1505 | 1362
STDEV | 24 300 169 13 66 1
TGGG B2 Average | 1466 | 1444 1912 1538 | 1522 | 1563
STDEV | 26 68 641 35 129 141
P Average | 1609 | 1481 1184 1457 | 1264 | 1187
STDEV | 26 68 641 35 129 141

Table S6.1. Measured values of B1 (basal level of the first layer, Fig. S6.7A) and B2 (basal level of the second
layer, Fig. S6.5A) for the four mutations. The measurements were performed when no inducers (AHL,
IPTG, aTc) were added.
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TCTA mutation, n; =0.23 weight

Arabinose mi Experimental cost Digital cost 0<C>|0<C>
(mM) weight function function am, on,
(1) 0.2500 1 0.061 0.1250 -0.36 -7.34
(2) 0.1250 1.25 0.057 0.0625 -0.31 -6.91
0.0625 15 0.051 0.0625 -0.31 -7.03
0.0312 1.75 0.051 0.0625 -0.27 -3.21
0.0156 2 0.047 0.0625 -0.68 6.13
0.0078 2.25 0.033 0.0625 -0.50 5.48
GTTG mutation, n; =0.45 weight
Arabinose my Experimental cost Digitalcost [0 <C>|0<C(C>
(mM) weight function function am, on,
0.2500 1 0.056 0.1250 -0.50 -2.90
(3) 0.1250 1.25 0.054 0.1250 -0.36 -2.65
(4) 0.0625 15 0.046 0.0625 -0.20 -0.74
0.0312 1.75 0.044 0.0625 -0.11 1.70
0.0156 2 0.051 0.1250 -0.02 1.27
0.0078 2.25 0.044 0.0625 -0.18 2.563
GTTG mutation, n; =0.65 weight
Arabinose my Experimental cost Digital cost Ii<C>|0<(C>
(mM) weight function function am, on,
0.2500 1 0.058 0.1250 -0.66 -2.70
0.1250 1.25 0.052 0.0625 -0.51 -2.87
(5) 0.0625 15 0.046 0.0625 -0.28 -2.55
(6) 0.0312 1.75 0.035 0 0.03 -0.75
0.0156 2 0.042 0.0625 0.08 0.60
0.0078 2.25 0.045 0.1250 0.05 0.38
TGGG mutation, n; =0.95 weight
Arabinose mi Experimental cost Digital cost 0<C>|0<C>
(mM) weight function function om, any
0.2500 1 0.052 0.1250 -0.66 -1.38
0.1250 1.25 0.052 0.1250 -0.50 -1.54
0.0625 15 0.038 0.0625 -0.22 -1.24
0.0312 1.75 0.039 0 -0.003 -0.42
0.0156 2 0.061 0.1250 0.12 0.68
0.0078 2.25 0.056 0.1250 0.10 0.75

Table S6.2. The experimental results of backpropagation algorithms based on Eq. S6.21 and Eq. S22.
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Fig. S6.8. (A) The experimental results of the three-input perceptgene network accept three analog
inputs (AHL, IPTG and aTc) to reach a minimum cost function. This data is based on Fig. S6.5.
(B) Normalized.
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Table S6.3 List of parameters used in this section

Symbol Description
C Cost function of network
C; logarithmically quadratic cost function for each state or sample i
mi network weights
Ni network weights
B Basal level
¢ Scalar that determines the rate of m; being updated (also known as
learning/training rate)
Z; the network actual output for every state
Zpi the desired output of every state
K, Effective dissociation constant
74,7, the output of every perceptgene layer in the biophysical model
Vi the analog signal of every perceptgene layer in the biophysical model
N the number of samples and is also called the batch size
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7. Synthetic Data converters

In this work, we designed and built two types of data converters that operate in logarithmic domain:

1. Analog-to-Digital converter (ADC) which converts analog signals on a logarithmic scale to
digital outputs, as shown in Fig. S7.1A. Namely, each decade is encoded to one discrete level
(33).

2. Analog-to-multilevel (Fuzzy) converter which converts analog signals on a logarithmic scale
to multi-discrete levels as shown in Fig. S7.1B. Specifically, we built a ternary converter.

(A) (B)
x (Analog) — Z; (MSB) x (Analog) z (multi-level)
log-ADC Digital log-ADC —
—— 2,(LSB)
X 2 z High
X I, I, 1 0 ‘
1 0 0 10 1 Medium
10 01 100 2
100 | 1 0 Low
1000 1 1 x (Analog)

Fig. S7.1. A 2-bit data converters operating on the logarithmic domain: (A) ADC-Analog-to-
Digital converter. (B) Analog-to-multilevel (Fuzzy) converter. LSB: Least Significant Bit,
MSB: Most Significant Bit.

7.1. Design |: Design and implementation of 2-bit log-ADC

There are several architectures and concepts to design ADC systems (34). we used design
principles of feed-forward neural networks (35, 36) that can provide reliable results with a minimal
number of synthetic parts (Fig. S7.2A). First, we designed a 2-bit ADC in the linear domain
(equivalent to a perceptron model), and then we transformed it to the logarithmic domain. In the
proposed design, a bit comparison is equivalent to neural activation in the proposed design, and
each reference scale during the successive binary search algorithm is equivalent to a binary-
weighted synapse. For simplicity, we approximated the activation function as a step function:

Vi =n; X+ A (57.1)
_(1 »n=20

7, = {0 o (S7.2)

y0=n0'x+m0'21 +A0 (873)
(1 y;=0

7, = {0 o (S7.4)

Fig. S7.2B shows the output signals of 2-bit ADC in the linear domain. We divided the dynamic
input range (IDR) to 22 = 4 intervals. Therefore, the set of equations that describes the design of
2-bit ADC based on perceptron (Fig. S7.2A) is given by:

Interval 1:OSx<% -72;=0,Zy,=0:
}’1:711'%"‘14130 -)AIS—nl-%
IDR IDR (57.9)
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IDR

Interval 2: —< < - Z;=0,Z, =1:

Y, =n,- ﬂ+A1<o > Ay <-ng 2 (S7.7)
Yo =Ny - —+A0>0 -)A0>—n0-% (57.8)
Interval 3: T <x <R Z,=1,Z,=0:

Y, =n,- ﬂ+A1>o > Ay >-n X (S7.9)
Vo =g - ﬂ + mo+A4, < 0 > 4y < -y —mg (S7.10)
Interval 4: T <x<IDR - Z;=1,Z, = 1:

yi=n"IDR+A;, =0 2> A, = —n,-IDR (§7.11)
Yo =Ny IDR+my+A4,=>0 2> Ay = —nyIDR —m, (§7.12)

In summary, the conditions on the weights and biases to implement a 2-bit ADC in the linear
domain:

—ny TR < A1 <-ny-= (S7.13)

_no " IDR AO < mo < no % - AO 9 mo - _no - IDR (S? 15)

The simulation results of Fig. S7.2C suggest that 2-bit ADC can be implemented by a feedforward
neural network when the design parameters (weights and biases) satisfy Eq. S7.13-Eq. S7.15. The
simulation parameters are IDR =5, no =n, = 4,my = —10,A; = —12.5,4, = —7.5. In our
simulation, we used a sigmoid function to calculate z; (z; = ﬁ , the output of each perceptron),

instead of step function as was done in the analysis, where all the outputs above 0.5 as a “1” logic
and those below 0.5 as “0” logic. To implement such a design in living cells, we must convert the
design parameters to the logarithmic domain. However, these parameters cannot be achieved in
living cells directly, and thus the ADC design needs to be modified. In the proposed design, the
MSB dynamically controls the LSB threshold through a negative regulation (inhibitory weight)
(Fig. S7.2D). The molecular 2-Bit ADC consists of two reactions (Z, and Z,) which are regulated
by the same input (x) (Fig. S7.3A). Each reaction represents a digital bit, and Z; enhances the
reverse reaction of Z,. So that the amount of Z,* changes and accordingly the amount of Z; is
affected. The set of biochemical reactions that describe the reaction network is given by:

dj;* = kf1 ) xnl ) Zl - k-,-l - Zl* (8716)
dj:* _ kfo - x™Mo . ZO _ k10 . Zl*mo . Zo*_kro . ZO* (8717)
ZTO = ZO* + ZO (5719)

Where Z,, and Z,are the product concentrations of biochemical reactions. k¢, and k¢, are the

rates for the forward reactions from Z, to Z, and Z, to Z,, respectively. Likewise, k,, and k,.; are
the rates for the corresponding backward reactions. The rate k,, describes the regulation of Z; on
the activation of Z,. Zr, and Z;, are the total concentration of molecules Z, and Z,. At the steady-

State:
x \
&)

x \"1
1+(—)
Kni

Zl* == ZTl ) (8720)
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x \"o
(K_no)

x \"o Z4* mo
() ()
Where ny, n, and m, are Hill Coefficients. K,,o, K,;; and K,,, are the dissociation constants
(Kno = (kro/kfo)l/n0 Kny1 = (krl/kfl)l/nl Kmo = (kyro/k19)*/™). The reaction activity is

defined as ratio of the product and the total concentration of molecules. Thus, we can rewrite Eq.
S7.20 and Eq. S7.21 as:

ZO* = ZTO ) (8721)

(&)
_ Z _ \K&m
P, = Z_; = W (§7.22)
ni
Py =2 = () (S7.23)
x \1 mo .
e R e
* (KL)HO'(K Plz ) ’
Py =2 = Sae o7y - (S7.29)
710 (Kmf;/lZT1) 0+(K_no) 0.(Km§/1ZT1) 0+1
In case that Z;; >> K,,,,, We can approximate Eq. S7.23:
x \1o P —-mp
P ~ (&) iemorzrs) (S7.25)

x \10 —mo
(K_no) .(ng/lzn) +1
Fig. S7.3B shows a schematic model of the set of reactions based on Eq. S7.24 and Eq. S7.25. The
schematic model consists of two perceptgenes that are connected in feedforward neural networks
through a negative weight, similar to the ADC design (Fig. S7.2A), where:

By = Ky ™ (S7.26)
_ 1 —no. (Kmo)™

By = Kno ™ (Zn) (7.27)

B, = 104 (S7.28)

B, = 1042 (S7.29)

To estimate the weights and biases parameters, which operates in the log-domain, we transformed
Eq. S7.13-Eq. S7.15 from the linear scale to the logarithmic scale using Eq. S7.26-Eq. S7.29:

(1) —ny - 222 < log(By) < —ny - =+
_ PR o —log(Knl) <-= (S7.30)
(2) —ng - == < log(By) < —ny - TR
—@ < —log(Kno) + 22 log (Zi) <-== (S7.31)
(mMo>0)

(3) =1y " IDR —log(By) < —my < —ny -% —log(By)

my Kmo\ _mo _ _ 3IDR
—IDR < —log(Kno) + 7 lOg(le) o S 4

(S7.32)
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Fig. S7.2. (A) Design of 2-bit ADC based on feedforward neural networks. (B) Digital outputs
of 2-bit ADC operate in the linear domain. (C) Simulation results of 2-bit neural-network ADC
design. (D) Most Significant Bit (MSB) dynamically controls the Least Significant Bit (LSB)
of 2-bit ADC via varying the value of m,.

The simulation results as shown in Fig. S7.3C suggest that a 2-bit molecular ADC that operates in
the log domain can be implemented using a feedforward neural network when the parameters
(weights and biases) satisfy Eq. S7.30-Eq. S7.32. In the particular simulation, IDR = 5,ny = ny =
2,my = 4,K,o = 25,K,; = 800,K,,,o = 40, Zy, = 800,B, = 2.4 x 10711, B, = 1.56 x
107%,4, = —10.5,4; = —5.8.Notably, operating in the log domain allows parameter values to be
compressed, comparing with the ADCs in the linear domain with similar features (IDR =
5, 2 bits). That means the design parameters required to implement molecular ADC in living cells
are achievable by contrast to linear ADC. Furthermore, varying m, (Hill coefficient) affects the
LSB (Fig. S7.3D), in particular, the behavior of LSB is qualitatively changed. As in Fig. S7.3E
when ny,  my, LSB acts as ternary logic (IDR = 5,n, =n, = 1.5, K,,, = 25,K,,; = 500,
Ko = 40, Zy4 = 700, m, = 1.5 (for ternary logic, the blue curve) and m, = 2.5 (for quaternary
logic, the red curve).
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Fig. S7.3. (A) Design of 2-bit molecular ADC by controlling LSB via MSB. (B) An abstract
model of 2-bit molecular ADC based on the perceptgene feedforward network. (C) Simulation
results of 2-bit molecular ADC. (D) The influence of mo on the LSB behavior. (E) 2-bit
Molecular ADC displays ternary logic by programming the m, weight.

7.1.1. Optimization process of 2-bit ADC

In this process, we changed the original mathematical model (Fig. S7.3) to be suitable for genetic
networks. Fig. S7.4A is built based on Fig. S7.3B, including:

1. Positive feedback loop for linearization.

2. AraC as a new wire to implement the LSB.

3. Transcriptional interference promoter to implement the subtraction.

Fig. S7.4B is built based on Fig. S7.4A, including:
1. my = —1, since there is only one binding site of LuxR in the transcriptional interference
promoter.
2. Inhibition to Pgap, Which is achieved by the transcriptional interference of Py, promoter.
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Fig. S7.4C is the final construct which is built based on Fig. S7.4B, including the TetR repressor
to reduce the disturb of the inhibition.
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Fig. S7.4. Process optimization of 2-bit ADC.

To implement the 2-bit Molecular ADC in living cells, we first constructed a genetic circuit with
an effective tunable threshold. To that end, we utilized two competitive promoters (Pgap VS Piux)
that are located in opposite orientation to each other, which P, produces transcriptional
interference with Pgap (Fig. S7.5A). For Pgap We call forward promoter and for P, we call
reverse promoters. Oppositely oriented promoters relative to a gene have been reported in previous
studies (37-39) to tune gene expression (40), control the input threshold of genetic switches (41,
42), and reduce the leaky expression of toxic proteins (43). A RiboJ (44) was used to cleave the
5'-UTR of GFP mRNA, a computationally designed RBS, the GFP -coding sequence and a
transcriptional terminator. A reverse complementary terminator was cloned upstream to Pgap tO
disturb the activity of RNA polymerase for P,,,. Adetailed biophysical model was developed (40)
to describe such systems, in our work, for simplicity. Because the two opposite promoters are
located close to each other, we treat the system as one statistical thermodynamic model (Fig.
S7.5B). The model describes 5 different statistical states, (1) promoters are empty, (2) RNA
polymerases (RNAp) with transcription factors are bound on both promoters, leading to a basal
level, (3) the complex activator (Y;)-RNAp is bound to the forward promoter, leading to active the
output signal, (4) the complex activator (Y,)-RNAp is bound to the reverse promoter, leading to
inhibit the output signal, and (5) the complex activator (Y;)-RNAp is bound to the forward
promoter, and the complex activator (Y,)-RNAp is bound to the reverse promoter. In our model,
we also assume that the collision interference is large and thus the probability that the forward and
the reverse RNA polymerases can simultaneously bind to the DNA is very low (8 << 1).
Therefore, the level of gene expression is proportional to the probability (P) that RNA polymerase
is bound to the forward promoter at the equilibrium:
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Y; is the concentration of Arab-AraC complex. Y, is the concentration of AHL -LuxR complex.
These variables are given by the following set of equations:

)"
Kmi

p (S7.33)

9(x) = ——m (S7.34)
1+(K—n‘li>
Y, = AraCy - g(Arab) (§7.35)
Y, = LuxR; - g(AHL) (S7.36)
We can rewrite the promoter activity (Eq. S7.33) as follows:
AraCT-g(Arab)+B i
Kge e
P = Af’ang-g(Arab) (8737)
1+7Kdeff
B
Berr = —TaxrrganD (S7.38)
1+—Kd2
LuxRp-g(AHL)
Kaory = Kar - (1 + “5E2410) (S7.39)

Where we assume that n; = 1, n, = 1. Fig. S7.5C shows the experimental and simulation results
of the normalized signals for the forward (Pgap) promoter and reverse promoter (P,) using the
set of Eq. S7.37- Eq. S7.39. For each AHL concentration, we normalized the measured GFP by the
maximum achieved GFP level. Assuming that Arabinose>>K,,;, the fold-change of GFP can be
given by:

Pmax — AraCr L1 (87.40)

Pmin  KaefrtAraCr Beff

The experimental results show that varying the concentration of AHL affects the Arabinose-to-GFP
transfer function. When AHL concentration increases, the fold-change of GFP decreases, which is
consistent with Eg. S7.40. The experimental results can be well captured by the simulation results.
Also, our experimental and simulation results imply that there is interference between the Pgap
promoter and P, leading to a shift in the threshold or effective dissociation constant by 1.5
magnitudes of orders. Parameters that were used in the simulation are K,,; = 1000,m; =
1.5,K,,, = 0.3,m, = 1,AraCr/K4; = 11,LuxR; /K4, = 10,8 = 0.0055. To fit the absolute
GFP signals to our simulation results, we modified Eq. S7.37 by including a repression term:

AraCr-g(Arab)
~Faegy P 1
GFP = GFhpgy AraCr-g(Arab) TuxRyg(aAD T B> (87.41)
14— 1+p——p "
Kdeff Kaz

Fig. S7.5D shows that Eq. S7.41 captures well the behavior of the absolute GFP signals (GFPyqx =
5.5 x 10%, 8, = 0.04, p = 0.8). The repression term takes effect when 8 > 0 in Eq. S7.33. In
conclusion, the competition between the two promoters increases the threshold, and decreases the
promoter activity (signal).
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Fig. S7.5. (A) Genetic circuit with a tunable effective threshold based on a forward (Pgap)
promoter and a reverse (P,,x) promoter that is oriented in opposite direction to Pgap. The P«iS
having a transcriptional interference with Pg,p. (B) The binding states of the forward promoter
and the reverse P,x. (C) Experimental and simulation (based on Eq. S7.37-Eq. S7.39) results of
normalized measured GFP signal. (D) Experimental and simulation (Eq. S7.38-Eq. S7.39, Eq.
S7.41) results of absolute measured GFP signal. The control experiment is shown in Fig. S7.5A
inset and the experimental results are shown in Fig. S7.5D.

Second approach: The optimization process of implementing a 2-bit Molecular ADC in living cells
(Fig. S7.6) consists of three steps:

1. Open loop circuit: AHL is the input signal. The AHL -LuxR complex binds to the mutated
promoter P, ymse. The latter promoter regulates AraC and A (another activator) in analog
fashion. AraC affects the LSB by binding to Pgap, and A affects the MSB by binding to P;.
The transcription factor B, which is regulated by P;, regulates the Pgop promoter.

2. PF circuit: we replaced the open loop with a positive feedback circuit.

3. We replaced the transcription factor B with LuxR. We used mutations of P that has a
different strength.
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Fig. S7.6. Optimization process of implementation 2-bit molecular ADC in living cells.

Based on our optimization, we created two circuits that implement LSB and MSB (Fig. S7.7A and
B), and another two control circuits (Fig. S7.7C and D). The LSB and MSB circuits accept AHL
as an analog input and include a graded PF (P xms6), Which regulates LuxR in an analog fashion.
The P« of LSB circuit is located on LCP and regulates AraC in an analog manner (Fig. S2.13).
In particular, we kept a low expression level of AraC by altering the binding between RNA
polymerase and the promoter P, (45). Subsequently, the Arabinose- AraC complex binds to the
forward Pgap the promoter, while the LuxR — AHL complex binds to the reverse P, promoter.
The binding reaction of LuxR — AHL complex, causes the RNA polymerase to reverse Py
dynamically increases the Pgap threshold and decreases the GFP expression (Fig. S7.8A). The
MSB circuit that locates on MCP (Fig. S7.7B), regulates the output signal in a digital fashion.
Following the previous Eq. S7.34 to Eqg. S7.41, a set of empirical models are used to describe the
LSB and MSB signals:

MSB ()" +s1 (S7.42)
o ~EL |
1+(A—:1L) !
() 80 '
LSB * 7 " 7 | S7.43
x 1+(AK—IZL) °+a.(_1"11<523) 2 1+(AKH3L) 3 B- ( )

To find the model parameters, we first fitted the control experimental results (Fig. S7.8A) to a Hill-
function (Eg. S7.42). Both control circuits contain a graded PF (Puxmse) @and Pgap promoter. As a
side note, control 1 appears similar to the circuit in Fig. S2.9, except that a degradation tag was
added to AraC. In control 2 circuit, the transcriptional interference is controlled by a constitutive
promoter P.,,st 10 Pgap, Which reduced the basal level and increased the threshold of Pgap
activation (Fig. S7.8A). The data was normalized by the maximum achieved level. The circuits
were modeled as follows:

Control 1: , = 0.5,K; = 20

Control 2: r, = 0.7,K; = 50

MSB: r, = 1.5,K; =500,8; = 0.1

LSB: r, =0.8,K, = 40,8, = 0.001,a = 200,, = 1.5,K, = 10,13 = 1,K5; = 500, 5, = 0.04
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As in Fig. S7.8B, the proposed LSB and MSB circuits successfully converted the dynamic range
of AHL concentration to [0,0], [0,1] and [1,0] logic states, while failed to achieve the [1,1] state.
This circuit acts a 1.5-bit ADC.

(A) (B)
ﬂf’ Initial LSB Design MSB Design
chl—c lwl(R - l LCP—C Iu!(R - LC-_
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Fig. S7.7. (A) The implementation of LSB genetic circuit using a forward Pgap promoter and
reverse P,x promoter which produces a transcriptional interference. (B) The implementation of
MSB. (C) Control 1 circuit. (D) Control 2 circuit using a constitutive promoter to produce the
transcriptional interference.
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Fig. S7.8. (A) Experimental results of LSB, MSB and control circuits. Solid lines indicate
modelling results based on the empirical model (Eq. S7.42, Eq. S7.43). We used Arabinose of
0.05 M for all the circuits. (B) The normalized GFP signals of LSB and MSB referred to each
basal level (the data was subtracted by the basal levels of LSB and MSB).
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The failure of the proposed LSB and MSB circuits to achieve the [1,1] logic state is possibly due
to the repression of the Py itranscriptional interference with Pgap promoter in the presence of high
levels of AHL. To solve this issue, a repressor (TetR) was added to the MSB (Fig. S7.9A). The
TetR indirectly inhibits the activity of the P, transcriptional interference in the presence of high
levels of AHL, through binding to the combinatorial Py, teto Promoter (Fig. S7.9B). To
implement, we constructed a hybrid promoter that consists of a forward Pgap promoter and a
combinatorial Py, /teto Promoter which is oriented in opposite direction to Pgap (Fig. S7.9B). To
understand the mechanism of Py /ter0, We created two control circuits (control 3 and 4) that are
regulated by AHL and a graded PF and includes a forward Pgap and a reverse combinatorial
Plux/teto @S shown in Fig. S7.9C. In control 3, TetR is regulated by a constitutive promoter, and
in control 4 there is no expression of TetR. The experimental results of control circuits 3 and 4
(Fig. S7.10) indicate that when TetR binds to the Py, /teto Promoter, there is no transcriptional
interference with Pgop promoter. Therefore, the control 3 circuit achieves a high GFP signal for
high AHL levels. The results of control 3 are similar to those of control 1. The results of control 4
are similar to those of LSB circuit (Fig. S7.8A). The data of control 3 and 4 are well fitted by our
empirical model (Eq. S7.42-Eq. S7.43), with the parameters as follows:

Control 3: , = 0.7,K; = 200,, = 0.07

Control 4: r, = 0.8,K, = 40,3, = 0.001,a« = 200,r, = 1.5,K, = 100,53 = 1,K3 = 500, 3, =
0.005.
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Fig. S7.10. Experimental results of control circuits 3 and 4. Solid lines represent modelling
results from the empirical models (Eq. S7.42, Eq. S7.43). We induced the circuits with
Arabinose of 0.6 mM.

Based on our control experimental results, we modified the LSB circuit to allow TetR being
dynamically regulated by P, promoter (Fig. S7.11A shows the construction of 2-bit ADC).
Empirical models for the new circuit are given by:

AHL)TL
s o)1 (57.44)
1+(K—1)
(55) " +6o 1
LSB 0 : (1+f(AHL)) + B, (S7.45)

AHL\T0 MSB\"2
4%+ ()
Where f(AHL) represents the amount of GFP as a function as AHL. For a high concentration of
TetR f(AHL) — 0, and for a low concentration of TetR, Eq. S7.45 tends to converge to Eq. S7.43

therefore, an empirical model of f(AHL) can be given by:
LuxR—AHL

f(AHL) = ———— (S7.46)
For simplicity, we assumed that f (AHL) o« MSB, then:
() 6o
LSB « Ko _ |+ S7.47
1+(AK—‘2L) °+a-(MK—SZB) ’ <1+a-(MK—~ZB) 3) % ( )

Fig. S7.11B shows the experimental results of the modified LSB circuit using the new design,
when TetR is regulated by MSB. These results demonstrate that 2-bit ADC can be achieved using
such a design (Fig. S7.11C). The data of 2-bit ADC is well fitted by our empirical models (Eqg.
S7.44, Eq. S7.47), with a set of model parameters:

MSB: r, = 1.5,K; = 500, 3, = 0.015

LSB: r, = 1.45,K, = 20,8, = 0.03,a = 300,71, = 1.2,K, = 1.5,13 = 1.3,K; = 85,8, = 0.04
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Fig. S7.11. (A) Implementation of a 2-bit ADC, where the LSB circuit is modified to allow TetR
to be regulated by MSB. (B) Experimental and simulation (Eq. S7.47) results of the modified
LSB circuit. (C) The normalized GFP and mCherry signals of the 2-bit ADC. The signals
referred to each basal level (The data was subtracted by the basal levels of GFP and mCherry).
Solid lines indicate the modeling results of the empirical models (Eq. S7.44, Eq. S7.47). We
induced the circuits with Arabinose of 0.4 mM.

7.2. Design 11: Design and implementation of 2-bit log-ADC

ADC systems have significant applications in biotechnology and medicine (46), for example, ADC
can be used to regulate several genes with all logic combinations using only a single inducer. To
improve the performance of our 2-bit ADC, we combined principles of neural-network and
pipelined ADC (47) design (Fig. S7.12A). Pipelined ADC consists of several cascaded stages;
every stage is built from comparators with each one has its own linear threshold (47). In the new
design, we added a third perceptgene which receives AHL and acts as comparator for very high
levels of AHL concentration. In this case, we require that B, > B4, and n, = n,. The design of
hybrid ADC is shown in Fig. S7.12B. The LSB (GFP) signal is regulated by two parts: (1) a
forward Pgap promoter and an reverse Py, promoter, which is oriented in opposite direction to
Pgap (Fig. S7.7A); (2) a quorum sensing P, g promoter that interacts with AHL inducer (Fig.
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S7.13) (3). The MSB is implemented by a P, promoter and regulates mCherry. By fitting the
activity of Py g to Eq. S7.44, we obtained that K; = 20 x 103 nM which is larger than K; (500
nM) of Py, satisfying B, > B,.

The 2-bit hybrid ADC was constructed as shown in Fig. S7.14. The circuit receives AHL as an
analog input and contains a graded PF (P, xmse) Which regulates LuxR. The LSB circuit is built
from two GFP signals: (1) Forward Pgap promoter reverse P, promoter and (2) the Pyr
promoter. The AraC regulated by Py, is located on LCP (Fig. S7.14A). We altered the binding
efficiency of RNA polymerase (45) to ensure a low expression level of AraC. Meanwhile, the AraC
and LuxR — AHL complex binds to the forward Pgap and reverse P, promoter, respectively,
which increases the threshold of Pgap and decreases the expression level of GFP. The Py,r
promoter located on HCP is activated by LuxR — AHLcomplex and regulates the GFP signal for
high AHL concentrations. To achieve similar GFP levels in the two parts, an ssrA degradation tag
(15) (LVA) was added on HCP. The P4 of MSB circuit which is located on MCP, regulates the
output mCherry signal. Fig. S7.14B shows the experimental results of 2-bit hybrid ADC with
distinct four logic states. The results show that there is a narrow region (marked in gray color) that
the ADC has irregular behavior.

(A) (B)

PF

B,

()

] }

J AraC LuxR
Repression PBADlZ Plux[ | / ] [l / ]Prhl
P, (MsB) P, (LSB) 1_I l
GFP LuxR GFP
LSB MSB LSB

x-input x-input x-input
Fig. S7.12. (A) A 2-bit hybrid ADC combined with neural networks and Pipelined ADC. (B) A
2-bit hybrid ADC using a third comparator, which activates P.,;g promoter only for a high AHL
concentration.
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Fig. S7.13. AHL -GFP transfer function of P,z promoter. Solid line indicates the fitting results
of the empirical models (Eq. S7.44).
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Fig. S7.14. (A) Implementation of 2-bit hybrid ADC. (B) the normalized GFP and mCherry
signals of 2-bit ADC. Solid lines indicate fitting to the empirical models (Eq. S7.44, Eq. S7.47).
We induced the circuits with Arabinose of 0.06 mM.

7.3.Programmable a simple logic gates based on perceptgene

Our simulation models show that by changing the bias of a single perceptgene, we can achieve
different logic gates. As was shown in Section 2, the perceptgene simulations consists of two
parts:

1. The power-law and multiplication function: The simulations are based on Eq. S2.18, Eq.
S2.19, and Eq. S2.20. Parameters that were used in simulations:

Based on P01 and P Within ANF loop, and combinatorial promoter
(Plac0/tet0) - Flg 1F
Kpi =08,Kpy =1,Ky1 = 90,Ky5 = 6,Kg1, = 45, Kgon = 4,y = 1,hy = 1.4, Ryt
= 2000,R, 002 = 3000,y =1,n, =2,y = 1L,ny,, =1,0 =1,
= 0.001

2. Activation function: here we used a similar activation function to Pgpp/ AraC (Eq. S2.21,
Section 2.3), but without a repression element. We also assumed that there are several
binding sites of AraC in the promoter Pysp. Therefore, the Pgap activation function can be
described as:

n3
AraCC>
(aracey™

K3
AraCC>n3

p—
1+B4+(—Kd3

(S7.48)
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Where: AraC; = 30, K,,,3 = 0.09, 8, = 0.002,n5 = 1.5,
For the OR gate, we used: K;; = 2,
For the OR gate, we used: K;; = 30,

(A) (B) (C)
OR Gate - Normalized Output AND Gate - Normalized Output
2 [ 2 ™ I OR Gate I AND Gate
107} 80 10 : 80 = 100
e - ; [ a
(1] © >
-] 60 o 60 3
S g -
T T 40 & 10
£ 40 ©
2E lz'5 20 g
20 - [0,01 [01] [1,0] [11]
0 S 0 , , , ,
101 0° 102 101 0° 102 [IPTG, aTc]
Normalized IPTG Normalized IPTG

Fig. S7.15. Simulation results of a single perceptgene for simple logic gates (A) OR logic gate:
K3 = 2, (B) AND logic gate K;3 = 30. (C) shows the data as logic states, “0” =» Normalized
inducer level=1, “1” =» Normalized inducer level=128.

7.4 Design and implementation of ternary data converter (switch)

From a dynamic system point of view, changing model parameters can lead to qualitatively
different patterns of steady states. We therefore explored the model parameters (Eq. S7.47), by
varying the ratio between repression and thresholding terms in Eq. S7.47 (K, Vs K3), or by
controlling the weights (Fig. S7.3E). Interestingly we obtained a new behavior of the LSB circuit
(Fig. S7.16). We demonstrated this behavior by controlling different levels of Arabinose. The
Arabinose concentration controls the repression as shown in Eq. S2.21, meaningly, , In high
Arabinose concentrations, the AraC acts only as an activator without repression. Because AracC is
regulated by Py, we can assume that AraC o« MSB. The experimental resulted AHL -GFP transfer
function using the new design is a three-valued logic (ternary logic) as shown in Fig. S7.17. These
results demonstrate that ternary was achieved using neural networks (Fig. S7.3E). The data of
ternary data converter is well fitted by our empirical models (Eq. S7.44, Eq. S7.47), with a set of
model parameters:

MSB: r, = 1.5,K; = 450, 8, = 0.005

LSB: r, = 1.6,K, = 28, B, = 0.02, a = 200,71, = 1.2,K, = 1,73 = 1.4, K5 = 300, 8, = 0.02
Ternary genetic circuits, converts analog signals to fuzzy levels, may find new applications in
biotechnology, such as allowing engineers to tune the expression level of toxic proteins, enzymes
in metabolic pathways in a reliable way. Furthermore, such systems can useit in building
biosensors, which able to report in three states: low, medium and high. By contrast, the digital
circuits can report only in two states.
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Fig. S7.16. Simulation results of the influence of repression K3 versus thresholding k> on LSB
circuit. Modeling parameters: MSB: r;, = 1.5, K; = 450, 8, = 0.005, LSB: r, = 1.6,K, =
28,8, = 0.03, = 160,1, = 1.2,K, = 1,13 = 1, 8, = 0.04.
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Fig. S7.17. Implementation of ternary data converter, based on the regulation of repression
versus thresholding. Experimental and modeling (Eqg. S7.47) results of ternary circuit. Solid
lines indicate modelling results of the empirical models (Eq. S7.44, Eq. S7.47). We induced
the circuits with high Arabinose of 50 mM compared to Fig. S7.13 with 0.4 mM.
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7.5. Reconfigurable perceptgene-based logic networks

To demonstrate the computational efficiency of perceptgene design, we modified the 3-input
majority circuit by replacing the Pio promoter with Pyyymse/teto COMbinatorial promoter as
shown in Fig. S7.18A. The effect of AHL input on the GFP signal is collectively integrated by the
Pluxmse/teto @Nd Pruxmse/1aco1Prompters. Otherwise, the Piyxmse teto COMbinatorial promoter acts
as a logical conjunction operation rather than an integrative operation, which means it is active
only if the AHL and IPTG are “1”. The new network architecture allows AHL to exert more reliable
effect on GFP by affecting both the AraC branch and the SupD branch of the network. The
biophysical model that describes the new genetic circuit is based on the equation set Eq. S5.7-Eq.
S5.11, with a modification of y,:

AHL\™  [1PTG\™2\™1
V1= (31 : (K—m) -(sz) ) (S7.49.1)
_ y1th
zZ, = TPty . (S7.49.2)
aTc\™3 fAHL\T1'\ " 2
vo=(8 (o) (6o) )
(S7.49.3)
Y3 = (Bs Yy (B3 z)™)™ (S7.49.4)
= Yatbz_ S7.495
%= 1+B2+y3 ( T )
Where B4_ = yK_ﬂj ) i_j B3 Zm1 BZ = yKLZZ Bl = Z m1 y B5 = B4 Bzmz B3m3

Eq. S7.49.4 and Eq. S7.49.5 show that the network con5|sts of two layers (Fig. S7.18B). We used
parameters consistent with the previous majority function model, except that n; = 0.6 (compared
with n; = 0.7, because the effective Hill-coefficient of aTc on Pq IS slightly different from
Plux/teto Promoter). Our model accurately captures the behavior of our new circuit (Fig. S7.18C).
We used different Hill-coefficients of AHL -LuxR for Py /teto and Pyx/1aco ; 11" = 0.65,ny =
1. The results of the new circuit show that the [1,0,0] state gave a “1”, by contrast to 3-input
majority function that gave “0”. Because the AHL was collectively integrated by P xmse/teto and

PluxM56/lacOl prompters'
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Fig. S7.18. (A) Multilayer perceptgene displays a new logic function for three inputs (AHL, IPTG
and aTc). (B) Abstract model of the new multilayer perceptgene network. (C) Experimental and
simulation results.
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Table S7.1 List of parameters used in this section

Symbol Description
X Input
Zi Output
Vi Analog signals
n; Weights or Hill Coefficients
A; Biases
keo The rates for the forward reactions from Zo to Zo*
ke The rates for the forward reactions from Z; to Z1*
k.o The rates for the corresponding backward reactions Zo* to Zo
k.1 The rates for the corresponding backward reactions Z:* to Z;
k1o The regulation of Z:* on the activation of Zo
Zro The total concentration of molecules Z,
Zrq The total concentration of molecules Z;
Ko, K1 and | Dissociation constants
Kmi
p; The reaction activity is defined as ratio of the product and the
total concentration of molecules
P Probability that RNA polymerase is bound to the forward
promoter at the equilibrium
B Basal level
Y; The concentration of inducer-TF complex
Ky Dissociation constants
0 Interference
Arab Free arabinose concentration
AraCy The total concentration of AraC
AHL Free N-(B-Ketocaproyl)-L-homoserine Lactone 30CsHSL
concentration
LuxRy The total concentration of LuxR
Bers Effective basal constant
Kaerr Effective dissociation constant
p Fitting parameter
A Activator
B Transcription factor
ri Hill Coefficients
Ki Effective dissociation constant
Bi Promoter basal level
o Fitting parameter
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Table S7.2 List of abbreviations used in this section

Symbol Description
ADC Analog to digital convertor
DAC Digital to analog convertor
LSB Last Significant Bit
MSB Most Significant Bit
IDR Input dynamic range
Arab Free arabinose concentration
AHL Free N-(B-Ketocaproyl)-L-homoserine Lactone 30CsHSL
concentration
Psap AraC promoter is activated by the AraC when it is induced by
arabinose (Arab)
Pluxmse Mutated LUxR promoter is activated by the LuxR when it is
induced by AHL
Pconst Constitutive promoter
Plux LuxR promoter is activated by the LuxR when it is induced by
AHL
TetR Concentration of TetR
Prux/teto Combinatorial promoter
Prrig Quorum sensing promoter that interacts with AHL inducer
LVA ssrA degradation tag
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8. Design principles of neuromorphic gene circuits

Weights and biases in neuromorphic circuits are determined by several factors, including
Hill coefficients of small molecule inducers that serve as perceptgene inputs, the number and
sequence of transcription factor binding sites, regulation of negative feedback strength
(Fig.1-2, Fig. S8.3), regulation of incoherent feedforward strength (Fig. S8.5), transcription
factor sequestration via protein-protein interactions (Fig. S8.6), transcription factors that
competitively inhibit expression via steric hinderance (Fig. S8.7), operator sequence that
controls binding affinity of transcription factor in open loop and positive feedback (Fig. S8.8-
Fig. S.8.10), activation via RNA-protein interactions (Fig. 3), and protein structure (e.g.,
dimerization and cooperativity), and circuit topology. Of particular importance, we
demonstrate modulation of activation function weight m, for the majority function via
administration of various Arabinose levels (Fig. S6.2A and Fig. 3E, F). Specifically, we induce
the system with eight different Arabinose concentrations and obtain fine-grain control of
AraC-Arabinose weight, allowing continuous control of the system. The process of affecting
weights and biases begins with a hypothesis of modulating the dosage response (e.g. transfer
function) of a regulatory element. This is inspired by what has already been demonstrated
in the literature, by a new approach that builds upon existing knowledge, or with completely
new innovative methods. After implementing the circuit modifications, the new transfer
functions are evaluated to determine the resultant weight and bias.

The first step toward the design of neuromorphic gene circuits is to understand the nature of the
input molecules and determine their computing weights. In neuromorphic gene circuits, the
computing weights of small molecules can be controlled by modifying the log domain slope of a
regulated promoter’s dosage response curve and can be characterized with Hill coefficients (e.qg.,
the number of identical inducers that bind to transcription factors, and cooperativity of
transcription factors). Regulatory topologies such as a negative feedback loop and an incoherent
feedforward loop provide additional strategies that can be used to program the computing weights
of small molecules and proteins. A mathematical model for the open-loop circuit, shown in Fig.
S8.1A, describes an input (/n) that inhibits the activity of repressor R, which in turn represses the
output. The production of R is constitutive and can be expressed as follows

aT

Out = 7 (5.8.1.1)
1+(K%>
Rt
R = S.8.1.2
1+([é_;)h ( )

Where a is output production rate, 7 is protein half-life, K, is binding dissociation constant of the
repressor (R) to the output, R is the total concentration level of R, K,,, is binding dissociation
constant of input (In) to R, n and m are Hill-coefficients of In and R. While the repressor R level
is constant in the open-loop circuit, it is regulated by the output protein in the negative feedback
circuit. A mathematical model for the auto-negative feedback loop circuit (Fig. S8.1B) is given

by:

Outy = % (S8.2.1)
1+(Kd)
out = —"1 (S8.2.2)
1+(m)
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Simulation results that compare the characteristic and computing weights of the open loop and
auto-negative feedback circuits are shown in Fig. S8.1C. By programming the strength of the auto-
negative feedback loop, one can obtain fine grain control over the input weights (Fig. S8.1D). In
this work, we varied the number of binding sites for transcription factors in the promoter to control
the strength of auto-negative feedback (Fig. 1).

(A) In ( B) In ( C) OL, Weight=1.6 ( D) = n=3, h=2, F;=3000, Weight=1.8
_ o == n=3, h=1, F,=3000, Weight=1.2
ANF, Weight=0.8 — n=2, h=1, F,=3000, Weight=0.9

IDR === n=2, h=1, F;=300, Weight=0.8
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=
o
o
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Fig. S8.1. (A) Open loop design. (B) Auto-negative feedback design. (C) Simulation results for
open loop and auto-negative feedback loop circuits. Simulation parameters: K,, = 10,h =
2,K; =1,Rr =100, X T = 3000. (D) Simulation for the auto-negative feedback circuit, where
the feedback loop strength F, = a X t/K,.

In order to program the input weights continuously within a range, we split the auto-negative
feedback loop into two reactions, one is the feedforward (R [J Out) loop and second is the negative
feedback loop that is controlled by small molecule inducer x (A [J R). A mathematical model
describing such a system is given by:

ai-T

Ap = —2° $8.3.1

T 1+(%) 1 ( )

R=—C1T _ (S8.3.2)

1+(’T”)
s

Ry =a, TH’EdA—_X)n (5.8.3.3)
Kaz

AX = AT% (S.8.3.4)
1+(K—1’n2)

The simulation results show that the level of inducer (x) can control the input weight by regulating
the strength of the negative feedback (Fig. S8.2).
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Fig. S8.2. (A) Negative feedback design based on splitting the feedforward and feedback by using
different proteins. (B) simulation results for the negative feedback loop. Simulation parameters:
Kp; =10,h = 15Ky =1,a, X7 =1000,n; = 1,K,, = 1,m = 1.5,K;, = 10,a; X T =
1000,n, = 1.

In Fig. S8.3 we describe small molecule control of negative feedback regulation via transcription
factor activation of repressor. This design allows us to continuously program the weight of IPTG
by changing the level of AHL. First, we compared the negative feedback circuit (Fig. S8.3B) with
an open-loop circuit (Fig. S8.3C). The open loop circuit includes regulation of mCherry by P,.o
promoter that is induced by IPTG. While Lacl is constitutively expressed in the open loop circuit,
it is regulated by the P, promoter in the negative feedback circuit. Input IPTG regulates the
activity of promoter P,,.o and expression of LuxR. The LuxR/AHL complex regulates Lacl levels,
which represses promoter Py, ., creating a negative feedback loop. Fig. S8.3D shows experimental
results of open loop and negative loop circuits, in agreement with our theoretical results (Fig. S8.1).
Furthermore, this negative feedback loop design allows us to continuously program the weight of
IPTG by changing the level of AHL (Fig. S8.3E). The negative feedback loop strength, which is
controlled by AHL, determines the IPTG input weight (Fig. S8.3F). These experimental results are
consistent with our simulation results (Fig. S8.2).
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Fig. S8.3. (A) Programmable perceptgene input weight. IPTG is the input and AHL regulates IPTG
weight. (B) High level circuit diagram and genetic circuit implementation of programmable
perceptgene input weight based on a negative feedback. AHL binds LuxR, forming a complex that
controls the strength of the negative feedback loop. When IPTG binds Lacl, it induces promoter
Placo activity, increasing LuxR levels. AHL binds LuxR, forming a complex that regulates
expression of Lacl. LuxR and GFP are regulated by P,.o promoter. P, is encoded on MCP, while
Placo 1S encoded on LCP. (C) High level circuit diagram and genetic circuit implementation of
open loop circuit. (D) Experimentally measured IPTG/GFP transfer function of open loop and
negative feedback circuits (AHL = 0.1 mM). (E) Experimentally measured IPTG/GFP transfer
function under three different AHL concentrations. (F) IPTG input weight is shown as a function
of AHL concentration.

Incoherent feedforward loops can also be used to program the weights of small molecules and
proteins. In these networks, the upstream regulator (A) directly activates the target gene (Out) and
indirectly represses it by activating repressor (R) of the target gene (Fig. S8.4A). In our design, we
assumed that the upstream regulator (A) is induced by the input (In). A mathematical model for
such a system is given by:

()
InA = a;  1—"2 (S8.4.1)
+(m)
(o) *+#
R; = e S8.4.2
T = U3 +(%) ( )
E n
Out=a3"1" (Ka) M (S8.4.3)

1+(%)n 1+(K%)m
Where «; are protein production rate, t is protein half-life, K, K,,- and K,. are binding dissociation
constants of the regulator (4) and repressor (R) to the output, K,, is binding dissociation constant
of input (In) to A, n and m are Hill-coefficients and £ is the basal level. The simulation results of
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incoherent feedforward circuit are shown in Fig. S.8.4B. These results indicate finely tunable
weight with positive and negative values.
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Fig. S8.4. (A) Design of incoherent feedforward loop. (B) Design of programmable perceptgene
with a positive weight, simulation results with parameters: K,,,; = 100,h = 1.5,K, = 10,K,, =
10, Xt =100,n=1,=0.01,m=1,a, Xt = 100,K, = 10,30,1000 (C) Design of
programmable perceptgene with a negative weight, simulation results with parameters: K,,; =
100,h = 1.5,K, = 100,K,, = 1,a; Xt =10,n = 1,8 = 0.005,m = 1.5,a, X 7 = 150,K,. =
3 —10.

In Fig. S8.5 we demonstrate experimentally small molecule control of transcription factor
competitive inhibition via binding to an output promoter. This design allows us to modulate the
weight of input AHL continuously by changing the aTc level (Fig. S8.5E). The input AHL binds
LuxR and forms a complex that induces expression of activator (AraC) and repressor (Lacl), which
combine to regulate GFP output, resulting in an incoherent feed-forward loop. Small molecule aTc
controls Lacl expression via de-repression of TetR, which in turn affects the overall AHL-GFP
transfer function. We show the resulting input weight as a function of aTc relevant for the input
dynamic range. Our incoherent feed-forward circuit provides negative weights.
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Fig. S8.5. (A) A programmable percentgene with single input weight. aTc is used to modulate the
weight of AHL continuously. (B) High level circuit design. Input AHL binds LuxR and forms a
complex that regulates AraC and Lacl. The AraC transcription factor activates GFP output
expression, while the Lacl transcription factor represses GFP expression. The activation function
is determined by the AraC/Lacl interaction, where Lacl expression is controlled by aTc, and hence
impacts input weight. (C) Genetic circuit implementation. P.o promoter is regulated by TetR
through an auto-negative feedback loop and induced by aTc. Prgr and P, promoters are
regulated by LuxR through a positive feedback loop and induced by AHL. AraC is regulated by
Piux promoter, and Lacl is regulated by combinatorial Py, /teto Promoter. A ssrA degradation tag
(LVA) was added to Lacl to reduce the maximum protein level. GFP is regulated by AraC/Lacl
through activation/repression of combinatorial P,y,/12c0 Promoter. The feedback loops in this
circuit increase the input dynamic ranges of AHL and aTc. The Pe¢o and combinatorial Py teto
promoters are encoded on a medium-copy-number plasmid (MCP). The combinatorial P,41ac0
promoter is encoded on a high-copy-number plasmid (HCP). The P4 and Prgp promoters are
encoded on a low-copy-number plasmid (LCP). (D) Measured AHL - GFP transfer function where
aTc is varied (aTc =11,7.5,5,3.2 ng/my; , Arabinose = 50 mM, IPTG = 1 mM ). The dotted

( AHL >heff+ﬁ
Kers .

1+<AHL)heff.

Kerr
(1) aTc =11 ng/ml, heff = 22, Keff =100 mM, ﬁ = 0013,
(2) aTc =7.5 ng/ml, heff = 19, Keff = 85 mM, ﬁ = 0012,
(3) aTc =5 ng/ml, heff = 16, Keff =100 mM, :8 = 002,
(4) aTc =3.2ng/mi, hesr = 1.3, Kepp = 100 mM, B = 0.08,

(E) AHL weight based on the experimental results as a function of aTc .

lines are Hill-function fitting with GFP «

The second step in the design of neuromorphic gene circuits is to aggregate the multiple inputs to
one node in order to implement the multiplication function, which serves as a collective analog
node. There are several biological mechanisms that can be used to accomplish such a function. For
example, in this work combinatorial promoters (Piacotet0s Plux/lacor Plux/teto) In Figures 1 and 2,
and mRNA-protein interaction in Figure 3 was used to aggregate the analog weighted inputs and
implement multiplication function. In Figure 4, we showed that transcriptional interference can
also be used to aggregate inputs acting as division with negative weights.

The third step in the design of neuromorphic gene circuits is to add an activation function that
converts the analog pattern of the multiple inputs into a non-linear function for performing analog
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classification. This can be achieved by wiring the output of the multiplication circuit with an
activator and promoter to regulate the perceptgene output.

In our neuromorphic genetic circuits, controlling the bias is perhaps easier than controlling the
weights. The bias is determined by the ratio between the maximum protein expression level of the
power-law/multiplication circuit output and the dissociation constant of transcription factor
binding to DNA. The maximum protein expression level is determined by transcription rate,
translation rate, mMRNA and protein half-lives, and is given by:

. transcription ratexmRNA half lifextranslation ratexprotein half life
Bias = P P (S8.5)

dissociation constant of transcription factor binding to DNA

In this study, we use different methods to control the maximum protein level such as promoter
strength, ribosome binding site strength, ssrA degradation tag and plasmid copy number. We now
show experimentally that it is possible to readily increase the dissociation constant of a
transcription factor by controlling expression of a second biological element that competitively
inhibits the transcription factor. To this end, we use two biological systems: (1) dCas9 regulation
(Fig. S8.6), and (2) protein sequestration (Fig. S8.7).

In Fig. S8.6, we show competitive inhibition of gene activation via steric hinderance binding of
DNA that is tuned by the DNA binding location of the dCas9/single guide RNA (sgRNA) complex.
This design allows us to program bias continuously by choosing different sgRNA sequences. The
dCas9 regulation system is built from two parts; a Pgap promoter that activates the target gene by
binding the Arabinose-AraC complex. The second part is the complex sgRNA-dCas9 which binds
the AraC operator, and prevents the Arabinose-AraC complex from activating promoter Pgap. The
affinity of dCas9-sgRNA complex to its binding site and ability to sterically hinder transcription
factor the promoter, control the binding dissociation constant of Arabinose-AraC complex to Pgap.
These factors, and hence perceptgene bias, can be readily controlled by building a library of
SgRNA sequences (Fig. S8.6D-E). We used Hill-function (Eq. S8.6) to estimate the effective
dissociation constant of Arabinose (K,f):

In )heff

GFP « Lhﬁ + GFP, (S8.6)

1+( In ) €
Kerr
Where In is the Arabinose concentration. In order to evaluate the bias based on the changes of

dissociation constant, we fit a model that includes induction and activation to our experimental
results. Such model can be given by:

ma\* | g
P = (Kdl)m - (S8.7.1)
1+(H> .
I_n
InA = A4, - (&) - (S8.7.2)

1+(1§—;)
Where K, is the binding dissociation constant of inducer-activator (Arabinose-AraC) complex
(InA) to promoter, S is the promoter basal level, K,, is the binding dissociation constant of inducer
(Arabinose) to activator (AraC), A,,4 IS the activator maximum level achieved by promoter, and
h is Hill-coefficient of inducer. In this simple model, the bias is defined as B = A,,,4./K4-
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Fig. S8.6. (A) A percentgene with a constant input value of 1, allowing analysis of the activation
function’s programmable bias. Pgap promoter serves as the activation function, and the
AraC/Arabinose complex is an analog signal that modulates bias. (B) High level circuit
schematics. The design is based on competitive inhibition of gene expression via a tunable
dCas9/sgRNA complex. The sgRNA sequence determines the affinity of dCas9/sgRNA binding
to AraC operator, and hence can modulate bias by preventing AraC/Arabinose activation of Pgap,
which results in an increase of the AraC/Arabinose dissociation constant. (C) Genetic circuit
implementation. AraC, dCas9 and sgRNA are constitutively expressed by Pygco, Prero and Pra31119
promoters. Pgap promoter is encoded on a low-copy-number plasmid (LCP), dCas9 is encoded on
a high-copy-number plasmid (HCP), and sgRNA is encoded on a medium-copy-number plasmid
(MCP). (D) Experimentally measured transfer functions for three circuit variants encoding two
different sgRNA sequences and a control (purple; without sgRNA and dCas9). SG6 targets the
middle of Pgap promoter, while LKsg3’s target is at the end of the promoter.
SG6: GACGCTTTTTATCGCAACTC; LKsg3: TTTTTTTGGGCTAGCGAATT. The dotted lines are Hill-
function fittings. K,, =90mM, h=1.5, § =0.035, n=1 . (E) Arabinose dissociation
constant and bias (inset) for all three circuit variants. Bias = AraCy,q,/K4, Where K, is the
dissociation constant of AraC/Arabinose complex, AraC,,,, is the maximum AraC produced.

In Fig. S8.7, we demonstrate small molecule control of transcription factor sequestration (48) via
protein-protein interactions. This design allows us to continuously program perceptgene bias using
two heterologous proteins (ExsA and ExsD) where ExsA transcriptional activator is sequestered by
ExsD into an inactive complex. Arabinose-AraC regulates the expression of ExsA that activates
GFP output expression. aTc induces expression of anti-activator ExsD, which inhibits ExsA gene
activation. Hence, the extent of the ExsA/ExsD protein-protein interaction and resultant
perceptgene bias is controlled by aTc. We used Hill-function (Eq. S8.6) to estimate the effective
dissociation constant of Arabinose and set of equations Eq. S8.7.1-2 to estimate the bias.
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Fig. S.8.7. (A) A percentgene with a constant input value of 1, allowing analysis of the activation
function’s programmable bias. P.ys promoter serves as the activation function and the
AraC/Arabinose complex is the analog signal. aTc level controls the activation function bias. (B)
High level circuit diagram. The design is based on protein sequestration where ExsD shunts ExsA
from activating GFP expression. This sequestration increases the dissociation constant of ExsA
promoter binding and hence modulates bias. (C) Genetic circuit implementation. The ExsD- ExsA
interaction that is used to regulate the activation function bias and is controlled via aTc. The
AraC/Arabinose complex regulates expression of the ExsA activator. The TetR/aTc complex
regulates expression level of anti-activator ExsD, which binds ExsA and inhibits its activation of
P..s promoter. AraC and TetR are constitutively expressed. P, promoter is encoded on HCP
while the other promoters are encoded on MCP. (D) Experimentally measured Arabinose transfer
functions under different aTc conditions. The dotted lines are Hill-function fittings, K,,, = 9 mM,
h =1.5, B =0.035, n = 1. (E) The Arabinose dissociation constant and relative bias (inset) as
a function of aTc.

Introducing random mutations to operator sequence of transcription factor can also be used to
control the weights and bias. Fig. S8.8 describes modulations of transcription factor LuxR’s DNA
binding affinity via changes in Lux operator sequence. We introduced 7 random mutations into the
first four nucleotides of the LuxR binding site. In order to precisely calculate the Hill-coefficient
and effective dissociation constant, we simultaneously measured the activity of the P, promoters
using GFP signal and measured the activity of the host cell using constitutive mCherry signal for
each AHL level (Fig. S8.8A). With our open loop circuit topology, we experimentally measured
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Hill-coefficient values ranging essentially continuously between 0.4 and 1 with a step of 0.1 (Fig.
S8.8B and C). The AHL input weight is derived from the Hill-coefficient. Indeed, the input weight
is the same as the Hill-coefficient when the basal level is very low, because both are equal to the
slope at the log-log scale.

As we showed above, while the negative feedback can reduce the Hill-coefficient, here we show
that positive feedback can increase the Hill-coefficient. This result matches other efforts that
utilized auto-positive feedback (APF) to produce a sharp threshold in the response of inducer-
promoter activity (49). Fig. S8.9 represent the experimental results of open and auto-positive
feedback loops, from Fig. S2.13 at the logarithmic scale. The Hill-coefficient values were doubled
when auto-positive feedback was used compared to open loop. We then incorporated other six Lux
operator mutants into a Lux response circuit with positive feedback regulation, and obtained Hill-
coefficient values ranging between 1.1 and 2 and computed weights between 0.75 and 1.7 (Fig.
S8.10).
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Fig. S8.8. (A) Circuit design for open loop followed AHL induction. LuxR is constitutively
produced. LuxR/AHL binds Lux operator mutants within P, promoter and activates GFP
expression. (B) Experimentally measured AHL-GFP transfer functions of the Lux operator mutants
used to determine Hill coefficients of the AHL input. (C) Experimental data shows that random
mutations in the first four bases of the Lux operator result in an essentially continuous range of
Hill-coefficients throw AHL input and AHL input weights. The dotted lines are Hill-function
fittings.
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Fig. S8.9. Hill coefficients for a modified circuit that encodes auto-positive feedback regulation
(APF), where LuxR is expressed by the same mutated P, promoters. (A) The construction of
open loop (OL) and APF circuits based on P, promoter. (B) The construction of OL and APF
circuits based on mutated P, promoter (P,xms6)- (C) Measured transfer functions of multiple
circuits, dots are experimental data, and dashed-line is a Hill function fitting with the below
parameters (See Fig. S2.13):
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OL circuit — Wild type Pyyy: K =30,mgrr =1,a = 25x 103 b = 600
APF circuit — Wild type Pjyy: K =7mer=2,a=30x10%b =800
OL circuit — Mutated Pyymss: K = 500, m,pr = 0.3,a = 5 x 103,b = 100
APF circuit — Mutated Pyyymse: K = 500,m,zr = 0.5,a = 30 X 10%, b = 100
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Fig. S8.10. (A) Circuit design for positive feedback AHL. LuxR is regulated by the mutated Py,xm
promoter. LuxR/AHL binds mutant Lux operators within promoter P, and activates LuxR
expression, and also LuxR/AHL binds wild type Lux operators within promoter P, and activates
GFP expression. (B) Experimentally measured AHL-GFP transfer functions of the Lux operator
mutants used to determine the AHL input Hill coefficients. (C) Experimental data shows that
random mutations in the first four bases of the Lux operator, resulting in an essentially continuous
range of AHL input Hill-coefficients and AHL input weights. The dotted lines are Hill-function
fitting.

So far, we showed theoretically and experimentally that biological factors and design topologies
determine weights and biases in our neuromorphic circuits. To provide a better view of design
principles for neuromorphic gene circuits, we summarize and show below other examples (Table
S8.1). Remarkably, we conclude that the same biological mechanism can be used to tune the bias
and also to implement power law circuit. The table S8.1 starts with auto-negative feedback (ANF)
loops (Py, P,), a dual repression node (P, /;), and feedforward loop (P,). The analog signal (Y) is

represented by the activity of the dual repression node. The elements P; and P, are self-regulated
and negatively induced by the inputs In; and In, respectively. The analog signal (Y) is combined
with a nonlinear function to produce the output Z. This design has positive weights and is
experimentally implemented using genetic components, as shown in Fig. 1. The design includes
ANF loops consist of promoters that are regulated by repressors (R;, R,), (2) the inputs In; and
In, are small molecules that inhibit the repressors activity, (3) the dual repression node is
implemented by combinatorial promoter, and is also regulated by R; and R, and (4) the nonlinear
activation function is realized by the regulation of the activator Y to P, promoter. Our simulation
results (Table S8.1A) show that the output of the combinatorial promoter can be described by the
analog pattern at the logarithmic domain (log(Y) = n, - log(In,) + n, - log(In,) + Cons), and
the activator Y with P, promoter convert this analog behavior to non-linear pattern with two states,
asymptotically. Essentially, the circuit makes a decision based on collective interaction of
transcription factors with analog behavior through their binding to a combinatorial promoter. Table
S8.1B shows our design to implement a perceptgene with negative weights. This design is slightly
similar to the previous one, where P, and P,are replaced by activation-repression (hybrid) nodes.
Such nodes are directly activated by the inputs (In; and In,) and self-repressed. We can implement
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the activation-repression nodes in living cells using combinatorial promoters that are regulated by
activators and repressors. The inputs can be small molecules or transcription factors. Table S8.1C
shows our third design and it implements a perceptgene with negative and positive weights. This
design is based on the previous design. Specifically, the dual repression node that regulates the
collective analog signal (Y)was replaced by an activation-repression (hybrid) node. Perceptgenes
can also be implemented by other biological mechanisms. For example, Table S8.1D shows that a
perceptgene with negative and positive weights was implemented by protein sequestration, where
activator and anti-activator pair is involved. Other examples are shown in Table S8.1E where a
binding interaction between two sub-proteins can occur (45), and Table S8.1F where
phosphorylation and dephosphorylation reactions in two-component signaling system (50) are
involved. Lastly, antisense transcription (40), which occurs counter to gene orientation, can also
be applied to implement a power-law function with a positive and negative weights (Table S8.1G).

(A) Positive- weight perceptgene based dual repression system
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(B) Negative-weight perceptgene based dual repression

Schematic Schematic Genetic design Mathematical model at Simulation results
design block steady state
In, In, In, In, In, . ((%)ni+ﬁ‘)
L G| ga o [ |~ »
| DT D7 @) () Es
w
\‘ J X Y = T 2E°
- R R\2 , (RA\™ (R\2| 27
Y 1+ (K;l) +(K_:2) + K_;l) (K_:z) < 109 10! R o 10°
l $ l thyleve; 10 17 inyleve!
pam
az-r-((E) +[3) “
Gz z Z= Y " gz O —
1+ (K_a) 3% 2| =
23 41
Kpi = 100, h; = 1.5,a - 7=300, K = 1, E®102 T—u __— 10°
n=1, m=25, ay-1=100, K,=30, =001 | 8% J 10 10° 102 10
"2 leve) \nlevel

121



(C) Perceptgene based hybrid activation-repression system

Schematic Schematic Genetic design Mathematical model at Simulation results
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(D) Perceptgene based protein sequestration system
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(E) Perceptgene based fusion protein system
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(F) Perceptgene based two-component regulatory system

Schematic Schematic Genetic design Mathematical model Simulation results
design block at steady state
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(G) Perceptgene based antisense transcriptional regulatory system
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Tables S8.1. Examples for neuromorphic gene circuits. The schematic design describes the
regulatory elements, the schematic block shows the mathematical operations, the genetic design
shows the genetic implementation and biological regulatory components.

In addition to our own experimental data and simulation results, previous articles have also
demonstrated the ability to modulate various properties of engineered gene circuits that are
relevant to our neuromorphic circuit engineering efforts. The engineered libraries of genetic device
variants described briefly below could be used in our neuromorphic approach to obtain essentially
continuous modulation of weights and biases:

e The Ribosome Binding Site Calculator is a tool that predicts the affinity to RNA
polymerase of synthetic ribosome binding sites in Escherichia coli, and as such enables
rational control over protein expression levels (51). This tool can be useful for
programming bias, which is directly affected by the translation rate.

e The Anderson synthetic promoter library includes more than 30 characterized promoters
with variable strength of approximately 100 fold between the weakest and strongest
(http://parts.igem.org/Promoters/Catalog/Anderson). This tool can also be useful for
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programming bias, which is directly affected by the transcription rate. Another synthetic
promoter library was also published around the same time (52).

e The Weiss TALER library includes 26 programmed transcriptional repressors that bind
synthetic combinatorial promoters in mammalian cells (53). With TALE modular protein
construction, any DNA sequence can be targeted, leading to an essentially limitless design
search space (with a usable length of anywhere between 14 and 26 DNA bases for TALER
binding). The library elements have an approximately 2 orders of magnitude difference in
repression folds from around 20 to greater than 10 leading to different Hill coefficients
and hence different input weights. Promoter engineering by inclusion of two versus four
TALER binding sites increased fold repression by five and ten fold for TALER21 and
TALER14 respectively.

e The Voigt repressor library includes 16 orthogonal TetR-family repressors and their
cognate promoters. Each repressor/promoter pair’s transfer function has been
characterized. The measured Hill coefficients range between 1.5 and 6.5, with fold changes
between 1-2 orders of magnitudes (54). This tool can be useful for programming input
weights.

e A recent effort in Escherichia coli has demonstrated several inducible synthetic promoters
with varying ligand-promoter activity transfer functions. The synthetic promoters are
regulated by TtgR, PmeR and NalC and are induced by phloretin, Naringenin, and PCP,
receptively (55). This tool can be useful for programming input weights similar to Fig.
S8.8.

e The Riboswitch Binding Sequence Calculator predicts ligand induced gene activation of
riboswitch sequences using a physics based model. Then, computational design with this
tool is used to create a library of 62 different synthetic riboswitches with activation fold of
up to 383x (56). This tool can be useful for programming weight and bias.

e A library of LuxR transcription factors were developed (57). AHL -dependent
transcriptional activation can be selected to meet design specifications. This tool can be
useful for programming input weight similar to Fig. S8.8.

e A library with 238 member of tunable control for protein degradation in bacteria were
developed (58). This tool can be useful for programming bias, which is directly affected
by the protein half-life.

e A library of antisense constitutive promoters was developed (40) . Every member of the
library includes a target gene that is regulated by a repressor and by another promoter that
is oriented opposite to the target gene. The library includes 5,668 terminator—promoter
combinations that was used to control the expression of three repressors (PhIF, SrpR, and
TarA). Such design can be used reliably to tune gene expression level and control small
molecules' dissociation constant. This tool can be useful for programming bias.

Other methods to alter the dosage response curves of genetic regulation elements have also been
published, and these could also be used to modulate weight and bias in neuromorphic circuits:

e Landryetal. 2018 developed a two-component signaling system that can dynamically tune

the dissociation constant of small molecules. This system can be used to control bias (59).
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e Segall-Shapiro et al. 2014 split T7 proteins into several parts and changed cooperativity.
This method can be used to control the weights for inputs and activation functions (22).

e Morel et al. 2016 introduced extra binding sites into promoters and changed cooperativity.
This method can be used to control input weight (60).

We also analyzed the properties of common synthetic biological parts, including weights for some
of the parts used in this manuscript (Fig. S8.11A) and Hill coefficients for devices that were
previously published (Fig. S8.11B) providing another source of parts with desired weights and
Hill-coefficients for small molecules and transcription factors.
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Fig. S8.11. (A) Hill coefficient values of small molecules that are used in this study. (B) Hill
coefficient values of transcription factors that are used in Stanton et al. 2014 (54).

In summary, there are many methods to control the weights and biases, these include
transcription factor binding sites, operator mutations, and T7 RNA polymerase mutations.
With respect to Lacl regulation of a promoter via the number of binding sites, there is a
practical limit on the number of binding sites that can be used in a single promoter. As such,
the number of binding sites in a single promoter only represents one coarse grain ‘knob’ for
tweaking weights. The example of T7 RNA polymerase is also coarse-grained. The power
and flexibility come from combining such coarse-grain approaches with others that provide
more fine-grain tuning (e.g., operator sequence mutations). For the operator mutations, we
show experimentally seven different weights with good coverage of the desired range and
support the feasibility of obtainingnear-continuous control (Fig. S8.8). Importantly, we show
experimentally that replacing the open-loop control with closed loop feedback control shifted
the range of weights from 0.25-0.80 to 0.75-1.70 (Fig. S8.10). This is an example of how coarse
grain and fine grain control can be used synergistically to obtain desired weights. In terms
of additional control, other synergistic approaches mentioned above include Hill coefficients
of small molecule inducers that serves as perceptgene inputs, transcription factors that
competitively inhibit expression via steric hinderance, regulation of negative feedback
strength, transcription factor sequestration via protein-protein interactions, protein
structure (e.g., dimerization and cooperativity), and circuit topology. As such, optimization
and reconfiguration of neuronal circuit function is not solely dependent on the success or
failure of any particular approach. These approaches can be mixed and matched, and the
impact on the cost function can be then observed in order to further refine neuronal circuit
behavior. Clearly, at the moment, these modulations are not as easy to manipulate as, for
example, modifying weights in a computer simulation of neuronal circuits.
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Scaling and optimization of neuromorphic circuit based on using design principles from analog
and digital computation (Supplementary Information, Sections 5 and 7), fuzzy computation
(Supplementary Information, Sections 3 and 4), algorithms from ANNs as gradient descent and
backpropagation (Supplementary Information, Section 6), and modules that were developed in the
neuromorphic field such as Hopfield networks (61). Here we provide another example to design
2-Bit Full adder based on neuromorphic design. We start by presenting the truth table of our circuit

(Table S8.2):
In1 | In2 | Cin | In2+Cin | Sum | Cout
In, ) 0 0 0 0 0 0
T 2eitrun [ sum 04011} 1 1110
2 >
Gn —| A9 > cout 0111 2 0 1
~— 11 0]01 0 1 1 0
1 0 1 1 0 1
1 1 0 1 0 1
1 1 1 2 1 1

Table S8.2. Truth table of 2-bit Full Adder.

As shown in the Table S8.2, the Cout output displays “1” if and only if the majority of the inputs
are “1”, and displays “0” if and only if the majority of the inputs are “0”. Such function is called
3-input majority and is implemented in this study (Figure 3, Supplementary Information, Section
5). The implementation of Sum output of 2-bit Full adder is more complex depending on the design
roles (e.g., the input numbers of single perceptgene). According to the truth Table S8.2, when the
input In; is “0”, the summation of In, and C;, inputs can be encoded to band-pass filter circuit
(BPF), and when the input In; is “1” the summation of In, and C;,, inputs can be encoded to NOT-
BPF (NBPF). Our 2-bit Full adder comprises BPF, NBPF and 2-1 multiplexer (Fig. S8.12A). A
NBPF circuit is an inverted BPF circuit, which means, a high output results if and only if the input
level is very low/high, and low output results for intermediate levels of input. The implementation
of BPF is shown in Supplementary Information, Section 7, and it includes two cascaded
perceptgenes that one inhibits the other (Fig. S8.12B). By wiring the output of BPF with an
inhibitor, one can simply implement the NBPF. The 2-1 multiplexer selects between the BPF and
NBPF output signals and forwards it to Sum output (Fig. S8.12C). In our design, the In; acts as a
selector and the outputs of BPF and NBPF are the data signals which are forwarded to the Sum
output. The operation of Multiplexer can be described as u{Zgpr - (1 — Iny)} + u{Zygpr - Iny},
where u is the sigmoid function. Fig. S8.12D shows a digital design of 2-bit Full adder which
include 6 AND gates, 3 OR gates, and 2 NOT gates. According to the assumption that each 2-input
logic gate can be implemented only by 2 transcription factors, we get that neuromorphic design
requires 9 transcription factors while the digital design requires 20 transcription factors. Notably,
that 2-bit Full adder can be implemented with other biological parts (62) than transcription factors,
which might require fewer components.
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Fig. S8.12. (A) Design of 2-bit Full adder. (B) Design of band-pass (BFP) filter circuit BPF, NOT-
BPF (NBPF) and 2-bit Multiplexer. (C) Truth table of 2-bit Multiplexer. (D) Digital design of 2-
bit Full adder.
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9. Dynamic Measurements of Neuromorphic Genetic Circuits

We characterized the dynamics of perceptgenes implementing the power-law and multiplication
function and the average function, as well as the multi-layered 2-bit ADC. These experiments
monitor the progress of circuit output at multiple time points (4.5, 7, 8.5 and 10 hours). In general,
circuit output is quite stable across all of these time points (Fig. S9.1, Fig. S9.3, and Fig. S9.4).
The maximum and minimum levels of the LSB and MSB circuit in the multi-layered 2-bit ADC
across all input dosages reach approximately 2/3 of their highest values after 4.5 hours (Fig. S9.5).
These levels gradually increase until they reach their peak at 8.5 hours and then decreases back to
about 2/3 of the maximum at 10 hours. Importantly, the input levels where LSB and MSB outputs
transition between low and high levels are consistent across all time points (Fig. S9.6). Therefore,
at all time points measured the ADC continues to properly convert AHL input concentration levels
to the appropriate four output states [0,0], [0,1], [1,0] and [1,1]. Similar dynamic behavior is
observed for the average circuit and power-law and multiplication circuit (Fig. S9.1 and Fig. S9.3).
The dynamics of our circuits are mainly determined by the characteristics of the synthetic parts
and the regulatory topologies. The synthetic parts we use are based on parts that have been
extensively characterized in the literature. The regulatory topologies that govern the behavior of
our circuits include cascades, feed-forward, and feedback motifs — again, motifs that frequently
occur in synthetic biology. by definition, we expect that the dynamics of our neuromorphic circuits
are roughly the same as existing digital and analog circuits using similar synthetic parts and motifs
(4, 6, 16), e.g., response times in few hours.

Time-course experiments were performed on perceptgene for computing power-law and
multiplication function (Fig. 1B and 1D), perceptgene for computing an average function (Fig. 2G
and 2l) and on ADC circuits (Fig. 4F, and 4G). E. coli strains were picked from LB agar plates
and grown overnight at 37°C, 300 r.p.m. in 5 mL of LB medium with appropriate antibiotics and
inducers (Carbenicillin (50 pg/ml), Kanamycin (30 pg/ml), Chloramphenicol (34 pg/ml)).
Overnight cultures were diluted 1:100 into 5 mL of LB medium with added antibiotics and were
then incubated at 37°C, 300 r.p.m. for 30 min. 200 pl of culture was then moved into a 96-well
plate, combined with inducers (Arabinose and AHL 30C6HSL), and incubated in a VWR
microplate shaker at 37°C, 500 r.p.m. Once the diluted cultures grew to an ODgoo 0f ~0.5 (~4 hours
and 30 min), 120 ul of culture was taken to a FACS machine for measurement. Simultaneously,
we performed two steps:

1. 40 ul of culture was moved into a new 96-well plate containing 200 pl of media, antibiotics,
and inducers and then incubated in a VWR microplate shaker at 37°C, 500 r.p.m. At ODsoo
~0.5 (after 2.5 hours), 200 pl of culture was taken to a FACS machine for measurement
and 40 pl of culture was moved into a new 96-well plate containing 200 pl of media,
antibiotics, and inducers and then incubated in a VWR microplate shaker at 37°C, 500
r.p.m. This iterative dilution, growth, and measurement process was repeated and resulted
the dynamics after 7 hours and 10 hours.

2. 20 pul of culture was moved into a new 96-well plate containing 200 pl of media, antibiotics
and inducers, then incubated in a VWR microplate shaker at 37°C, 500 r.p.m. At ODsoo
~0.5 (4 hours and 20 min), 200 pl of culture was taken to a FACS machine for measurement
and resulted the dynamics after 8.30 hours.
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The experimental results of power-law, multiplication function, and average circuits
corresponding to different times are shown in Fig. S9.1 and Fig. S9.3 below shown by fitting our
experimental results to surface, the weight values are consistent over time (Fig. S9.2). The average
circuit continues to operate correctly and compute the average between two analog numbers (Fig.
S9.3).

(A) GFP fluorescence at log scale (B) GFP fluorescence at log scale
(7 hours)
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Fig. S9.1. Raw data of time-course experiments (4.5 hours, 7 hours, 8.5 hours and 10 hours) for
perceptgene computes power-law and multiplication function (Matching Fig. 1B with Pjaco/Pteto)
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Fig. S9.2. Normalized data of Time-course experiments (4.5 hours, 7 hours, 8.5 hours and 10
hours) for perceptgene that computes power-law and multiplication function (A, C, E, and G).
Matlab surface fits (B, D, F, and H) the experimental results to power-law and multiplication

function log(GFP) = ¢ + n3 - log(IPTG) + n, - log (aTc).
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Fig. S9.3. Dynamics of average computing circuit. (A)-(C) Raw data of time-course experiments
(4.5 hours, 7 hours and 10 hours) for perceptgene that computes the average between two analog
signals. (D)-(F) Normalized data of Time-course experiments (4.5 hours, 7 hours, and 10 hours)
for perceptgene that computes average function between two analog inputs.

The experimental results of ADC corresponding to different times are shown in Fig. S9.4 below.
The GFP signal of the ADC circuit represents the LSB output, and the mCherry signal of the ADC
circuit represents the MSB output. In the fours time points (4.5 hours, 7 hours, 8.5 hours and 10
hours) our ADC continues to operate properly and convert the AHL concentration level to four
states [0,0], [0,1], [1,0] and [1,1] (Fig. S9.5) We also compared the minimum and maximum
expression levels of GFP and mCherry at different time points (Fig. S9.6). Furthermore, we fitted
the data to an empirical model, and we found that the fitting parameters change slightly across

time (Table S9.1). The empirical model is based on Section 7 and is given by:
AHL\M1
(K—ml) 1
. +b S9.1
+(;:1_11;1111,)h1 +(;§—::2')h2 1 ( )
(ﬂ)’”
Km3
14 (ALY
LSBiow

Max(LSBiow)
h4
()
()

Where K,,,; are dissociation constants, h; are Hill-coefficients, and b; are basal levels.

LSBiow =

LSBhigh = bz (892)

LSBhigh
Max(LSBm-gh)

LSB = (S9.3)

MSB = by (S9.4)
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Fig. S9.4. Raw data of time-course experiments (4.5 hours, 7 hours, 8.5 hours and 10 hours) for
the ADC circuit. To enable a suitable comparison between the GFP and mCherry signals, we
scaled the measured mCherry signal by 23.
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Table S9.1. Shows the time course fitting parameters (Eq. S9.1-.4) for the ADC circuit. The

empirical model is based on Section 8.

Parameter Time=4.5 hours | Time=7 hours | Time=8.5hours | Time=10 hours
Km1 20nM 20nM 30nM 20nM
Km2 15nM 15nM 15nM 15nM
Kms 10°nM 10°nM 10°nM 10°nM
Kma 300nM 200nM 200nM 100nM

h1 2 2 2 2
h2 2 2 2 2
hs 0.9 0.9 0.9 0.9
ha 1.5 1.5 1.5 1.5
b1 0.01 0.01 0.008 0.008
b2 0.005 0.005 0.005 0.005
b3 0.07 0.05 0.05 0.03
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10. Noise Analysis in Neuromorphic Circuits

In this section, we perform the Signal-to-Noise ratio (SNR). The sensitivity analysis from Section
1 and SNR parameters can provide quantitative information for the precision and reliability of
circuits. We quantified the noise of neuromorphic circuits by further analysis of single-cell FACS
experimental data. Specifically, for each single layer perceptgene circuit (from Figures 1 and 2)
we quantified the signal-to-noise ratio for each input dosage that we tested and graphed a
corresponding SNR histogram (Fig. S10.1). These histograms show the distribution of SNR
exhibited by each of the circuits. The general observation is that the power law and multiplication
circuits that use only auto-negative feedback for the inputs (Lacl/IPTG and TetR/aTc) generally
tend to have higher SNRs than circuits that include auto-positive feedback (LuxI/AHL with either
TetR or Lacl). Another observation is that the activation function (AraC) addition tends to
coalesce the SNR distributions of all three circuits to roughly the same values. Thus, activation
functions utilized in two circuits were able to increase the SNR.
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Fig. S10.1. Signal-to-Noise ratio (SNR) analysis of perceptgene units (Fig. 1 and 2 in the main
text). (A) SNR analysis for power-law and multiplication circuits. The circuit with only negative
feedback (via Lacl and TetR) exhibits improved SNR over the other two circuits that contain a
positive feedback motif (via LuxR). (B), (C) and (D) SNR analysis for perceptgene with activation
functions computes smooth minimum, maximum and average functions, respectively.
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11. Benefits of log-based ANNs computing

In electronics, ANNs outperform the conventional computing paradigms (e.g., digital and
analog) in a variety of settings (such as classification and signal processing (63-67)) owing to
their collective resilient properties. ANNs perform efficient execution of complex functions
by utilizing a low number of components similar to analog design and producing reliable
results similar to digital circuits (e.g. majority function, supplementary information, Section
5, ADC, Supplementary information, Section 7). Implementing ANNSs in a biological setting
requires an important change to obtain the same performance benefits. Specifically, using
logarithmic rather than linear functions is often more appropriate for describing
biochemical reactions in gene regulation (e.g., Hill Functions that describe dosage response
curves, Weber’s law (4, 49, 68)). The use of logarithmic functions for ANNSs places particular
requirements on properties of gene regulatory elements in terms of their Hill coefficients,
basal and maximal protein expression levels, and transcription factor dissociation constants.
These requirements can be met ‘easily’. Furthermore, we have shown that common
biochemical reactions can be simply converted to perceptgene units (Design principles of
neuromorphic circuits, Supplementary Information, Section 8).

In comparison, a linear genetic implementation would have been based on less reliable parts,
for example, we have shown in Section 1 that computation based on the perceptron requires
an activation function with a very high Hill-coefficients (>2.5). Such values are very
challenging to obtain in synthetic and natural biological systems. Therefore, linear-based
ANNs computing would place much more stringent requirements on gene regulatory
elements’ properties and necessitated a more complex design to achieve the same
performance. Furthermore, the logarithmic domain is also more appropriate for attenuating
the effects of typical fluctuations in protein expression levels. Subsequently, it provides a
more resistant platform for neuromorphic computing in a gene regulation context. The
essence here is the reliance on fold-change regulation, as opposed to absolute-change
regulation, with the former being more appropriate for genetic circuits (as previously
articulated in the community, e.g., by Uri Alon (69)).
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12. Comparing neuromorphic computing with digital and analog computing

Our selection of circuits to design and build was based on two guidelines:

1. To prove that, for the first time, neuromorphic computing principles can be achieved in
single living cells by transforming concepts from neural networks to genetic regulatory
networks.

2. To construct synthetic gene circuits that perform complex computation with minimal
requirements in computational devices and host cell resources.

Three of the circuits we decided to build, min/max/avg, are fundamental building blocks for
neuromorphic computing. The other three, majority / 2-bit ADC / ternary switch, demonstrate
multi-layered neuronal circuits.

In terms of appreciating the min/max/avg functions, it is essential to recognize that to the best of
our knowledge, only ‘“hard” (i.e., discrete) minimum and maximum functions have been
demonstrated in synthetic biology. Complicated functions operate using binary AND/OR logic,
where each bit has two logic states. In terms of these complicated functions, AND implements
binary min, while OR implements binary max. The average function cannot be implemented with
an individual single-bit binary logic gate but would instead require digitization of input and output
signals and very complex multi-device logic. In sharp contrast, soft functions operate in the analog
domain. Our single perceptgenes implement single-device analog min/max/avg computations
whereby the single devices transform analog input signals into output values that remain in the
analog domain. These operations have not been demonstrated in synthetic biology!

Our multi-layer functions also represent significant progress over existing efforts in synthetic
biology. Our majority function (1) demonstrates neuromorphic modularity because the three-input
majority function is built from two-layer perceptron and (2) allows us to compare the properties
of neuromorphic design with digital design. Our three-input majority function has two main
advantages over the previous digital design (6): (1) We use fewer synthetic parts; our three-bit
majority function comprises 15 biological parts (i.e., promoters and genes) in comparison to 22
parts, (2) the neuromorphic circuit is reconfigurable and trainable via learning algorithms that
optimize desired behavior efficiently (e.g., reduce error). With this neuromorphic architecture, we
minimized error by modulating the weight of Pg5p/AraC in a manner similar to backpropagation
algorithm. This optimization approach could not have been performed for the existing digital
circuit design.

Our other two multi-layer neuromorphic circuits also provide innovation beyond existing
approaches. To the best of our knowledge, we are the first to demonstrate a 2-bit analog-to-digital
converter (ADC). In general, analog-to-digital converters take as input a graded signal, partition
the analog input into several consecutive ranges that cover the entire input range, and assign a
digital value to these ranges in a sequential manner. Representing this digital value requires
multiple bits if more than two regions are specified. A 1-bit ADC partitions the input range into
two, and the output is then a single bit with a value of either 0 or 1. A 2-bit ADC partitions the
input range into four, with an output that requires two bits representing each of the four consecutive
ranges, namely 00, 01, 10 and 11.

Two recent synthetic biology publications have discussed the notion of analog-to-digital
converters. In one publication (70), 1-bit analog-to-digital conversion was used to quantize
extracellular inputs (including dihydrojasmone and eugenol) each into single-bit values, and then
these were combined into several 2-input logic functions (AND, OR, NOR) still operating with
single bit output. In another recent publication (46), a single analog input (H202) was partitioned
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into three consecutive ranges, and three separate 1-bit outputs (GFP, RFP, and BFP) were used to
indicate which of three ranges was detected. Hence, one of these digital outputs is high for a given
analog input value while the other two are low. In conventional ADC circuit design, these three 1-
bit outputs are then combined via a second stage digital logic circuit (comprising three 2-input
logic gates: one XOR and two AND gates) to create a 2-bit digital representation of the analog
input signal. Hence, this work represents only the first stage of a 2-bit ADC, but not the second
stage. In terms of biological circuit elements, they used seven transcription units. We estimate that
it would require 6-8 additional transcription units to implement their second stage of the 2-bit
ADC, which would require a total of 15 transcription units if it was built. In comparison, ours is
a fully functional 2-bit ADC implemented using only five transcription units. Besides minimizing
the size of the circuits, our perceptgene networks also operate with low expression levels, mainly
in order to maintain low bias levels. In contrast, digital systems often attempt to operate with
significant noise margins, and hence high expression levels for ON values. This latter point is
further elaborated on in the main narrative.

The implementation of our third multi-layered neuromorphic circuit, the ternary switch,
demonstrated the ease of converting one neuromorphic computing to another. Specifically, we
started with the 2-bit ADC circuit and increased the LSB perceptgene activation using higher
Arabinose, which corresponds to increasing the MSB input weight into the LSB computation.
Such ease in changing neuronal network parameters and achieving new functions is an important
component for ultimately implementing learning algorithms using gene circuits.
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13. Potential Applications of Synthetic Neuromorphic Circuits

For example, a three-input majority function can be fitted to any logic gate with up to three inputs,
including the two-input AND gate (71, 72), and optimized in applications currently suffering from
a trade-off between specificity and sensitivity. Typically, synthetic gene circuits for disease
treatment must be highly sensitive to detect biomarkers and deliver the produced therapeutic
proteins to target cells and must be precisely specified to protect surrounding healthy cells (60).
Ternary converters may also be helpful in engineering cells whose therapeutic outputs are
connected in a closed-loop and are regulated by quantitative levels of disease biomarkers. While
circuits behave either in an analog manner, showing insensitivity to disease biomarkers, or in a
digital manner, in which they are quantized to a single level of therapeutic proteins, ternary
converters with feedback loops can settle at two saturated levels and can precisely adjust the
production of the therapeutic proteins (e.g., adiponectin which attenuates insulin-resistance
syndrome (73)) to the level required for disease management. Furthermore, data converters may
find applications in biotechnology either by coordinating the expression of several genes, using a
single inducer or by improving the production yield of the desired biomass in synthetic pathways,
using a three-state genetic switch. For example, engineered cells that produce quorum-sensing
signals ( AHL ) and contain a ternary converter, could have multilevel phases, dictated by
accumulated AHL levels in the bioreactor. These phases could efficiently optimize the production
rate versus the cell growth rate compared to the two-state switch (74).

Another example is that the next-generation therapeutic-based synthetic gene circuits can be self-
controlled once administered, replacing the need for exhaustive manipulation by a manually
customized, trial-and-error clinical design. Recently, the design cycle of bioproducts has driven
the set-up of laboratory automation, foundries (e.g., robotics) and information infrastructures (75)
using ‘design, build, test, learn and correct’” heuristics. We expect that adaptive genetic circuits
will significantly standardize this cycle, drastically reduce time-to-market and cost, through a
generic methodology, using training algorithms suitable for general purpose applications.

Perceptgene network

Digital
(Memory)

Inputs Analog Outputs

Siuti et. al. 2013
Bonnet et. al. 2013
Nielsen et. al. 2016

Daniel at. el 2013

This work

Fig. S13. proposed an efficient and reliable computing platform, which combines analog, a
perceptgene network, and digital memory for sorting.
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Fig. S13 shows the proposed platform is compatible with digital and analog computing platforms
using data converters. This complementary strategy can leverage the advantages of the three
platforms to achieve an efficient and accurate computational approach for scaling the architecture
of robust genetic networks in living cells. For instance, analog computing can be applied for front-
end calculations (e.g., ratiometric for sensory systems), perceptgene networks can be applied for
processing and computation, and digital circuits can be applied back-end data storage (memory)
with clear ON and OFF states.
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14. FACS Data

All fluorescence intensities were smoothed using Matlab.
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Fig. S14.1. GFP flow cytometry data for a population of cells containing the synthetic perceptgene

based on ANF loops (Fig. 1C). (A) IPTG was held constant at 125 uM, and aTc was varied. (B)
aTc was held constant at 50 ng/ml, and IPTG was varied.

140



(A)

aTc=50.0 ng/ml

T aTc=25.0 ng/ml
aTc=12.5 ng/ml
0s L aTc=6.25 ng/ml
aTc=3.125 ng/ml
aTc=1.563 ng/ml
0.6 aTc=0.783 ng/ml
aTc=0.391 ng/ml
0.4
0.2
0 m—m———

Normalized cell count (%)

104 10° 108
Flouresence [a.u.]

(B)
——IPTG=125.0 yM
tr ——IPTG=62.50 pM
R IPTG=31.25 uM
X sl —— IPTG=15.63 uM
= ——IPTG=7.813 uM
3 IPTG=3.906 uM
O 06 —IPTG=1.953 uM
I IPTG=0.977 uyM
©
goar
©
S
o 0.2
zZ
0 _ — SN\
104 10° 108

Flouresence [a.u.]
Fig. S14.2. GFP flow cytometry data for a population of cells containing the synthetic perceptgene
based on ANF loops (Fig. 1C). (A) IPTG was held constant at 62.5 uM, and aTc was varied. (B)
aTc was held constant at 25 ng/ml, and IPTG was varied.
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Fig. S14.3. GFP flow cytometry data for a population of cells containing the synthetic perceptgene
based on ANF loops (Fig. 1C). (A) IPTG was held constant at 31.25 uM, and aTc was varied. (B)
aTc was held constant at 12.5 ng/ml, and IPTG was varied.
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Fig. S14.4. GFP flow cytometry data for a population of cells containing the synthetic perceptgene

based on ANF loops (Fig. 1C). (A) IPTG was held constant at 15.63 uM, and aTc was varied. (B)
aTc was held constant at 6.25 ng/ml, and IPTG was varied.

143



(A)

aTc=50.0 ng/ml
aTc=25.0 ng/ml
aTc=12.5 ng/ml
aTc=6.25 ng/ml
aTc=3.125 ng/ml
aTc=1.563 ng/ml
aTc=0.783 ng/ml
aTc=0.391 ng/ml

Normalized cell count (%)

104 10° 108
Flouresence [a.u.]

(B)
——IPTG=125.0 yM
T ——IPTG=62.50 pM
R IPTG=31.25 uM
X sl —— IPTG=15.63 uM
= ——IPTG=7.813 uM
3 IPTG=3.906 uM
O 06 —IPTG=1.953 uM
I IPTG=0.977 uyM
©
goar
©
S
o 0.2
zZ
o E— S\
104 10° 108

Flouresence [a.u.]

Fig. S14.5. GFP flow cytometry data for a population of cells containing the synthetic perceptgene
based on ANF loops (Fig. 1C). (A) IPTG was held constant at 7.813 uM, and aTc was varied. (B)
aTc was held constant at 3.125 ng/ml, and IPTG was varied.
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Fig. S14.6. GFP flow cytometry data for a population of cells containing the synthetic perceptgene

based on ANF loops (Fig. 1C). (A) IPTG was held constant at 3.906 uM and, aTc was varied. (B)
aTc was held constant at 1.563 ng/ml, and IPTG was varied.
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Fig. S14.7. GFP flow cytometry data for a population cells containing the synthetic perceptgene

based on ANF loops (Fig. 1C). (A) IPTG was held constant at 1.953 uM and aTc was varied. (B)
aTc was held constant at 0.783 ng/ml and IPTG was varied.
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Fig. S14.8. GFP flow cytometry data for a population of cells containing the synthetic perceptgene
based on ANF loops (Fig. 1C). (a) IPTG was held constant at 0.977 uM, and aTc was varied. (B)
aTc was held constant at 0.391 ng/ml, and IPTG was varied.
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Fig. S14.9. GFP flow cytometry data for a population of cells containing the synthetic perceptgene
based on ANF loops. In this circuit, P,.o Within the ANF was replaced by Pi,.0; (Fig. 1D). (A)
IPTG was held constant at 125 uM, and aTc was varied. (B) aTc was held constant at 50 ng/ml,

and IPTG was varied.
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Fig. S14.10. GFP flow cytometry data for a population of cells containing the synthetic
perceptgene based on ANF loops. In this circuit, P,.o within the ANF was replaced by P01
(Fig. 1D). (A) IPTG was held constant at 62.5 uM, and aTc was varied. (B) aTc was held constant
at 25 ng/ml, and IPTG was varied.
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Fig. S14.11. GFP flow cytometry data for a population of cells containing the synthetic
perceptgene based on ANF loops. In this circuit, P,.o within the ANF was replaced by Py,.01 (Fig.
1D). (A) IPTG was held constant at 31.25 uM, and aTc was varied. (B) aTc was held constant at
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12.5 ng/ml, and IPTG was varied.
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Fig. S14.12. GFP flow cytometry data for a population of cells containing the synthetic
perceptgene based on ANF loops. In this circuit, P,.o within the ANF was replaced by Py,.01 (Fig.
1D). (A) IPTG was held constant at 15.63 uM, and aTc was varied. (B) aTc was held constant at
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Fig. S14.13. GFP flow cytometry data for a population of cells containing the synthetic
perceptgene based on ANF loops. In this circuit, P,.o Within the ANF was replaced by Pi,c01
(Fig. 1D). (A) IPTG was held constant at 7.813 uM and aTc was varied. (B) aTc was held constant
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at 3.125 ng/ml and IPTG was varied.
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Fig. S14.14. GFP flow cytometry data for a population of cells containing the synthetic
perceptgene based on ANF loops. In this circuit, P,.o Within the ANF was replaced by Py,.01 (Fig.
1D). (A) IPTG was held constant at 3.906 uM, and aTc was varied. (B) aTc was held constant at

1.563 ng/ml, and IPTG was varied.
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Fig. S14.15. GFP flow cytometry data for a population of cells containing the synthetic
perceptgene based on ANF loops. In this circuit, P,.o Within the ANF was replaced by Py,.01 (Fig.
1D). (A) IPTG was held constant at 1.953 uM, and aTc was varied. (B) aTc was held constant at

0.783 ng/ml, and IPTG was varied.
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Fig. S14.16. GFP flow cytometry data for a population of cells containing the synthetic
perceptgene based on ANF loops. In this circuit, P,.o within the ANF was replaced by Py,.01 (Fig.
1D). (A) IPTG was held constant at 0.977 uM, and aTc was varied. (B) aTc was held constant at
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Fig. S14.17. GFP flow cytometry data for a population of cells containing the synthetic
perceptgene based on ANF loops. In this circuit, P,.owithin the ANF was replaced by P,.0; and
AraC truncated was used to improve the compatibility of Arabinose and IPTG (Fig. 1H). (A)
Arabinose was held constant at 0.04 mM, IPTG was held constant at 125 uM, and aTc was varied.
(B) Arabinose was held constant at 0.04 mM, aTc was held constant at 50 ng/ml, and IPTG was
varied.
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Fig. S14.18. GFP flow cytometry data for a population of cells containing the synthetic
perceptgene based on ANF loops. In this circuit, P,.o Within the ANF was replaced by P,.0; and
AraC truncated was used to improve the compatibility of Arabinose and IPTG (Fig. 1H). (A)
Arabinose was held constant at 0.04 mM, IPTG was held constant at 62.5 pM, and aTc was varied.
(B) Arabinose was held constant at 0.04 mM, aTc was held constant at 25 ng/ml, and IPTG was
varied.
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Fig. S14.19. GFP flow cytometry data for a population of cells containing the synthetic
perceptgene based on ANF loops. In this circuit, P,.o Within the ANF was replaced by P,.0; and
AraC truncated was used to improve the compatibility of Arabinose and IPTG (Fig. 1H). (A)
Arabinose was held constant at 0.04 mM, IPTG was held constant at 31.25 pM and aTc was varied.
(B) Arabinose was held constant at 0.04 mM, aTc was held constant at 12.5 ng/ml and IPTG was

varied.
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Fig. S14.20. GFP flow cytometry data for a population of cells containing the synthetic
perceptgene based on ANF loops. In this circuit, P,.o Within the ANF was replaced by P,.0; and
AraC truncated was used to improve the compatibility of Arabinose and IPTG (Fig. 1H). (A)
Arabinose was held constant at 0.04 mM, IPTG was held constant at 15.63 uM, and aTc was
varied. (B) Arabinose was held constant at 0.04 mM, aTc was held constant at 6.25 ng/ml, and
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Fig. S14.21. GFP flow cytometry data for a population of cells containing the synthetic
perceptgene based on ANF loops. In this circuit, P,.o Within the ANF was replaced by Pj,.0; and
AraC truncated was used to improve the compatibility of Arabinose and IPTG (Fig. 1H). (A)
Arabinose was held constant at 0.04 mM, IPTG was held constant at 7.813 uM, and aTc was
varied. (B) Arabinose was held constant at 0.04 mM, aTc was held constant at 3.125 ng/ml, and
IPTG was varied.
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Fig. S14.22. GFP flow cytometry data for a population of cells containing the synthetic
perceptgene based on ANF loops. In this circuit, P,.o Within the ANF was replaced by P,.o; and
AraC truncated was used to improve the compatibility of Arabinose and IPTG (Fig. 1H). (A)
Arabinose was held constant at 0.04 mM, IPTG was held constant at 3.906 uM, and aTc was
varied. (B) Arabinose was held constant at 0.04 mM, aTc was held constant at 1.563 ng/ml, and

IPTG was varied.
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Fig. S14.23. GFP flow cytometry data for a population of cells containing the synthetic
perceptgene based on ANF loops. In this circuit, P,.o Within the ANF was replaced by P,.0; and
AraC truncated was used to improve the compatibility of Arabinose and IPTG (Fig. 1H). (A)
Arabinose was held constant at 0.04 mM, IPTG was held constant at 1.953 uM, and aTc was
varied. (B) Arabinose was held constant at 0.04 mM, aTc was held constant at 0.783 ng/ml, and
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Fig. S14.24. GFP flow cytometry data for a population of cells containing the synthetic
perceptgene based on ANF loops. In this circuit, P,.o Within the ANF was replaced by Pj,.0; and
AraC truncated was used to improve the compatibility of Arabinose and IPTG (Fig. 1H). (A)
Arabinose was held constant at 0.04 mM, IPTG was held constant at 0.977 uM, and aTc was
varied. (B) Arabinose was held constant at 0.04 mM, aTc was held constant at 0.391 ng/ml, and
IPTG was varied.
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Fig. S14.25. mCherry flow cytometry data for a population of cells containing the synthetic
perceptgene based on ANF and APF loops. In this circuit, Peto promoter was regulated by TetR
through ANF loop and mutated Py, ,rqT promoter was regulated by LuxR through APF loop (Fig.
2B). (A) AHL was held constant at 3.0 pM and aTc was varied. (b) aTc was held constant at 25
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Fig. S14.26. mCherry flow cytometry data for a population of cells containing the synthetic
perceptgene based on ANF and APF loops. In this circuit, Pt promoter was regulated by TetR
through ANF loop and mutated Py, ,rqT promoter was regulated by LuxR through APF loop (Fig.
2B). (A) AHL was held constant at 1.50 uM and aTc was varied. (B) aTc was held constant at 12.5
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Fig. S14.27. mCherry flow cytometry data for a population of cells containing the synthetic
perceptgene based on ANF and APF loops. In this circuit, Pio promoter was regulated by TetR
through ANF loop and mutated P,,,rqt promoter was regulated by LuxR through APF loop (Fig.
2B). (A) AHL was held constant at 0.75 uM and aTc was varied. (B) aTc was held constant at 6.25

ng/ml and AHL was varied
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Fig. S14.28. mCherry flow cytometry data for a population of cells containing the synthetic
perceptgene based on ANF and APF loops. In this circuit, Pio promoter was regulated by TetR
through ANF loop and mutated P,,,rqt promoter was regulated by LuxR through APF loop (Fig.
2B). (A) AHL was held constant at 0.375 uM and aTc was varied. (B) aTc was held constant at

3.125 ng/ml and AHL was varied.
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Fig. S14.29. mCherry flow cytometry data for a population of cells containing the synthetic
perceptgene based on ANF and APF loops. In this circuit, Pto promoter was regulated by TetR
through ANF loop and mutated P,,,rqt promoter was regulated by LuxR through APF loop (Fig.
2B). (A) AHL was held constant at 0.188 pM and aTc was varied. (B) aTc was held constant at

1.563 ng/ml and AHL was varied.
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Fig. S14.30. mCherry flow cytometry data for a population of cells containing the synthetic
perceptgene based on ANF and APF loops. In this circuit, Pt promoter was regulated by TetR
through ANF loop and mutated Py, ,rqT promoter was regulated by LuxR through APF loop (Fig.
2B). (A) AHL was held constant at 0.094 uM and aTc was varied. (B) aTc was held constant at
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0.783 ng/ml and AHL was varied.
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Fig. S14.31. mCherry flow cytometry data for a population of cells containing the synthetic
perceptgene based on ANF and APF loops. In this circuit, P promoter was regulated by TetR
through ANF loop and mutated Py, .t promoter was regulated by LuxR through APF loop (Fig.
2B). aTc was held constant at 0.391 ng/ml and AHL was varied.
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Fig. S14.32. GFP flow cytometry data for a population of cells containing the synthetic
perceptgene based on ANF and APF loops. In this circuit, Peto promoter was regulated by TetR
through ANF loop and mutated P,,4tct promoter was regulated by LuxR through APF loop. The
output of the power-law and multiplication function was replaced by AraC activator, which
regulate Pzop promote (Fig. 2E). (A) Arabinose was held constant at 0.5 mM, AHL was held
constant at 3.0 uM and aTc was varied. (B) Arabinose was held constant at 0.5 mM, aTc was held
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constant at 25 ng/ml and AHL was varied.
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Fig. S14.33. GFP flow cytometry data for a population of cells containing the synthetic
perceptgene based on ANF and APF loops. In this circuit, Pt promoter was regulated by TetR
through ANF loop and mutated P,,4tct promoter was regulated by LuxR through APF loop. The
output of the power-law and multiplication function was replaced by AraC activator, which
regulate Pgap promoter (Fig. 2E). (A) Arabinose was held constant at 0.5 mM, AHL was held
constant at 1.5 uM and aTc was varied. (B) Arabinose was held constant at 0.5 mM, aTc was held
constant at 12.5 ng/ml and AHL was varied.
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Fig. S14.34. GFP flow cytometry data for a population of cells containing the synthetic
perceptgene based on ANF and APF loops. In this circuit, Pt promoter was regulated by TetR
through ANF loop and mutated P,,4tct promoter was regulated by LuxR through APF loop. The
output of the power-law and multiplication function was replaced by AraC activator, which
regulate Pgap promoter (Fig. 2E). (A) Arabinose was held constant at 0.5 mM, AHL was held
constant at 0.75 uM and aTc was varied. (B) Arabinose was held constant at 0.5 mM, aTc was
held constant at 6.25 ng/ml and AHL was varied.
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Fig. S14.35. GFP flow cytometry data for a population of cells containing the synthetic
perceptgene based on ANF and APF loops. In this circuit, Pt promoter was regulated by TetR
through ANF loop and mutated P,,4tct promoter was regulated by LuxR through APF loop. The
output of the power-law and multiplication function was replaced by AraC activator, which
regulate Pgap promoter (Fig. 2E). (A) Arabinose was held constant at 0.5 mM, AHL was held
constant at 0.375 uM and aTc was varied. (B) Arabinose was held constant at 0.5 mM, aTc was
held constant at 3.125 ng/ml and AHL was varied.
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Fig. S14.36. GFP flow cytometry data for a population of cells containing the synthetic
perceptgene based on ANF and APF loops. In this circuit, Pt promoter was regulated by TetR
through ANF loop and mutated P,,4tct promoter was regulated by LuxR through APF loop. The
output of the power-law and multiplication function was replaced by AraC activator, which
regulate Pgap promoter (Fig. 2E). (A) Arabinose was held constant at 0.5 mM, AHL was held
constant at 0.188 uM and aTc was varied. (B) Arabinose was held constant at 0.5 mM, aTc was

o
)

o
o

o
~

o
N

o
e

o
o

o
~

o
N

102 108 104 10° 108

102 108 10* 105 108

Flouresence [a.u.]

il L s MR | L L M |

aTc=25.0 ng/ml
aTc=12.5 ng/ml
aTc=6.25 ng/ml
aTc=3.125 ng/ml
aTc=1.563 ng/ml
aTc=0.783 ng/ml
aTc=0.391 ng/ml

——AHL=3.0 uM
——— AHL=1.50 uM
AHL=0.75 uM
——— AHL=0.375 pM
———AHL=0.188 pM
AHL=0.094 pM

Flouresence [a.u.]

held constant at 1.563 ng/ml and AHL was varied.
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Fig. S14.37. GFP flow cytometry data for a population of cells containing the synthetic
perceptgene based on ANF and APF loops. In this circuit, Pio promoter was regulated by TetR
through ANF loop and mutated Py,,t¢t promoter was regulated by LuxR through APF loop. The
output of the power-law and multiplication function was replaced by AraC activator, which
regulate Pgap promoter (Fig. 2E). (A) Arabinose was held constant at 0.5 mM, AHL was held
constant at 0.094 uM and aTc was varied. (B) Arabinose was held constant at 0.5 mM, aTc was
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Fig. S14.38. GFP flow cytometry data for a population of cells containing the synthetic
perceptgene based on ANF and APF loops. In this circuit, Pt promoter was regulated by TetR
through ANF loop and mutated P4 ¢t promoter was regulated by LuxR through APF loop. The
output of the power-law and multiplication function was replaced by AraC activator, which
regulate Pg,pD promoter (Fig. 2E). Arabinose was held constant at 0.5 mM, aTc was held constant
at 0.391 ng/ml and AHL was varied
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Fig. S14.39. GFP flow cytometry data for a population of cells containing the synthetic
perceptgene based on ANF and APF loops. In this circuit, P,.o; promoter was regulated by Lacl
through ANF loop and mutated P, xaat promoter was regulated by LuxR through APF loop (Fig.
S3.4, Fig. S3.6). (A) Arabinose was held constant at 0.5 mM, AHL was held constant at 1.5 uM
and IPTG was varied. (B) Arabinose was held constant at 0.5 mM, IPTG was held constant at 125
uM and AHL was varied.
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Fig. S14.40. GFP flow cytometry data for a population of cells containing the synthetic
perceptgene based on ANF and APF loops. In this circuit, P,.o; promoter was regulated by Lacl
through ANF loop and mutated P xaat Promoter was regulated by LuxR through APF loop (Fig.
S3.4, Fig. S3.6). (A) Arabinose was held constant at 0.5 mM, AHL was held constant at 0.75 uM
and IPTG was varied. (B) Arabinose was held constant at 0.5 mM, IPTG was held constant at 62.5
uM and AHL was varied.
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Fig. S14.41. GFP flow cytometry data for a population of cells containing the synthetic
perceptgene based on ANF and APF loops. In this circuit, P,.o; promoter was regulated by Lacl
through ANF loop and mutated P xaat Promoter was regulated by LuxR through APF loop (Fig.
S3.4, Fig. S3.6). (A) Arabinose was held constant at 0.5 mM, AHL was held constant at 0.375 uM
and IPTG was varied. (B) Arabinose was held constant at 0.5 mM, IPTG was held constant at 31.25
uM and AHL was varied.
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Fig. S14.42. GFP flow cytometry data for a population of cells containing the synthetic
perceptgene based on ANF and APF loops. In this circuit, P,.o; promoter was regulated by Lacl
through ANF loop and mutated P, xaat promoter was regulated by LuxR through APF loop (Fig.
S3.4, Fig. S3.6). (A) Arabinose was held constant at 0.5 mM, AHL was held constant at 0.188 uM
and IPTG was varied. (B) Arabinose was held constant at 0.5 mM, IPTG was held constant at 15.63
uM and AHL was varied.
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Fig. S14.43. GFP flow cytometry data for a population of cells containing the synthetic
perceptgene based on ANF and APF loops. In this circuit, P,.o; promoter was regulated by Lacl
through ANF loop and mutated P xaat Promoter was regulated by LuxR through APF loop (Fig.
S3.4, Fig. S3.6). (A) Arabinose was held constant at 0.5 mM, AHL was held constant at 0.094 uM
and IPTG was varied. (B) Arabinose was held constant at 0.5 mM, IPTG was held constant at 7.813
uM and AHL was varied.
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Fig. S14.44. GFP flow cytometry data for a population of cells containing the synthetic
perceptgene based on ANF and APF loops. In this circuit, P,co1 promoter was regulated by Lacl
through ANF loop and mutated P,,xaaT Promoter was regulated by LuxR through APF loop (Fig.
S3.4, Fig. S3.6). Arabinose was held constant at 0.5 mM, IPTG was held constant at 3.906 uM and
AHL was varied.
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Fig. S14.45. GFP flow cytometry data for a population of cells containing the synthetic
perceptgene based on ANF and APF loops. In this circuit, synthetic average-meter based on
perceptgene model was calculated using P,.o; promoter, mutated P xaat promoter and a
combinatorial promoter (Pyux/tet0)- Psap Was used to set the logistic curve of the analog inputs
(Fig. 2H). (A) Arabinose was held constant at 0.5 mM, AHL was held constant at 1.5 pM and
IPTG was varied. (B) Arabinose was held constant at 0.5 mM, IPTG was held constant at 125 pM
and AHL was varied.
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Fig. S14.46. GFP flow cytometry data for a population of cells containing the synthetic
perceptgene based on ANF and APF loops. In this circuit, synthetic average-meter based on
perceptgene model was calculated using P,.o; promoter, mutated P xaat promoter and a
combinatorial promoter (Pyux/tet0)- Psap Was used to set the logistic curve of the analog inputs
(Fig. 2H). (A) Arabinose was held constant at 0.5 mM, AHL was held constant at 0.75 pM and
IPTG was varied. (B) Arabinose was held constant at 0.5 mM, IPTG was held constant at 62.5 uM
and AHL was varied.
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Fig. S14.47. GFP flow cytometry data for a population of cells containing the synthetic
perceptgene based on ANF and APF loops. In this circuit, synthetic average-meter based on
perceptgene model was calculated using P,.o; promoter, mutated P ,aat Promoter and a
combinatorial promoter (P« tet0)- Psap Was used to set the logistic curve of the analog inputs
(Fig. 2H). (A) Arabinose was held constant at 0.5 mM, AHL was held constant at 0.375 uM and
IPTG was varied. (b) Arabinose was held constant at 0.5 mM, IPTG was held constant at 31.25 uM
and AHL was varied.
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Fig. S14.48. GFP flow cytometry data for a population of cells containing the synthetic
perceptgene based on ANF and APF loops. In this circuit, synthetic average-meter based on
perceptgene model was calculated using P,.o; promoter, mutated P ,aat Promoter and a
combinatorial promoter (P« tet0)- Psap Was used to set the logistic curve of the analog inputs
(Fig. 2H). (A) Arabinose was held constant at 0.5 mM, AHL was held constant at 0.188 uM and
IPTG was varied. (b) Arabinose was held constant at 0.5 mM, IPTG was held constant at 15.63 uM
and AHL was varied.
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Fig. S14.49. GFP flow cytometry data for a population of cells containing the synthetic
perceptgene based on ANF and APF loops. In this circuit, synthetic average-meter based on
perceptgene model was calculated using P,.o; promoter, mutated P ,aat Promoter and a
combinatorial promoter (P« tet0). Psap Was used to set the logistic curve of the analog inputs
(Fig. 2H). (A) Arabinose was held constant at 0.5 mM, AHL was held constant at 0.094 uM and
IPTG was varied. (B) Arabinose was held constant at 0.5 mM, IPTG was held constant at 7.813
uM and AHL was varied.
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Fig. S14.50. GFP flow cytometry data for a population of cells containing the synthetic
perceptgene based on ANF and APF loops. In this circuit, synthetic average-meter based on
perceptgene model was calculated using P.o; promoter, mutated P xaat Promoter and a
combinatorial promoter (P tet0)- Psap Was used to set the logistic curve of the analog inputs
(Fig. 2H). Arabinose was held constant at 0.5 mM, IPTG was held constant at 3.906 uM and AHL
was varied.
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Fig. S14.51. GFP flow cytometry data for a population of cells containing the synthetic multilayer
perceptgene network (Fig. 3C). Measured response of majority circuit. AHL [0.1875, 0.3uM],
IPTG [7.8125, 125uM], aTc [1.5625, 25ng/mL] and Arabinose [0.25mM].
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Fig. S14.52. GFP flow cytometry data for a population of cells containing the synthetic multilayer
perceptgene network (Fig. 3C). Measured response of majority circuit. AHL [0.1875, 0.3uM],
IPTG [7.8125, 125uM], aTc [1.5625, 25ng/mL] and Arabinose [0.125 mM].
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Fig. S14.53. GFP flow cytometry data for a population of cells containing the synthetic multilayer
perceptgene network (Fig. 3C). Measured response of majority circuit. AHL [0.1875, 0.3uM],
IPTG [7.8125, 125uM], aTc [1.5625, 25ng/mL] and Arabinose [0.0625 mM].
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Fig. S14.54. GFP flow cytometry data for a population of cells containing the synthetic multilayer
perceptgene network (Fig. 3C). Measured response of majority circuit. AHL [0.1875, 0.3uM],
IPTG [7.8125, 125uM], aTc [1.5625, 25ng/mL] and Arabinose [0.03125 mM].
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Fig. S14.55. GFP flow cytometry data for a population of cells containing the synthetic multilayer
perceptgene displays a new logic function for three input (AHL, IPTG and aTc) (Fig. 7.18).
Measured response of majority circuit. AHL [0.1875, 0.3uM], IPTG [7.8125, 125uM], aTc
[1.5625, 25ng/mL] and Arabinose [0.03125 mM].
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Fig. S14.56. GFP flow cytometry data for a population of cells containing the genetic circuit to
implement LSB using a forward Pgap promoter and an antisense Pux promoter (Fig. S7.7A, Fig.
S7.8).
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Fig. S14.57. GFP flow cytometry data for a population of cells containing the genetic circuit to
implement 2-bit ADC, using a graded PF that regulates Ppap promoter and a combinatorial
antisense Puuxzeto, While TetR repressor is regulated by MSB Circuit (Fig. 4C blue plot).
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Fig. S14.58. GFP flow cytometry data for a population of cells containing the genetic circuit to
implement 2-bit hybrid ADC, where LSB circuit is built from two GFP signals: (1) Forward
Pgap promoter with antisense Py, promoter and (2) the P, g promoter (Fig. 4F).
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Fig. S14.59. mCherry flow cytometry data for a population of cells containing the genetic circuit
to implement 2-bit hybrid ADC. Where the P, of MSB circuit which is located on MCP,
regulates the output mCherry signal (Fig. 4F).
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Fig. S14.60. GFP flow cytometry data for a population of cells containing the genetic circuit to
implement ternary data converter, based on the regulation of TetR by MSB (Fig. 4G).
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Fig. S14.61. GFP flow cytometry data for a population of cells containing the linear summation
using ANF (Fig. S2.20). (A) IPTG was held constant at 1000 uM and aTc was varied. (B) aTc was
held constant at 100 ng/ml and IPTG was varied.
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Fig. S14.62. GFP flow cytometry data for a population of cells containing the linear summation

using ANF (Fig. S2.20). (A) IPTG was held constant at 500 uM and aTc was varied. (B) aTc was
held constant at 50 ng/ml and IPTG was varied.
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Fig. S14.63. GFP flow cytometry data for a population of cells containing the linear summation

using ANF (Fig. S2.20). (A) IPTG was held constant at 250 uM and aTc was varied. (B) aTc was
held constant at 25 ng/ml and IPTG was varied.
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Fig. S14.64. GFP flow cytometry data for a population of cells containing the linear summation
using ANF (Fig. S2.20). (A) IPTG was held constant at 125 uM and aTc was varied. (B) aTc was
held constant at 12.5 ng/ml and IPTG was varied.
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Fig. S14.65. GFP flow cytometry data for a population of cells containing the the linear
summation using ANF (Fig. S2.20). (A) IPTG was held constant at 62.5 uM and aTc was varied.
(B) aTc was held constant at 6.25 ng/ml and IPTG was varied.
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Fig. S14.66. GFP flow cytometry data for a population of cells containing the the linear
summation using ANF (Fig. S2.20). IPTG was held constant at 31.25 uM and aTc was varied.
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Fig. S14.67. GFP flow cytometry data for a population of cells containing the genetic perceptron
in the linear domain. AraC truncated was used to improve the compatibility of Arabinose and IPTG
(Fig. S2.21A). (A) Arabinose was held constant at 0.04 mM, IPTG was held constant at 1000 uM
and aTc was varied. (B) Arabinose was held constant at 0.04 mM, aTc was held constant at 100
ng/ml and IPTG was varied.
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Fig. S14.68. GFP flow cytometry data for a population of cells containing the genetic perceptron
in the linear domain. AraC truncated was used to improve the compatibility of Arabinose and IPTG
(Fig. S2.21A). (A) Arabinose was held constant at 0.04 mM, IPTG was held constant at 500 uM
and aTc was varied. (B) Arabinose was held constant at 0.04 mM, aTc was held constant at 50
ng/ml and IPTG was varied.
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Fig. S14.69. GFP flow cytometry data for a population of cells containing the genetic perceptron
in the linear domain. AraC truncated was used to improve the compatibility of Arabinose and IPTG
(Fig. S2.21A). (A) Arabinose was held constant at 0.04 mM, IPTG was held constant at 250 uM
and aTc was varied. (B) Arabinose was held constant at 0.04 mM, aTc was held constant at 25
ng/ml and IPTG was varied.
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Fig. S14.70. GFP flow cytometry data for a population of cells containing the genetic perceptron
in the linear domain. AraC truncated was used to improve the compatibility of Arabinose and IPTG
(Fig. S2.21A). (A) Arabinose was held constant at 0.04 mM, IPTG was held constant at 125 uM
and aTc was varied. (B) Arabinose was held constant at 0.04 mM, aTc was held constant at 12.5
ng/ml and IPTG was varied.
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Fig. S14.71. GFP flow cytometry data for a population of cells containing the genetic perceptron
in the linear domain. AraC truncated was used to improve the compatibility of Arabinose and IPTG
(Fig. S2.21A). (A) Arabinose was held constant at 0.04 mM, IPTG was held constant at 62.5 uM
and aTc was varied. (B) Arabinose was held constant at 0.04 mM, aTc was held constant at 6.25
ng/ml and IPTG was varied.
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Fig. S14.72. GFP flow cytometry data for a population of cells containing the genetic perceptron
in the linear domain. AraC truncated was used to improve the compatibility of Arabinose and IPTG

(Fig. S2.21A).. Arabinose was held constant at 0.04 mM, IPTG was held constant at 31.25 uM and
aTc was varied.
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Fig. S14.73. GFP flow cytometry data for a population of cells containing the genetic perceptron
in the linear domain. AraC truncated was used to improve the compatibility of Arabinose and IPTG
(Fig. S2.21C). (A) Arabinose was held constant at 0.08 mM, IPTG was held constant at 1000 pM
and aTc was varied. (B) Arabinose was held constant at 0.08 mM, aTc was held constant at 100
ng/ml and IPTG was varied.
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Fig. S14.74. GFP flow cytometry data for a population of cells containing the genetic perceptron
in the linear domain. AraC truncated was used to improve the compatibility of Arabinose and IPTG
(Fig. S2.21C). (A) Arabinose was held constant at 0.08 mM, IPTG was held constant at 500 pM
and aTc was varied. (B) Arabinose was held constant at 0.08 mM, aTc was held constant at 50
ng/ml and IPTG was varied.
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Fig. S14.75. GFP flow cytometry data for a population of cells containing the genetic perceptron
in the linear domain. AraC truncated was used to improve the compatibility of Arabinose and IPTG
(Fig. S2.21C). (A) Arabinose was held constant at 0.08 mM, IPTG was held constant at 250 uM
and aTc was varied. (B) Arabinose was held constant at 0.08 mM, aTc was held constant at 25
ng/ml and IPTG was varied.
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Fig. S14.76. GFP flow cytometry data for a population of cells containing the genetic perceptron
in the linear domain. AraC truncated was used to improve the compatibility of Arabinose and IPTG
(Fig. S2.21C). (A) Arabinose was held constant at 0.08 mM, IPTG was held constant at 125 uM
and aTc was varied. (B) Arabinose was held constant at 0.08 mM, aTc was held constant at 12.5

ng/ml and IPTG was varied.
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Fig. S14.77. GFP flow cytometry data for a population of cells containing the genetic perceptron
in the linear domain. AraC truncated was used to improve the compatibility of Arabinose and IPTG
(Fig. S2.21C). (A) Arabinose was held constant at 0.08 mM, IPTG was held constant at 62.5 uM
and aTc was varied. (B) Arabinose was held constant at 0.08 mM, aTc was held constant at 6.25
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Fig. S14.78. GFP flow cytometry data for a population of cells containing the genetic perceptron
in the linear domain. AraC truncated was used to improve the compatibility of Arabinose and IPTG

(Fig. S2.21C). Arabinose was held constant at 0.04 mM, IPTG was held constant at 31.25 uM and
aTc was varied.
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Fig. S14.79. GFP flow cytometry data for a population of cells containing a 3-input perceptgene
network and back propagation algorithm with TCTA Mutation (Fig. 3G and Fig. S6.5B).
AHL [0.1875, 0.3uM], IPTG [7.8125, 125uM], aTc [1.5625, 25ng/mL] and Arabinose [0.25mM].
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Fig. S14.80. GFP flow cytometry data for a population of cells containing a 3-input perceptgene
network and back propagation algorithm with TCTA Mutation (Fig. 3G and Fig. S6.5B). AHL
[0.1875, 0.3uM], IPTG [7.8125, 125uM], aTc [1.5625, 25ng/mL] and Arabinose [0.125mM].
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Fig. S14.81. GFP flow cytometry data for a population of cells containing a 3-input perceptgene
network and back propagation algorithm with TCTA Mutation (Fig. 3G and Fig. S6.5B). AHL
[0.1875, 0.3uM], IPTG [7.8125, 125uM], aTc [1.5625, 25ng/mL] and Arabinose [0.0625mM].
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Fig. S14.82. GFP flow cytometry data for a population of cells containing a 3-input perceptgene
network and back propagation algorithm with TCTA Mutation (Fig. 3G and Fig. S6.5B). AHL
[0.1875, 0.3uM], IPTG [7.8125, 125uM], aTc [1.5625, 25ng/mL] and Arabinose [0.03125 mM].
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Fig. S14.83. GFP flow cytometry data for a population of cells containing a 3-input perceptgene
network and back propagation algorithm with TCTA Mutation (Fig. 3G and Fig. S6.5B). AHL
[0.1875, 0.3uM], IPTG [7.8125, 125uM], aTc [1.5625, 25ng/mL] and Arabinose [0.015625

mM].
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Fig. S14.84. GFP flow cytometry data for a population of cells containing flow cytometry data
for a population of cells containing a 3-input perceptgene network and back propagation

algorithm with TCTA Mutation (Fig. 3G and Fig. S6.5B). AHL [0.1875, 0.3uM], IPTG [7.8125,
125uM], aTc [1.5625, 25ng/mL] and Arabinose [0.0078125mM].
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Fig. S14.85. GFP flow cytometry data for a population of cells containing the first perceptgene
layer with 2-input from the 3-input network with TCTA Mutation (Fig. S6.7B). AHL [0.1875,
0.3uM], IPTG [7.8125, 125uM], aTc [1.5625, 25ng/mL] and Arabinose [0.25mM].
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Fig. S14.86. GFP flow cytometry data for a population of cells containing the first perceptgene
layer with 2-input from the 3-input network with TCTA Mutation (Fig. S6.7B). AHL [0.1875,
0.3uM], IPTG [7.8125, 125uM], aTc [1.5625, 25ng/mL] and Arabinose [0.125mM].
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Fig. S14.87. GFP flow cytometry data for a population of cells containing the first perceptgene
layer with 2-input from the 3-input network with TCTA Mutation (Fig. S6.7B). AHL [0.1875,
0.3uM], IPTG [7.8125, 125uM], aTc [1.5625, 25ng/mL] and Arabinose [0.0625mM].
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Fig. S14.88. GFP flow cytometry data for a population of cells containing the first perceptgene
layer with 2-input from the 3-input network with TCTA Mutation (Fig. S6.7B). AHL [0.1875,
0.3uM], IPTG [7.8125, 125uM], aTc [1.5625, 25ng/mL] and Arabinose [0.03125mM].
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Fig. S14.89. GFP flow cytometry data for a population of cells containing the first perceptgene
layer with 2-input from the 3-input network with TCTA Mutation (Fig. S6.7B). AHL [0.1875,
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Fig. S14.90. GFP flow cytometry data for a population of cells containing the first perceptgene
layer with 2-input from the 3-input network with TCTA Mutation (Fig. S6.7B). AHL [0.1875,
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0.3uM], IPTG [7.8125, 125uM], aTc [1.5625, 25ng/mL] and Arabinose [0.0078125mM].
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Fig. S14.91. GFP flow cytometry data for a population of cells containing a 3-input perceptgene
network and back propagation algorithm with GTTG Mutation (Fig. 3G and Fig. S6.5D). AHL
[0.1875, 0.3uM], IPTG [7.8125, 125uM], aTc [1.5625, 25ng/mL] and Arabinose [0.25mM].
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Fig. S14.92. GFP flow cytometry data for a population of cells containing a 3-input perceptgene
network and back propagation algorithm with GTTG Mutation (Fig. 3G and Fig. S6.5D). AHL
[0.1875, 0.3uM], IPTG [7.8125, 125uM], aTc [1.5625, 25ng/mL] and Arabinose [0.125mM].
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Fig. S14.93. GFP flow cytometry data for a population of cells containing a 3-input perceptgene
network and back propagation algorithm with GTTG Mutation (Fig. 3G and Fig. S6.5D). AHL
[0.1875, 0.3uM], IPTG [7.8125, 125uM], aTc [1.5625, 25ng/mL] and Arabinose [0.0625mM].
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Fig. S14.94. GFP flow cytometry data for a population of cells containing a 3-input perceptgene
network and back propagation algorithm with GTTG Mutation (Fig. 3G and Fig. S6.5D). AHL
[0.1875, 0.3uM], IPTG [7.8125, 125uM], aTc [1.5625, 25ng/mL] and Arabinose [0.03125 mM].
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Fig. S14.95. GFP flow cytometry data for a population of cells containing a 3-input perceptgene
network and back propagation algorithm with GTTG Mutation (Fig. 3G and Fig. S6.5D). AHL
[0.1875, 0.3uM], IPTG [7.8125, 125uM], aTc [1.5625, 25ng/mL] and Arabinose [0.015625
mM].
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Fig. S14.96. GFP flow cytometry data for a population of cells containing a 3-input perceptgene
network and back propagation algorithm with GTTG Mutation (Fig. 3G and Fig. S6.5D). AHL
[0.1875, 0.3uM], IPTG [7.8125, 125uM], aTc [1.5625, 25ng/mL] and Arabinose
[0.0078125mM].
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Fig. S14.97. GFP flow cytometry data for a population of cells containing the first perceptgene
layer with 2-input from the 3-input network with GTTG Mutation (Fig. S6.7D). AHL [0.1875,

0.3uM], IPTG [7.8125, 125uM], aTc [1.5625, 25ng/mL] and Arabinose [0.25mM].
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Fig. S14.98. GFP flow cytometry data for a population of cells containing the first perceptgene
layer with 2-input from the 3-input network with GTTG Mutation (Fig. S6.7D). AHL [0.1875,

0.3uM], IPTG [7.8125, 125uM], aTc [1.5625, 25ng/mL] and Arabinose [0.125mM].
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Fig. S14.99. GFP flow cytometry data for a population of cells containing the first perceptgene
layer with 2-input from the 3-input network with GTTG Mutation (Fig. S6.7D). AHL [0.1875,

0.3uM], IPTG [7.8125, 125uM], aTc [1.5625, 25ng/mL] and Arabinose [0.0625mM].
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Fig. S14.100. GFP flow cytometry data for a population of cells containing the first perceptgene
layer with 2-input from the 3-input network with GTTG Mutation (Fig. S6.7D). AHL [0.1875,

0.3uM], IPTG [7.8125, 125uM], aTc [1.5625, 25ng/mL] and Arabinose [0.03125mM].




Normalized cell count (%)

o
e

e
[}

°
~

o
[N

10"

—[0,0,0]
—[0,0,1]
[0,1,0]
—[0,1,1]
—1[1,0,0]
[1,0,1]
—[1,1,0]
[1,1,1]

Flouresence [a.u.]
Fig. S14.101. GFP flow cytometry data for a population of cells containing the first perceptgene
layer with 2-input from the 3-input network with GTTG Mutation (Fig. S6.7D). AHL [0.1875,

0.3uM], IPTG [7.8125, 125uM], aTc [1.5625, 25ng/mL] and Arabinose [0.015625mM].
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Fig. S14.102. GFP flow cytometry data for a population of cells containing the first perceptgene
layer with 2-input from the 3-input network with GTTG Mutation (Fig. S6.7D). AHL [0.1875,

0.3uM], IPTG [7.8125, 125uM], aTc [1.5625, 25ng/mL] and Arabinose [0.0078125].
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Fig. S14.103. GFP flow cytometry data for a population of cells containing flow cytometry data
for a population of cells containing a 3-input perceptgene network and back propagation algorithm
with GAGC Mutation (Fig. 3G and Fig. S6.5F). AHL [0.1875, 0.3uM], IPTG [7.8125, 125uM],
aTc [1.5625, 25ng/mL] and Arabinose [0.25mM].
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Fig. S14.104. GFP flow cytometry data for a population of cells containing flow cytometry data
for a population of cells containing a 3-input perceptgene network and back propagation
algorithm with GAGC Mutation (Fig. 3G and Fig. S6.5F). AHL [0.1875, 0.3uM], IPTG [7.8125,
125uM], aTc [1.5625, 25ng/mL] and Arabinose [0.125mM].

225



——10,0,0]

1 ——10,0,1]
. [0,1,0]
R 08 —[0.1,1]
§ —11,0,0]
3 [1,0,1]
© 06 —[1,1,0]
I [1,1,1]
©
©
£
o 0.2
Z

: 4

10" 102 103 104 10° 108
Flouresence [a.u.]

Fig. S14.105. GFP flow cytometry data for a population of cells containing flow cytometry data
for a population of cells containing a 3-input perceptgene network and back propagation
algorithm with GAGC Mutation (Fig. 3G and Fig. S6.5F). AHL [0.1875, 0.3uM], IPTG [7.8125,
125uM], aTc [1.5625, 25ng/mL] and Arabinose [0.0625mM].
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Fig. S14.106. GFP flow cytometry data for a population of cells containing flow cytometry data
for a population of cells containing a 3-input perceptgene network and back propagation
algorithm with GAGC Mutation (Fig. 3G and Fig. S6.5F). AHL [0.1875, 0.3uM], IPTG [7.8125,
125uM], aTc [1.5625, 25ng/mL] and Arabinose [0.03125 mM].
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Fig. S14.107. GFP flow cytometry data for a population of cells containing flow cytometry data
for a population of cells containing a 3-input perceptgene network and back propagation
algorithm with GAGC Mutation (Fig. 3G and Fig. S6.5F). AHL [0.1875, 0.3uM], IPTG [7.8125,
125uM], aTc [1.5625, 25ng/mL] and Arabinose [0.015625 mM].
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Fig. S14.108. GFP flow cytometry data for a population of cells containing flow cytometry data
for a population of cells containing a 3-input perceptgene network and back propagation
algorithm with GAGC Mutation (Fig. 3G and Fig. S6.5F). AHL [0.1875, 0.3uM], IPTG [7.8125,
125uM], aTc [1.5625, 25ng/mL] and Arabinose [0.0078125mM].
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Fig. S14.109. GFP flow cytometry data for a population of cells containing the first perceptgene
layer with 2-input from the 3-input network with GAGC Mutation (Fig. S6.7F). AHL [0.1875,

0.3uM], IPTG [7.8125, 125uM], aTc [1.5625, 25ng/mL] and Arabinose [0.25mM].
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Fig. S14.110. GFP flow cytometry data for a population of cells containing the first perceptgene
layer with 2-input from the 3-input network with GAGC Mutation (Fig. S6.7F). AHL [0.1875,
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0.3uM], IPTG [7.8125, 125uM], aTc [1.5625, 25ng/mL] and Arabinose [0.125mM].
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Fig. S14.111. GFP flow cytometry data for a population of cells containing the first perceptgene
layer with 2-input from the 3-input network with GAGC Mutation (Fig. S6.7F). AHL [0.1875,

0.3uM], IPTG [7.8125, 125uM], aTc [1.5625, 25ng/mL] and Arabinose [0.0625mM].
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Fig. S14.112. GFP flow cytometry data for a population of cells containing the first perceptgene
layer with 2-input from the 3-input network with GAGC Mutation (Fig. S6.7F). AHL [0.1875,

0.3uM], IPTG [7.8125, 125uM], aTc [1.5625, 25ng/mL] and Arabinose [0.03125mM].
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Fig. S14.113. GFP flow cytometry data for a population of cells containing the first perceptgene
layer with 2-input from the 3-input network with GAGC Mutation (Fig. S6.7F). AHL [0.1875,
0.3uM], IPTG [7.8125, 125uM], aTc [1.5625, 25ng/mL] and Arabinose [0.015625mM].
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Fig. S14.1114. GFP flow cytometry data for a population of cells containing the first perceptgene
layer with 2-input from the 3-input network with GAGC Mutation (Fig. S6.7F). AHL [0.1875,
0.3uM], IPTG [7.8125, 125uM], aTc [1.5625, 25ng/mL] and Arabinose [0.0078125].
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Fig. S14.115. GFP flow cytometry data for a population of cells containing flow cytometry data
for a population of cells containing a 3-input perceptgene network and back propagation algorithm
with TGGG Mutation (Fig. 3G and Fig. S6.5H). AHL [0.1875, 0.3uM], IPTG [7.8125, 125uM],
aTc [1.5625, 25ng/mL] and Arabinose [0.25mM].

——1[0,0,0]
1 —10,0,1]
. [0,1,0]
=08 ——10,1,1]
= —[1,0,0]
=] [1,0,1]
(@] ,J,
O 06 —[1.1.0]
Q [1,1,1]
?
I 0.4
I
£
o 0.2
Z
o /

10" 102 103 104 10° 108
Flouresence [a.u.]
Fig. S14.116. GFP flow cytometry data for a population of cells containing flow cytometry data
for a population of cells containing a 3-input perceptgene network and back propagation
algorithm with TGGG Mutation (Fig. 3G and Fig. S6.5H). AHL [0.1875, 0.3uM], IPTG [7.8125,
125uM], aTc [1.5625, 25ng/mL] and Arabinose [0.125mM].
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Fig. S14.117. GFP flow cytometry data for a population of cells containing flow cytometry data
for a population of cells containing a 3-input perceptgene network and back propagation
algorithm with TGGG Mutation (Fig. 3G and Fig. S6.5H). AHL [0.1875, 0.3uM], IPTG [7.8125,
125uM], aTc [1.5625, 25ng/mL] and Arabinose [0.0625mM].
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Fig. S14.118. GFP flow cytometry data for a population of cells containing flow cytometry data
for a population of cells containing a 3-input perceptgene network and back propagation
algorithm with TGGG Mutation (Fig. 3G and Fig. S6.5H). AHL [0.1875, 0.3uM], IPTG [7.8125,
125uM], aTc [1.5625, 25ng/mL] and Arabinose [0.03125 mM].
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Fig. S14.119. GFP flow cytometry data for a population of cells containing flow cytometry data
for a population of cells containing a 3-input perceptgene network and back propagation
algorithm with TGGG Mutation (Fig. 3G and Fig. S6.5H). AHL [0.1875, 0.3uM], IPTG [7.8125,
125uM], aTe [1.5625, 25ng/mL] and Arabinose [0.015625 mM].
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Fig. S14.120. GFP flow cytometry data for a population of cells containing flow cytometry data
for a population of cells containing a 3-input perceptgene network and back propagation
algorithm with TGGG Mutation (Fig. 3G and Fig. S6.5H). AHL [0.1875, 0.3uM], IPTG [7.8125,
125uM], aTc [1.5625, 25ng/mL] and Arabinose [0.0078125mM].
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Fig. S14.121. GFP flow cytometry data for a population of cells containing the first perceptgene
layer with 2-input from the 3-input network with TGGG Mutation (Fig. S6.7H). AHL [0.1875,

0.3uM], IPTG [7.8125, 125uM], aTc [1.5625, 25ng/mL] and Arabinose [0.25mM].
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Fig. S14.122. GFP flow cytometry data for a population of cells containing the first perceptgene
layer with 2-input from the 3-input network with TGGG Mutation (Fig. S6.7H). AHL [0.1875,

0.3uM], IPTG [7.8125, 125uM], aTc [1.5625, 25ng/mL] and Arabinose [0.125mM].
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Fig. S14.123. GFP flow cytometry data for a population of cells containing the first perceptgene
layer with 2-input from the 3-input network with TGGG Mutation (Fig. S6.7H). AHL [0.1875,

0.3uM], IPTG [7.8125, 125uM], aTc [1.5625, 25ng/mL] and Arabinose [0.0625mM].

Normalized cell count (%)

o
e

o
[}

I
~

o
N

——10,0,0]
——10,0,1]
[0,1,0]
—0,1,1]
——11,0,0]
[1,0,1]
—[1,1,0]
[1,1,1]

10"

Flouresence [a.u.]
Fig. S14.124. GFP flow cytometry data for a population of cells containing the first perceptgene
layer with 2-input from the 3-input network with TGGG Mutation (Fig. S6.7H). AHL [0.1875,

0.3uM], IPTG [7.8125, 125uM], aTc [1.5625, 25ng/mL] and Arabinose [0.03125mM].
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Fig. S14.125. GFP flow cytometry data for a population of cells containing the first perceptgene
layer with 2-input from the 3-input network with TGGG Mutation (Fig. S6.7H). AHL [0.1875,

0.3uM], IPTG [7.8125, 125uM], aTc [1.5625, 25ng/mL] and Arabinose [0.015625mM].
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Fig. S14.126. GFP flow cytometry data for a population of cells containing the first perceptgene
layer with 2-input from the 3-input network with TGGG Mutation (Fig. S6.7H). AHL [0.1875,

0.3uM], IPTG [7.8125, 125uM], aTc [1.5625, 25ng/mL] and Arabinose [0.0078125].




—— IPTG=250.0 uM

T ——IPTG=125.0 uM
IPTG=62.50 pM

08 —— IPTG=31.25 uM
——IPTG=15.63 uM

IPTG=7.813 uM

. —— IPTG=3.906 uM
IPTG=1.953 uM

Normalized cell count (%)

102 108 104 10° 108
Flouresence [a.u.]

——AHL=3.0 uM
T —— AHL=1.50 pM
. AHL=0.75 pM
X sl —— AHL=0.375 uM
= ———AHL=0.188 uM
8 AHL=0.094 uM
©Co6r
=
(&]
B i
g 0.4
©
£
o 02
pd
0 b—
102 10° 10* 10° 108

Flouresence [a.u.]
Fig. S14.127. GFP flow cytometry data for a population of cells containing APF (P,uxtcTa) @nd
ANF (Pi5c01) loops and combinatorial promoter (Py,x/1ac0-GFP) to power-law and multiplication
function (Fig. S6.4A and S6.4C). (A) AHL was held constant at 3.0 uM and IPTG was varied. (B)
IPTG was held constant at 250 uM and AHL was varied.
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Fig. S14.128. GFP flow cytometry data for a population of cells containing APF (PuxtcTa) @and
ANF (Piac01) loops and combinatorial promoter (P« 1aco-GFP) to power-law and multiplication

function (Fig. S6.4A and S6.4C). (A) AHL was held constant at 1.5 uM and IPTG was varied. (B)
IPTG was held constant at 125 uM and AHL was varied.
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Fig. S14.129. GFP flow cytometry data for a population of cells containing APF (P,uxrcta) and
ANF (Pi5c01) loops and combinatorial promoter (P /1ac0-GFP) to power-law and multiplication

function (Fig. S6.4A and S6.4C). (A) AHL was held constant at 0.75 uM and IPTG was varied.
(B) IPTG was held constant at 62.5 uM and AHL was varied.
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Fig. S14.130. GFP flow cytometry data for a population of cells containing APF (P,uxrcta) and
ANF (Pi5c01) loops and combinatorial promoter (P /1ac0-GFP) to power-law and multiplication
function (Fig. S6.4A and S6.4C). (A) AHL was held constant at 0.375 uM and IPTG was varied.
(B) IPTG was held constant at 31.25 uM and AHL was varied.
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Fig. S14.131. GFP flow cytometry data for a population of cells containing APF (P, xrcTa) and
ANF (Piac01) loops and combinatorial promoter (P« 1ac0-GFP) to power-law and multiplication
function (Fig. S6.4A and S6.4C). (A) AHL was held constant at 0.188 uM and IPTG was varied.
(B) IPTG was held constant at 15.63 uM and AHL was varied.
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Fig. S14.132. GFP flow cytometry data for a population of cells containing APF (P, xrcTa) and
ANF (Piac01) loops and combinatorial promoter (P« 1ac0-GFP) to power-law and multiplication
function (Fig. S6.4A and S6.4C). (A) AHL was held constant at 0.094 uM and IPTG was varied.
(B) IPTG was held constant at 7.813 pM and AHL was varied.
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Fig. S8.133. GFP flow cytometry data for a population of cells containing APF (PiuxtcTta) @nd
ANF (Piac01) loops and combinatorial promoter (P« /1ac0-GFP) to power-law and multiplication
function (Fig. S6.4A and S6.4C). IPTG was held constant at 3.906 uM and AHL was varied.
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Fig. S14.134. GFP flow cytometry data for a population of cells containing APF (P,uxrcta) and
ANF (Pi5¢c01) loops and combinatorial promoter (Pyyy/1ac0-GFP) to power-law and multiplication
function (Fig. S6.4A and S6.4C). IPTG was held constant at 1.953 uM and AHL was varied.
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Fig. S14.135. GFP flow cytometry data for a population of cells containing APF (PuxgtTc) and
ANF (Piac01) loops and combinatorial promoter (P« 1aco-GFP) to power-law and multiplication

function (Fig. S6.4A and S6.4D). (A) AHL was held constant at 3.0 uM and IPTG was varied. (B)
IPTG was held constant at 250 uM and AHL was varied.
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Fig. S14.136. GFP flow cytometry data for a population of cells containing APF (P,,xgTTc) and
ANF (Pi3c01) loops and combinatorial promoter (Pyx/1ac0-GFP) to power-law and multiplication
function (Fig. S6.4A and S6.4D). (A) AHL was held constant at 1.5 uM and IPTG was varied.
(B) IPTG was held constant at 125 uM and AHL was varied.
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Fig. S14.137. GFP flow cytometry data for a population of cells containing APF (P,,xgTTc) and
ANF (Pi3c01) loops and combinatorial promoter (Pyx/1ac0-GFP) to power-law and multiplication
function (Fig. S6.4A and S6.4D). (A) AHL was held constant at 0.75 uM and IPTG was varied.
(B) IPTG was held constant at 62.5 uM and AHL was varied.
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Fig. S14.138. GFP flow cytometry data for a population of cells containing APF (P,,xgTTc) and
ANF (Pi3c01) loops and combinatorial promoter (Pyx/1ac0-GFP) to power-law and multiplication
function (Fig. S6.4A and S6.4D). (A) AHL was held constant at 0.375 uM and IPTG was varied.
(B) IPTG was held constant at 31.25 uM and AHL was varied.
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Fig. S14.139. GFP flow cytometry data for a population of cells containing APF (P,,xgTTc) and
ANF (Pi3c01) loops and combinatorial promoter (Pyx/1ac0-GFP) to power-law and multiplication
function (Fig. S6.4A and S6.4D). (A) AHL was held constant at 0.188 uM and IPTG was varied.

(B) IPTG was held constant at 15.63 uM and AHL was varied.
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Fig. S14.40 GFP flow cytometry data for a population of cells containing APF (PuxctTg) and
ANF (Piac01) loops and combinatorial promoter (Pyx/1ac0-GFP) to power-law and multiplication
function (Fig. S6.4A and S6.4D). (A) AHL was held constant at 0.094 uM and IPTG was varied.

(B) IPTG was held constant at 7.813 uM and AHL was varied.
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Fig. S14.141. GFP flow cytometry data for a population of cells containing APF (P,,xgTTc) and
ANF (Piac01) loops and combinatorial promoter (P« /1ac0-GFP) to power-law and multiplication
function (Fig. S6.4A and S6.4D). IPTG was held constant at 3.906 uM and AHL was varied.
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Fig. S14.142. GFP flow cytometry data for a population of cells containing APF (P,,xgTTc) and
ANF (Piac01) loops and combinatorial promoter (P« /1ac0-GFP) to power-law and multiplication
function (Fig. S6.4A and S6.4D). IPTG was held constant at 1.953 uM and AHL was varied.
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Fig. S14.143. GFP flow cytometry data for a population of cells containing APF (PuxgtTc) and
ANF (Piac01) loops and combinatorial promoter (Pyyy/1aco-GFP) to power-law and multiplication
function (Fig. S6.4A and S6.4D). (A) AHL was held constant at 3.0 uM and IPTG was varied. (B)
IPTG was held constant at 250 uM and AHL was varied.

251



—|PTG=250.0 uM
—|PTG=125.0 uM
. IPTG=62.50 uM
§ —|IPTG=31.25 uM
= —|PTG=15.63 uM
3 IPTG=7.813 uM
o —— IPTG=3.906 uM
8 IPTG=1.953 uM
©
@
N
©
£
o
Z
I
102 103 104 10° 10°
Flouresence [a.u.]
——AHL=3.0 uM
r ——— AHL=1.50 pM
. AHL=0.75 pM
X o8t —— AHL=0.375 pM
= == AHL=0.188 uM
3 AHL=0.094 uM
O 06
©
(&)
B oal
N %
©
£
S 02f
P
0= - \W
102 103 104 10° 10°

Flouresence [a.u.]
Fig. S14.144. GFP flow cytometry data for a population of cells containing APF (P,,xgTTc) and
ANF (Pi3c01) loops and combinatorial promoter (Pyx/1ac0-GFP) to power-law and multiplication
function (Fig. S6.4A and S6.4D). (A) AHL was held constant at 1.5 uM and IPTG was varied.
(B) IPTG was held constant at 125 uM and AHL was varied.
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Fig. S14.145. GFP flow cytometry data for a population of cells containing APF (P,xgTTc) and
ANF (Pi3c01) loops and combinatorial promoter (Pyx/1ac0-GFP) to power-law and multiplication
function (Fig. S6.4A and S6.4D). (A) AHL was held constant at 0.75 uM and IPTG was varied.
(B) IPTG was held constant at 62.5 uM and AHL was varied.
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Fig. S14.146. GFP flow cytometry data for a population of cells containing APF (P,,xgTTc) and
ANF (Pi3c01) loops and combinatorial promoter (Pyx/1ac0-GFP) to power-law and multiplication
function (Fig. S6.4A and S6.4D). (A) AHL was held constant at 0.375 uM and IPTG was varied.

(B) IPTG was held constant at 31.25 uM and AHL was varied.
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Fig. S14.147. GFP flow cytometry data for a population of cells containing APF (P,,xgTTc) and
ANF (Pi3c01) loops and combinatorial promoter (Pyx/1ac0-GFP) to power-law and multiplication
function (Fig. S6.4A and S6.4D). (A) AHL was held constant at 0.188 uM and IPTG was varied.
(B) IPTG was held constant at 15.63 uM and AHL was varied.
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Fig. S14.148. GFP flow cytometry data for a population of cells containing APF (P,,xgTTc) and
ANF (Piac01) loops and combinatorial promoter (Pyx/1ac0-GFP) to power-law and multiplication
function (Fig. S6.4A and S6.4D). (A) AHL was held constant at 0.094 uM and IPTG was varied.
(B) IPTG was held constant at 7.813 uM and AHL was varied.
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Fig. S14.149. GFP flow cytometry data for a popu
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ANF (Piac01) loops and combinatorial promoter (P« /1ac0-GFP) to power-law and multiplication
function (Fig. S6.4A and S6.4D). IPTG was held constant at 3.906 uM and AHL was varied.
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Fig. S14.150. GFP flow cytometry data for a population of cells containing APF (P, xgTTc) and
ANF (Piac01) loops and combinatorial promoter (P« /1ac0-GFP) to power-law and multiplication
function (Fig. S6.4A and S6.4D). IPTG was held constant at 1.953 uM and AHL was varied.
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Fig. S14.151. GFP flow cytometry data for a population of cells containing APF (Pj,xcacc) and
ANF (Piac01) loops and combinatorial promoter (Pyyy/1aco-GFP) to power-law and multiplication
function (Fig. S6.4A and S6.4E). (A) AHL was held constant at 3.0 uM and IPTG was varied. (B)

IPTG was held constant at 250 uM and AHL was varied.
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Fig. S14.152. GFP flow cytometry data for a population of cells containing APF (Pjyxcacc) and
ANF (Piac01) loops and combinatorial promoter (Py,x/1ac0-GFP) to power-law and multiplication

function (Fig. S6.4A and S6.4E). (A) AHL was held constant at 1.5 uM and IPTG was varied. (B)
IPTG was held constant at 125 uM and AHL was varied.
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Fig. S14.153. GFP flow cytometry data for a population of cells containing APF (P,uxcacc) and
ANF (Piac01) loops and combinatorial promoter (P« 1ac0-GFP) to power-law and multiplication

function (Fig. S6.4A and S6.4E). (A) AHL was held constant at 0.75 uM and IPTG was varied.
(B) IPTG was held constant at 62.5 uM and AHL was varied.
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Fig. S14.154. GFP flow cytometry data for a population of cells containing APF (P,uxcacc) and
ANF (Piac01) loops and combinatorial promoter (P« 1ac0-GFP) to power-law and multiplication
function (Fig. S6.4A and S6.4E). (A) AHL was held constant at 0.375 uM and IPTG was varied.
(B) IPTG was held constant at 31.25 pM and AHL was varied.
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Fig. S14.155. GFP flow cytometry data for a population of cells containing APF (Pjuxcacc) and
ANF (Piac01) loops and combinatorial promoter (P« 1ac0-GFP) to power-law and multiplication
function (Fig. S6.4A and S6.4E). (A) AHL was held constant at 0.188 pM and IPTG was varied.
(B) IPTG was held constant at 15.63 pM and AHL was varied.
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Fig. S14.156. GFP flow cytometry data for a population of cells containing APF (P,uxcacc) and
ANF (Piac01) loops and combinatorial promoter (P« 1ac0-GFP) to power-law and multiplication
function (Fig. S6.4A and S6.4E). (A) AHL was held constant at 0.094 uM and IPTG was varied.
(B) IPTG was held constant at 7.813 pM and AHL was varied.
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Fig. S14.157. GFP flow cytometry data for a population of cells containing APF (P,uxcacc) and
ANF (Piac01) loops and combinatorial promoter (Pyx/1ac0-GFP) to power-law and multiplication
function (Fig. S6.4A and S6.4E). IPTG was held constant at 3.906 uM and AHL was varied.
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Fig. S14.158. GFP flow cytometry data for a population of cells containing APF (P,uxcacc) and
ANF (Piac01) loops and combinatorial promoter (P« /1ac0-GFP) to power-law and multiplication
function (Fig. S6.4A and S6.4E). IPTG was held constant at 1.953 uM and AHL was varied.
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15. List of biological parts used in this study

Part

Description
and source

DNA sequence

Mutation done in
this study

araC

AraC coding
sequence(14)

atggctgaagcgcaaaatgatceectgetgccgggatactcgtttaacgeccat
ctggtggcgggtttaacgccgattgaggecaacggttatctegatttttttatcga
ccgaccgctgggaatgaaaggttatattctcaatctcaccattcgcggtcaggg
gotggtgaaaaatcagggacgagaatttgtctgccgaccgggtgatattttgety
ttcccgccaggagagattcatcactacggtegtcatccggaggctcgegaatg
gtatcaccagtgggtttactttcgtccgegegectactggeatgaatggcettaact
ggccgtcaatatttgccaatacgggtttetttcgeccggatgaagegeaccage
cgcatttcagcgacctgtttgggcaaatcattaacgccgggcaaggggaaggg
cgctattcggagetgetggegataaatctgettgageaattgttactgcggegea
tggaagcgattaacgagtcgctccatccaccgatggataatcgggtacgegag
gcttgtcagtacatcagcgatcacctggcagacagcaattttgatatcgccageg
tcgcacagcatgtttgcttgtcgecgtegegtctgtcacatcttttccgecageag
ttagggattagcgtcttaagctggegcgaggaccaacgcattagtcaggcgaa
gctgcttttgagcactacccggatgectatcgecaccgteggtegeaatgttggt
tttgacgatcaactctatttctcgcgagtatttaaaaaatgcaccggggecagece
gagcgagtttcgtgccggttgtgaagaaaaagtgaatgatgtagecgtcaagtt
gtcataa

araC

(Tru

ncated)

atggctgaagcgcaaaatgatceectgetgccgggatactcgtttaacgeccat
ctggtggegggtttaacgccgattgaggecaacggttatctegatttttttatcga
ccgaccgctgggaatgaaaggttatattctcaatctcaccattcgcggtcaggg
gotggtgaaaaatcagggacgagaatttgtctgccgaccgggtoatattttgety
ttcccgecaggagagattcatcactacggtegtcatccggaggctcgegaatg
gtatcaccagtgggtttactttcgtccgegegectactggeatgaatggcettaact
ggccgtcaatatttgccaatacgggtttctttcgcccggatgaagegeaccage
cgcatttcagcgacctgtttgggcaaatcattaacgccgggcaaggggaaggg
cgctattcggagetgetggegataaatctgettgagcaattgttactgcggegea
tggaagcgattaacgagtcgctccatccaccgatggataatcgggtacgegag
gcttgtcagtacatcagcgatcacctggcagacagcaattttgatatcgecageg
tcgcacagcatgtttgcttgtcgecgtegegtctgtcacatcttttccgecageag
ttagggattagcgtcttaagctggegcgaggaccaacgcattagtcaggcegaa
gctgcttttgagcactacccggatgectatcgecaccgteggtegeaatgttggt
tttgacgatcaactctatttctcgcgagtatttaaaaaatgcaccggggecagece
gagcgagtttcgtgccggttaa

GFP

Enhanced Green
Fluorescent
Protein coding
sequence (76)

atgagtaaaggagaagaacttttcactggagttgtcccaattcttgttgaattagat
ggtgatgttaatgggcacaaattttctgtcagtggagagggtgaaggtgatgea
acatacggaaaacttacccttaaatttatttgcactactggaaaactacctgttcca
tggccaacacttgtcactactttcggttatggtgttcaatgctttgcgagataccca
gatcatatgaaacagcatgactttttcaagagtgccatgcccgaaggttatgtac
aggaaagaactatatttttcaaagatgacgggaactacaagacacgtgctgaag
tcaagtttgaaggtgatacccttgttaatagaatcgagttaaaaggtattgattttaa
agaagatggaaacattcttggacacaaattggaatacaactataactcacacaat
gtatacatcatggcagacaaacaaaagaatggaatcaaagttaacttcaaaatta
gacacaacattgaagatggaagcgttcaactagcagaccattatcaacaaaata
ctccaattggegatggecctgtecttttaccagacaaccattacctgtccacacaa
tctgcectttcgaaagatcccaacgaaaagagagaccacatggtecttettgagt
ttgtaacagctgctgggattacacatggcatggatgaactatacaaataa

Either aorc

Lacl

Lacl coding
sequence (2)

gtgaaaccagtaacgttatacgatgtcgcagagtatgccggtgtctettatcaga
ccgtttccegegtggtgaaccaggecagecacgtttctgcgaaaacgcgggaa
aaagtggaagcggcegatggcggagetgaattacattcccaaccgegtggeac
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aacaactggcgggcaaacagtcgttgctgattggegttgecacctecagtetgg
ccetgecacgegecgtegeaaattgtcgeggegattaaatctcgegecgatcaa
ctgggtgccagegtggtggtgtcgatggtagaacgaageggegtcgaagect
gtaaagcggceggtgcacaatcttctcgegeaacgegtcagtgggctgatcatta
actatccgctggatgaccaggatgccattgetgtggaagetgectgeactaatgt
tccggegttatttcttgatgtctctgaccagacacccatcaacagtattattttctce
catgaagacggtacgcgactgggegtggageatctggtegeattgggtcacca
gcaaatcgcgctgttagcgggeccattaagttctgtetcggegegtetgegtetg
gctggetggcataaatatctcactcgcaatcaaattcagecgatageggaacgg
gaaggcgactggagtgccatgtccggttttcaacaaaccatgcaaatgctgaat
gagggcatcgttcccactgegatgctggttgccaacgatcagatggegetggg
cgcaatgcgegccattaccgagtecgggctgcgegttggtgcggatatctegg
tagtgggatacgacgataccgaagacagctcatgttatatcccgecgttaacca
ccatcaaacaggattttcgcctgctggggcaaaccagegtggaccgcttgetge
aactctctcagggccaggeggtgaagggcaatcagetgttgeeegtctcactg
gtgaaaagaaaaaccaccctggegeccaatacgcaaaccgecteteccegeg
cgttggccgattcattaatgcagetggeacgacaggtttcccgactggaaageg

ggcagtga

LuxR

LuxR coding
sequence
(BBa_C0062)
(77), induced by
AHL
(30C6HSL)

atgaaaaacataaatgccgacgacacatacagaataattaataaaattaaagctt
gtagaagcaataatgatattaatcaatgcttatctgatatgactaaaatggtacatt
gtgaatattatttactcgcgatcatttatcctcattctatggttaaatctgatatttcaat
cctagataattaccctaaaaaatggaggcaatattatgatgacgctaatttaataa
aatatgatcctatagtagattattctaactccaatcattcaccaattaattggaatata
tttgaaaacaatgctgtaaataaaaaatctccaaatgtaattaaagaagcgaaaa
catcaggtcttatcactgggtttagtttccctattcatacggctaacaatggcettcg
gaatgcttagttttgcacattcagaaaaagacaactatatagatagtttatttttacat
gcgtgtatgaacataccattaattgttccttctctagttgataattatcgaaaaataa
atatagcaaataataaatcaaacaacgatttaaccaaaagagaaaaagaatgttt
agcgtgggceatgcgaaggaaaaagetcttgggatatttcaaaaatattaggttge
agtgagcgtactgtcactttccatttaaccaatgcgcaaatgaaactcaatacaac
aaaccgctgccaaagtatttctaaagcaattttaacaggagcaattgattgeccat
actttaaaaattaataa

mCherry

Red Fluorescent
Protein coding
sequence (76)

atggtgagcaagggcgaagaagataacatggccatcatcaaggagttcatgeg
cttcaaggtgcacatggagggctccgtgaacggecacgagttcgagatcgag
ggcgagggegagggecgeccctacgagggeacccagaccgecaagetgaa
ggtgaccaagggtggecccctgeccttcgectgggacatectgtececteagtt
catgtacggctccaaggcctacgtgaagcaccecgecgacatcccegactact
tgaagctgtccttccecgagggcttcaagtgggagegegtgatgaacttcgag
gacggcggegtggtgaccgtgacccaggactectecctgcaggacggegag
ttcatctacaaggtgaagctgcgeggeaccaacttccectccgacggecccegta
atgcagaagaagaccatgggctgggaggcectectccgageggatgtaceeeg
aggacggcgcecctgaagggcegagatcaagcagaggetgaagetgaaggac
ggcggccactacgacgctgaggtcaagaccacctacaaggecaagaagece
gtgcagctgeccggegectacaacgtcaacatcaagttggacatcacctceca
caacgaggactacaccatcgtggaacagtacgaacgcgecgagggecgeca
ctccaccggcggcatggacgagctgtacaagtaa

tetR

tetR coding
sequence (2)

atgtccagattagataaaagtaaagtgattaacagcgcattagagctgcttaatg
aggtcggaatcgaaggtttaacaacccgtaaactcgcccagaagcetaggtgta
gagcagcctacattgtattggcatgtaaaaaataagcgggctttgctcgacgect
tagccattgagatgttagataggcaccatactcacttttgccctttagaaggggaa
agctggcaagattttttacgtaataacgctaaaagttttagatgtgctttactaagtc
atcgcgatggagcaaaagtacatttaggtacacggcctacagaaaaacagtat
gaaactctcgaaaatcaattagcctttttatgccaacaaggtttttcactagagaat
gcattatatgcactcagcgctgtggggcattttactttaggttgegtattggaagat
caagagcatcaagtcgctaaagaagaaagggaaacacctactactgatagtat
gccgecattattacgacaagctatcgaattatttgatcaccaaggtgcagageca
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gecttcttattcggecttgaattgatcatatgcggattagaaaaacaacttaaatgt
gaaagtgggtcctaa

T7ptag

T7 Tag coding
sequence (26)

atgattaccgtgcactagaataccattaacattgctaagaacgacttctctgacat
cgaactggctgctatcecgttcaacactctggctgaccattacggtgagegttta
gctcgegaacagttggeccttgageatgagtettacgagatgggtgaageacg
cttccgeaagatgtttgagegtcaacttaaagetggtgaggttgeggataacgct
gcegecaagectetcatcactacectactccctaagatgattgcacgcatcaac
gactggtttgaggaagtgaaagctaagcgeggcaagegeccgacagecttee
agttcctgtaggaaatcaagccggaagecgtagegtacatcaccattaagacca
ctctggcettgectaaccagtgctgacaatacaaccgttcaggetgtagcaageg
caatcggtcgggecattgaggacgaggctegettcggtegtatcegtgaccttg
aagctaagcacttcaagaaaaacgttgaggaacaactcaacaagcgcgtagg
gcacgtctacaagaaagcatttatgcaagttgtcgaggctgacatgctctctaag
ggtctactcggtggegaggegtggtettcgtggcataaggaagactctatteatg
taggagtacgctgcatcgagatgctcattgagtcaaccggaatggttagcettaca
ccgccaaaatgetggegtagtaggtcaagactctgagactatcgaactcgeac
ctgaatacgctgaggctatcgcaaccegtgcaggtgegetggctggceatetete
cgatgttccaaccttgegtagttectectaagecgtggactggcattactggtggt
ggctattgggctaacggtegtegtectetggegetggtgegtactcacagtaag
aaagcactgatgcgctacgaagacgtttacatgcctgaggtgtacaaagegatt
aacattgcgcaaaacaccgcatggaaaatcaacaagaaagtcctagcggtege
caacgtaatcaccaagtggaagcattgtccggtcgaggacatccctgcgattga
gcgtgaagaactcccgatgaaaccggaagacatcgacatgaatcctgaggete
tcaccgcgtggaaacgtgctgecgetgetgtgtaccgcaaggacaaggctege
aagtctcgccgtatcagccttgagttcatgcttgagcaagccaataagtttgctaa
ccataaggccatctggttcccttacaacatggactggegeggtegtgtttacgcet
gtgtcaatgttcaacccgcaaggtaacgatatgaccaaaggactgcettacgetg
gcgaaaggtaaaccaatcggtaaggaaggttactactggctgaaaatccacgg
tgcaaactgtgcgggtgtcgataaggttcegttccctgagegeatcaagttcatt
gaggaaaaccacgagaacatcatggcttgcgctaagtctccactggagaacac
ttggtgggctgagcaagattcteegttctgettecttgegttetgetttgagtacgcet
ggggtacagcaccacggcctgagctataactgeteccttecgetggegtttgac
gggtcttgctetggeatccageacttctecgegatgetccgagatgaggtaggt
ggtcgcgeggttaacttgcttcctagtgaaaccgttcaggacatctacgggattg
ttgctaagaaagtcaacgagattctacaagcagacgcaatcaatgggaccgata
acgaagtagttaccgtgaccgatgagaacactggtgaaatctctgagaaagtca
agctgggcactaaggcactggcetggtcaatggetggcttacggtgttactcgea
gtgtgactaagcgttcagtcatgacgcetggcttacgggtccaaagagttcggctt
ccgtcaacaagtgctggaagataccattcagccagctattgattccggcaaggg
tctgatgttcactcagccgaatcaggetgctggatacatggctaagctgatttgg
gaatctgtgagcgtgacggtggtagetgcggtigaagcaatgaactggcettaag
tctgctgetaagetgetggctgctgaggtcaaagataagaagactggagagatt
cttcgcaagcegttgegetgtgeattgggtaactcectgatggtttecctgtgtggea
ggaatacaagaagcctattcagacgcgettgaacctgatgttcctcggteagttc
cgcttacagcctaccattaacaccaacaaagatagcgagattgatgcacacaaa
caggagtctggtatcgctcctaactttgtacacagccaagacggtagecacctte
gtaagactgtagtgtgggcacacgagaagtacggaatcgaatcttttgcactgat
tcacgactccttcggtaccattccggetgacgctgcgaacctgttcaaagcagtg
cgcgaaactatggttgacacatatgagtcttgtgatgtactggcetgatttctacga
ccagttcgcetgaccagttgcacgagtctcaattggacaaaatgccageacttce
ggctaaaggtaacttgaacctcegtgacatcttagagtcggacttcgegttcgea
taa

SupD

SupD-tRNA
coding sequence

caattcggagagatgccggageggcetgaacggaccggtctctaaaaccggag
taggggcaactctaccgggggttcaaatceecctctctecgecactacagatee
ttagcgaaagctaaggattttttttaagct
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(BBa_K228001)
(26)

LAA + stop aggcctgcagcaaacgacgaaaactacgctttagcagcttaa

codon

LVA + stop aggcctgctgcaaacgacgaaaactacgctttagtagcttaa

codon

PsaD araBAD aagaaaccaattgtccatattgcatcagacattgccgtcactgcegtcttttactgg

promoter (14) ctettctcgetaaccaaaccggtaacccegcttattaaaageattctgtaacaaag

cgggaccaaagccatgacaaaaacgcgtaacaaaagtgtctataatcacggea
gaaaagtccacattgattatttgcacggcgtcacactttgctatgccatagceattttt
atccataagattagcggatcctacctgacgctttttatcgcaactctctactgtttct
ccat

Pi231119 TTGACAGCTAGCTCAGTCCTAGGTATAATACTA
GT

LKsg3 aattcgctagcccaaaaaaa

SG6 gagttgcgataaaaagcgtc

gRNA GTTTTAGAGCTAGAAATAGCAAgttaaaataagGCTA
GTCCGTTATCAACTTGAAAAAGTGGCACCGAGT
CGGTGC

dCas9 ATGGATAAGAAATACTCAATAGGCTTAGCTATC

GGCACAAATAGCGTCGGATGGGCGGTGATCACT
GATGAATATAAGGTTCCGTCTAAAAAGTTCAAG
GTTCTGGGAAATACAGACCGCCACAGTATCAAA
AAAAATCTTATAGGGGCTCTTTTATTTGACAGTG
GAGAGACAGCGGAAGCGACTCGTCTCAAACGG
ACAGCTCGTAGAAGGTATACACGTCGGAAGAAT
CGTATTTGTTATCTACAGGAGATTTTTTCAAATG
AGATGGCGAAAGTAGATGATAGTTTCTTTCATC
GACTTGAAGAGTCTTTTTTGGTGGAAGAAGACA
AGAAGCATGAACGTCATCCTATTTTTGGAAATA
TAGTAGATGAAGTTGCTTATCATGAGAAATATC
CAACTATCTATCATCTGCGAAAAAAATTGGTAG
ATTCTACTGATAAAGCGGATTTGCGCTTAATCTA
TTTGGCCTTAGCGCATATGATTAAGTTTCGTGGT
CATTTTTTGATTGAGGGAGATTTAAATCCTGATA
ATAGTGATGTGGACAAACTATTTATCCAGTTGGT
ACAAACCTACAATCAATTATTTGAAGAAAACCC
TATTAACGCAAGTGGAGTAGATGCTAAAGCGAT
TCTTTCTGCACGATTGAGTAAATCAAGACGATTA
GAAAATCTCATTGCTCAGCTCCCCGGTGAGAAG
AAAAATGGCTTATTTGGGAATCTCATTGCTTTGT
CATTGGGTTTGACCCCTAATTTTAAATCAAATTT
TGATTTGGCAGAAGATGCTAAATTACAGCTTTC
AAAAGATACTTACGATGATGATTTAGATAATTT
ATTGGCGCAAATTGGAGATCAATATGCTGATTT
GTTTTTGGCAGCTAAGAATTTATCAGATGCTATT
TTACTTTCAGATATCCTAAGAGTAAATACTGAA
ATAACTAAGGCTCCCCTATCAGCTTCAATGATTA
AACGCTACGATGAACATCATCAAGACTTGACTC
TTTTAAAAGCTTTAGTTCGACAACAACTTCCAGA
AAAGTATAAAGAAATCTTTTTTGATCAATCAAA
AAACGGATATGCAGGTTATATTGATGGGGGAGC
TAGCCAAGAAGAATTTTATAAATTTATCAAACC
AATTTTAGAAAAAATGGATGGTACTGAGGAATT
ATTGGTGAAACTAAATCGTGAAGATTTGCTGCG
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CAAGCAACGGACCTTTGACAACGGCTCTATTCC
CCATCAAATTCACTTGGGTGAGCTGCATGCTATT
TTGAGAAGACAAGAAGACTTTTATCCATTTTTAA
AAGACAATCGTGAGAAGATTGAAAAAATCTTGA
CTTTTCGAATTCCTTATTATGTTGGTCCATTGGC
GCGTGGCAATAGTCGTTTTGCATGGATGACTCG
GAAGTCTGAAGAAACAATTACCCCATGGAATTT
TGAAGAAGTTGTCGATAAAGGTGCTTCAGCTCA
ATCATTTATTGAACGCATGACAAACTTTGATAA
AAATCTTCCAAATGAAAAAGTACTACCAAAACA
TAGTTTGCTTTATGAGTATTTTACGGTTTATAAC
GAATTGACAAAGGTCAAATATGTTACTGAAGGA
ATGCGAAAACCAGCATTTCTTTCAGGTGAACAG
AAGAAAGCCATTGTTGATTTACTCTTCAAAACA
AATCGAAAAGTAACCGTTAAGCAATTAAAAGAA
GATTATTTCAAAAAAATAGAATGTTTTGATAGT
GTTGAAATTTCAGGAGTTGAAGATAGATTTAAT
GCTTCATTAGGTACCTACCATGATTTGCTAAAAA
TTATTAAAGATAAAGATTTTTTGGATAATGAAG
AAAATGAAGATATCTTAGAGGATATTGTTTTAA
CATTGACCTTATTTGAAGATAGGGAGATGATTG
AGGAAAGACTTAAAACATATGCTCACCTCTTTG
ATGATAAGGTGATGAAACAGCTTAAACGTCGCC
GTTATACTGGTTGGGGACGTTTGTCTCGAAAATT
GATTAATGGTATTAGGGATAAGCAATCTGGCAA
AACAATATTAGATTTTTTGAAATCAGATGGTTTT
GCCAATCGCAATTTTATGCAGCTGATCCATGATG
ATAGTTTGACATTTAAAGAAGACATTCAAAAAG
CACAAGTGTCTGGACAAGGCGATAGTTTACATG
AACATATTGCAAATTTAGCTGGTAGCCCTGCTAT
TAAAAAAGGTATTTTACAGACTGTAAAAGTTGT
TGATGAATTGGTCAAAGTAATGGGGCGGCATAA
GCCAGAAAATATCGTTATTGAAATGGCACGTGA
AAATCAGACAACTCAAAAGGGCCAGAAAAATTC
GCGAGAGCGTATGAAACGAATCGAAGAAGGTA
TCAAAGAATTAGGAAGTCAGATTCTTAAAGAGC
ATCCTGTTGAAAATACTCAATTGCAAAATGAAA
AGCTCTATCTCTATTATCTCCAAAATGGAAGAG
ACATGTATGTGGACCAAGAATTAGATATTAATC
GTTTAAGTGATTATGATGTCGATGCCATTGTTCC
ACAAAGTTTCCTTAAAGACGATTCAATAGACAA
TAAGGTCTTAACGCGTTCTGATAAAAATCGTGG
TAAATCGGATAACGTTCCAAGTGAAGAAGTAGT
CAAAAAGATGAAAAACTATTGGAGACAACTTCT
AAACGCCAAGTTAATCACTCAACGTAAGTTTGA
TAATTTAACGAAAGCTGAACGTGGAGGTTTGAG
TGAACTTGATAAAGCTGGTTTTATCAAACGCCA
ATTGGTTGAAACTCGCCAAATCACTAAGCATGT
GGCACAAATTTTGGATAGTCGCATGAATACTAA
ATACGATGAAAATGATAAACTTATTCGAGAGGT
TAAAGTGATTACCTTAAAATCTAAATTAGTTTCT
GACTTCCGAAAAGATTTCCAATTCTATAAAGTA
CGTGAGATTAACAATTACCATCATGCCCATGAT
GCGTATCTAAATGCCGTCGTTGGAACTGCTTTGA
TTAAGAAATATCCAAAACTTGAATCGGAGTTTG
TCTATGGTGATTATAAAGTTTATGATGTTCGTAA
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AATGATTGCTAAGTCTGAGCAAGAAATAGGCAA
AGCAACCGCAAAATATTTCTTTTACTCTAATATC
ATGAACTTCTTCAAAACAGAAATTACACTTGCA
AATGGAGAGATTCGCAAACGCCCTCTAATCGAA
ACTAATGGGGAAACTGGAGAAATTGTCTGGGAT
AAAGGGCGAGATTTTGCCACAGTGCGCAAAGTA
TTGTCCATGCCCCAAGTCAATATTGTCAAGAAA
ACAGAAGTACAGACAGGCGGATTCTCCAAGGAG
TCAATTTTACCAAAAAGAAATTCGGACAAGCTT
ATTGCTCGTAAAAAAGACTGGGATCCAAAAAAA
TATGGTGGTTTTGATAGTCCAACGGTAGCTTATT
CAGTCCTAGTGGTTGCTAAGGTGGAAAAAGGGA
AATCGAAGAAGTTAAAATCCGTTAAAGAGTTAC
TAGGGATCACAATTATGGAAAGAAGTTCCTTTG
AAAAAAATCCGATTGACTTTTTAGAAGCTAAAG
GATATAAGGAAGTTAAAAAAGACTTAATCATTA
AACTACCTAAATATAGTCTTTTTGAGTTAGAAAA
CGGTCGTAAACGGATGCTGGCTAGTGCCGGAGA
ATTACAAAAAGGAAATGAGCTGGCTCTGCCAAG
CAAATATGTGAATTTTTTATATTTAGCTAGTCAT
TATGAAAAGTTGAAGGGTAGTCCAGAAGATAAC
GAACAAAAACAATTGTTTGTGGAGCAGCATAAG
CATTATTTAGATGAGATTATTGAGCAAATCAGT
GAATTTTCTAAGCGTGTTATTTTAGCAGATGCCA
ATTTAGATAAAGTTCTTAGTGCATATAACAAAC
ATAGAGACAAACCAATACGTGAACAAGCAGAA
AATATTATTCATTTATTTACGTTGACGAATCTTG
GAGCTCCCGCTGCTTTTAAATATTTTGATACAAC
AATTGATCGTAAACGATATACGTCTACAAAAGA
AGTTTTAGATGCCACTCTTATCCATCAATCCATC
ACTGGTCTTTATGAAACACGCATTGATTTGAGTC
AGCTAGGAGGTGAC

Peap RrD1

atagcatttttatccataagattagcggatcctacctgacgctttttatcgcaactct
ctactgtttctccataccgtttttttgggctage

ExsA

ExsA gene (48)

atgcaaggagccaaatctcttggccgaaagcagataacgtcttgtcattggaac
attccaactttcgaatacagggtaaacaaggaagagggcgtatatgttctgetcg
agggcgaactgaccgtccaggacatcgattccactttttgectggegectggeg
agttgcttttcgtccgccgcggaagetatgtegtaagtaccaagggaaaggaca
gccgaatactctggattccattatctgcccagtttctacaaggcttcgtccagege
ttcggcgegctgttgagtgaagtcgagegttgcgacgageccgtgecgggeat
catcgcegttcgetgecacgectetgetggecggttgegtcaaggggttgaagg
aattgcttgtgcatgagcatccgecgatgetegectgectgaagatcgaggagtt
gctgatgctcttcgegttcagtccgeaggggecgctgctgatgteggtectgeg
gcaactgagcaaccggcatgtcgagegtctgcagctattcatggagaageact
acctcaacgagtggaagctgtccgacttctcecgegagttcggeatggggcty
accaccttcaaggagctgttcggeagtgtctatggggtttcgecgegegectgg
atcagcgagcggagaatcctctatgcccatcagttgctgctcaacagegacatg
agcatcgtcgacatcgccatggaggegggcttttccagtcagtcctatttcacce
agagctatcgccgeegtttcggcetgcacgecgagecgctcgeggeaggggaa
ggacgaatgccgggctaaaaataactga

ExsD

ExsD gene (48)

atggagcaggaagacgataagcagtactcccgagaageggtgttcgetggea
ggcgggtatcegtggtgggetcggacgeccgetegeggggtegggtgecgg
gttacgcatcgagcagtttgtatcgtgagtccggaatcatcagtgcgeggeaact
ggcgttgctgcageggatgetgecgegectgeggetggageaactgtteegcet
gcgagtggttgcagcagegectggegegeggectggegetggggegegaa
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gaggtgcggcagattctcctctgcgeggegeaggacgacgacggetggtget
ccgaactgggcgaccgggtcaacctegecgtgecgeagtcgatgatcgactg
ggtcctgetgecggtcetatggetggtgggaaagectgctcgaccaggegatee
ccggctggegectgtegetggtggagetggagacccagteccggeaactgeg
agtcaagtccgaattctggtcccgegtggecgagetggagecggageaggec
cgcgaggaactggccagggtcgecaagtgccaggegegeacccaggaaca
ggtggccgaactggecggcaagetggagacggettcggeactggegaagag
cgcctggecgaactggeageggggceatggegacgetgetegecageggeg
ggctggecggcttcgagecgatccccgaggtectegaatgectctggeaacct
ctctgceggetggacgacgacgtcggegeggeggacgecgtecaggectgg
ctgcacgaacgcaacctgtgccaggcacaggatcacttctactggcagagetg
a

pexsD Promoter (48) gaaggacgaatgccgggctaaaaataactgacgttttttgaaagcceggtage

ggctgcatgagtagaatcggeccaaat

Placo PLlacO-1 aattgtgagcggataacaattgacattgtgagcggataacaagatactgagca

promoter (2) catcagcaggacgcactgacc

Placorteto tacaacgtcgtgttaaattgtgagcggataacaatttagttgacatttatgcttceg

gctcgtataattccacccctatcagtgatagagagegttacccaac

Placo1 ttgacattgtgagcggataacaagatactgagcacatcagcaggacgcactga | PLIacO-

cc 1 Deleting 1
binding site

Plux Lux promoter, acctgtaggatcgtacaggtttacgcaagaaaatggtttgttatagtcgaataaa

BBa_R0062
(77)

Plux(aaT) aattgtaggatcgtacaggtttacgcaagaaaatggtttgttatagtcgaataaa | The “acct” of
Plux (in bold) was
mutated to “aatt”
by site directed
Mutagenesis.

PluxTem tgttgtaggatcgtacaggtttacgcaagaaaatggtttgttatagtcgaataaa | The “acct” of
Plux (in bold) was
mutated to “tgtt”
by site directed
Mutagenesis.

PiuxeL) acctgtaggatcgtacaggtttacgcaagaaaatggtttgttactttcgaataaa | The “tag” of Plux
(in bold) was
mutated to “ctt”
by site directed
Mutagenesis.

Pluxmse tggggtaggatcgtacaggtttacgcaagaaaatggtttgttatagtcgaataaa | The “acct” of
Plux (in bold) was
mutated to
“TGGG” by site
directed
Mutagenesis.

Pluxilaco acctgtaggatcgtacaggtttacttgtgagcggataacaatatagtgtgtggaat

tgtgagcggataacaatt

Pluxiteto acctgtaggatcgtacaggtttacgcaagaaaatggtttgttatagtcgaatatcc

ctatcagtgatagaga

Pmir tcctgtgaaatctggcagttaccgttagetttcgaattggetaaaaagtgttc
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Preto PLtetO-1 tccctatcagtgatagagattgacatcectatcagtgatagagatactgagcacat
promoter (2) cagcaggacgcactgacc
Preto* PLtetO* ttttcagcaggacgcactgacctccctatcagtgatagagattgacatccctatca
promoter (48) gtgatagagatactgagcacatat
PT7 taatacgactcactatagggaga
RBS1 BBa B0030 attaaagaggagaaa
RBS2 BBa B0031 tcacacaggaaacc
RBS3 BBa B0034 aaagaggagaaa
RiboJ STRSV HHRz agctgtcaccggatgtgctttccggtctgatgagtcegtgaggacgaaacagec
tctacaaataattttgtttaa
rrnB T1 transcription caaataaaacgaaaggctcagtcgaaagactgggcctttegttttatctgttgttt
terminator terminator T1 gtcggtgaacgctctcctgagtaggacaaat
from the E.coli
rrnB gene
p15A medium-copy- cggtcgttcgactgcggegageggaaatggcettacgaacggggeggagattt
number p15A cctggaagatgccaggaagatacttaacagggaagtgagagggecgeggea
origin of aagccgtttttccataggctccgeccecctgacaagcatcacgaaatctgacgcet
replication caaatcagtggtggcgaaacccgacaggactataaagataccaggcegtttcce
cctggeggcteectegtgegetetectgttectgecttteggtttaccggtgteatt
ccgctgttatggecgcgtttgtctcattccacgcectgacactcagttcegggtag
gcagttcgctccaagcetggactgtatgcacgaaccecccgttcagtccgacceg
ctgcgccttatccggtaactatcgtcttgagtccaacccggaaagacatgcaaa
agcaccactggcagcagccactggtaattgatttagaggagttagtcttgaagtc
atgcgccggttaaggctaaactgaaaggacaagttttggtgactgcgetcctce
aagccagttacctcggttcaaagagttggtagctcagagaaccttcgaaaaacc
gccctgcaaggceggttttttcgttttcagagcaagagattacgcgcagaccaaa
acgatctcaagaagatcatcttattaatcagataaaatatttctagatttcagtgcaa
tttatctcttcaaatgtagcacctgaagtcagccccatacgatataagttgtt
pSC101 Low-copy gtacgggttttgctgccecgcaaacgggcetgttetggtgttgcetagtttgttatcaga
replication atcgcagatccggcttcaggtttgccggetgaaagegctatttcttccagaattge
origin catgattttttccccacgggaggcgtcactggcetceegtgttgtcggeagctttga

ttcgataagcagcatcgcctgtttcaggctgtctatgtgtgactgttgagctgtaac
aagttgtctcaggtgttcaatttcatgttctagttgctttgttttactggtttcacctgtt
ctattaggtgttacatgctgttcatctgttacattgtcgatctgttcatggtgaacag

ctttaaatgcaccaaaaactcgtaaaagctctgatgtatctatcttttttacaccgttt
tcatctgtgcatatggacagttttccctttgatatctaacggtgaacagttgttctact
tttgtttgttagtcttgatgcticactgatagatacaagagccataagaacctcaga
tccttcegtatttagccagtatgttctctagtgtggttegttgtttttgcgtgagecat

gagaacgaaccattgagatcatgcttactttgcatgtcactcaaaaattttgcctca
aaactggtgagctgaatttttgcagttaaagcatcgtgtagtgtttttcttagtcegtt
acgtaggtaggaatctgatgtaatggttgttggtattttgtcaccattcatttttatct

ggttgttctcaagttcggttacgagatccatttgtctatctagttcaacttggaaaat
caacgtatcagtcgggcggectcgcttatcaaccaccaatttcatattgctgtaag
tgtttaaatctttacttattggtttcaaaacccattggttaagecttttaaactcatggt
agttattttcaagcattaacatgaacttaaattcatcaaggctaatctctatatttgcc
ttgtgagttttcttitgtgttagttcttttaataaccactcataaatcctcatagagtattt
gttttcaaaagacttaacatgttccagattatattttatgaatttttttaactggaaaag
ataaggcaatatctcttcactaaaaactaattctaatttttcgcttgagaacttggea
tagtttgtccactggaaaatctcaaagcctttaaccaaaggattcctgatttccaca
gttctcgtcatcagcetctetggttgctttagctaatacaccataageattttcectact
gatgttcatcatctgagcgtattggttataagtgaacgataccgtcegttetttectt

gtagggttttcaatcgtggggttgagtagtgccacacagcataaaattagettggt
ttcatgctccgttaagtcatagcgactaatcgctagttcatttgetttgaaaacaact
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aattcagacatacatctcaattggtctaggtgattttaatcactataccaattgagat
gggctagtcaatgataattactagtccttttcctttgagttgtgggtatctgtaaattc
tgctagacctttgctggaaaacttgtaaattctgctagaccctctgtaaattccgcet
agacctttgtgtgttttttttgtttatattcaagtggttataatttatagaataaagaaa
gaataaaaaaagataaaaagaatagatcccagccctgtgtataactcactacttt
agtcagttccgcagtattacaaaaggatgtcgcaaacgctgtttgctcctctacaa
aacagaccttaaaaccctaaaggcttaagtagcaccctcgcaagcetcgggcaa
atcgctgaatattccttttgtctccgaccatcaggcacctgagtcgetgtetttttcg
tgacattcagttcgctgcgctcacggctctggcagtgaatgggggtaaatggcea
ctacaggcgccttttatggattcatgcaaggaaactacccataatacaagaaaag
cccgtcacgggcttctcagggegttttatggcgggtctgetatgtggtgctatetg
actttttgctgttcagcagttcctgccctctgattttccagtctgaccacttcggatta
tccecgtgacaggtcattcagactggctaatgcacccagtaaggcagceggtatca
tcaacaggcttacccgtcttactgtccctagt

ColE1l

High-copy
replication
origin

cgttcggetgeggegageggtatcagetcactcaaaggeggtaatacggttate
cacagaatcaggggataacgcaggaaagaacatgtgagcaaaaggccagea
aaaggccaggaaccgtaaaaaggecgegttgctggegttttteccataggetee
gcecccctgacgageatcacaaaaatcgacgctcaagtcagaggtggegaaa
cccgacaggactataaagataccaggegtttccccctggaageteectegtge
gctetectgttecgaccetgecgcttaccggatacctgtecgectttctecctteg
ggaagcgtggegctttctcaatgetcacgetgtaggtatetcagttcggtgtagg
tcgttcgetccaagetgggetgtgtgcacgaacceccegttcageccgaccget
gcgecttatceggtaactatcgtcttgagtccaacccggtaagacacgacttatc
gccactggcagcagecactggtaacaggattagcagagegaggtatgtagge
gotgctacagagttcttgaagtggtggectaactacggetacactagaaggaca
gtatttggtatctgcgctctgctgaagccagttaccttcggaaaaagagttggtag
ctcttgatccggcaaacaaaccaccgctggtageggtggtttttttgtttgcaage
agcagattacgcgcagaaaaaaaggatctcaagaagatcctttgatcttttctac
ggggtctgacgctcagtggaacgaaaactcacgttaagggattttggtcatg

cmR

aaattacgccccgecctgecactcatcgeagtactgttgtaattcattaageattet
gccgacatggaagccatcacaaacggcatgatgaacctgaatcgecagegge
atcagcaccttgtcgccttgegtataatatttgcccatggtgaaaacgggggega
agaagttgtccatattggccacgtttaaatcaaaactggtgaaactcacccaggg
attggctgagacgaaaaacatattctcaataaaccctttagggaaataggecag
gttttcaccgtaacacgccacatcttgcgaatatatgtgtagaaactgccggaaat
cgtcgtggtattcactccagagcgatgaaaacgtttcagtttgctcatggaaaac
ggtgtaacaagggtgaacactatcccatatcaccagctcaccgtctttcattgec
atacgaaattccggatgagcattcatcaggcgggcaagaatgtgaataaagge
cggataaaacttgtgcttatttttctttacggtctttaaaaaggccgtaatatccage
tgaacggtctggttataggtacattgagcaactgactgaaatgectcaaaatgttc
tttacgatgccattgggatatatcaacggtggtatatccagtgatttttttctccatttt
agcttccttagctcctgaaaatctcgataactcaaaaaatacgcccggtagtgat
cttatttcattatggtgaaagttggaacctcttacgtgcccgatcaa

ampR

gtaaacttggtctgacagttaccaatgcttaatcagtgaggcacctatctcageg
atctgtctatttcgttcatccatagttgcctgactcccegtegtgtagataactacga
tacgggagggcttaccatctggeeccagtgctgcaatgataccgegagaccca
cgctcaccggcetecagatttatcagcaataaaccagccagccggaagggecy
agcgcagaagtggtcctgcaactttatccgectccatccagtctattaattgttge
cgggaagctagagtaagtagttcgccagttaatagtttgcgeaacgttgttgcca
ttgctacaggcatcgtggtgtcacgctcgtegtttggtatggctteattcagetee
ggttcccaacgatcaaggegagttacatgatcceccatgtigtgcaaaaaageg
gttagctecttcggtecteegategttgtcagaagtaagtiggecgeagtgttate
actcatggttatggcagcactgcataattctcttactgtcatgccatccgtaagatg
cttttctgtgactggtgagtactcaaccaagtcattctgagaatagtgtatgcgge
gaccgagttgctcttgcccggegtcaatacgggataataccgegecacatage
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agaactttaaaagtgctcatcattggaaaacgttcttcggggcgaaaactctcaa
ggatcttaccgctgttgagatccagttcgatgtaacccactcgtgcacccaacty
atcttcagcatcttttactttcaccagcgtttctgggtgagcaaaaacaggaagge
aaaatgccgcaaaaaagggaataagggcgacacggaaatgttgaatactcata
ctcttcctttttcaatattattgaagcatttatcagggttattgtctcatgagcggata

catatttgaatgtatttagaaaaataaacaaataggggttccgegcacatttceee

gaaaagtgccacct

kanR

tcgaaccccagagteccgcetcagaagaactcgtcaagaaggcgatagaagge
gatgcgctgegaatcgggageggegataccgtaaagcacgaggaageggte
agcccattcgecgecaagetcttcagcaatatcacgggtagecaacgctatgte
ctgatagcggtccgecacacccagecggcecacagtcgatgaatccagaaaag
cggccattttccaccatgatattcggcaagcaggeatcgecatgggtcacgacg
agatcctcgccgtcgggcatgegegcecttgagectggegaacagtteggetgg
cgcgagcccctgatgetcttcgtccagatcatcctgatcgacaagaccggette
catccgagtacgtgctcgcetcgatgegatgtttcgettggtggtcgaatgggeag
gtagccggatcaagcegtatgcagecgecgcattgcatcagecatgatggatact
ttctcggcaggagcaaggtgagatgacaggagatectgecceggeacttcgec
caatagcagccagtcccttceegettcagtgacaacgtcgageacagcetgege
aaggaacgcccgtcgtggecagecacgatageegegcetgectegtectgeag
ttcattcagggcaccggacaggtcggtcttgacaaaaagaaccgggegeccct
gcgctgacagecggaacacggeggceatcagageagecgattgtetgttgtge
ccagtcatagccgaatagectctccacccaageggecggagaacctgegtge
aatccatcttgttcaatcatgcgaaacgatcctcatcctgtctcttgatcagatcttg
atcccctgcgecatcagatccttggcggcaagaaagccatccagtttactttgea
gggcttcccaaccttaccagagggegecceagcetggeaattce

274




16. Plasmid Maps
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17. List of strains used in this study

Plasmids Figure
LR123 + MR155 + MR159 Fig. 1B, Fig. S2.1, Fig. S2.5A
MR92 + MR159 + MR175 Fig. 1G
MR113 + MR149 + MR170 Fig. 2A
MR113 + MR138 + MR154 Fig. 2D
MR79 + MR114 + MR126 Fig. 2G, Fig. S3.4B
MR125 + MR153 + MR158 Fig. 3C, Fig. S5.1

MR153 + MR158 + MR338

Fig. 3G, Fig.S6.5B

MR153 + MR158 + MR340

Fig. 3G, Fig.S6.5D

MR153 + MR158 + MR339

Fig. 3G, Fig.S6.5F

MR153 + MR158 + MR125

Fig. 3G, Fig.S6.5H

LR7 + LR309 + LR313

Fig. 4C, Fig. S7.11A

LR7 + LR218 + LR310

Fig. 4F, Fig S7.14A, Fig. S9.4, Fig. S9.6

MR83 + MR155 + MR159 Fig. S2.5B
LR1 + LR93 Fig. S2.9A
RF303 Fig. S2.13A - OL Wild type, Fig. S2.14
LR324 Fig. S2.13A - APF Wild type
LR327 Fig. S2.13B - OL mutated
LR325 Fig. S2.13B - APF mutated
LR172-5 Fig. S2.14 - Puar
LR172-1 Fig. S2.14 - Puror
MR21 + MR35 + MR83 Fig. S5.5
MR149 + RF45 Fig. S5.8
MR35 + MR41 + MR378 Fig.S6.4A, C
MR35 + MR41 + MR380 Fig.S6.4A, D
MR35 + MR41 + MR379 Fig.S6.4A, F
MR132 + MR343 + MR378 Fig.S6.7B
MR132 + MR343 + MR380 Fig.S6.7D
MR132 + MR343 + MR379 Fig.S6.7F
MR132 + MR343 + MR20 Fig.S6.7H
LR113 + YR3 Fig. S7.5A
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LR329 + YR3

Fig. S7.5A - Control

LR7+LR113 Fig. S7.7A
LR7+LR220 Fig. S7.7B
LR7+LR329 Fig. S7.7C
LR7+LR110 Fig. S7.7D
LR7+LR285+LR309 Fig. S7.9C
LR7+LR309 Fig. S7.9D
LR7+LR171 Fig. S7.13
MR153 + MR158 + MR168 Fig. S7.18A
MR401 + MR402 Fig. S.8.7
LKsg3: LK4 +RF42 + YLP1 Fig. S8.6
SG6: LK8 +RF42 + YLP1 Fig. S8.6
Control: YLP286 +RF42 + LR255 Fig. S8.6
Control: RF303+LR319 Fig.S8.8
LR326+LR319
Control: LR324+LR319 Fig.S8.10
LR364+LR319
LR365+LR319
LR366+LR319
LR367+LR319
LR368+LR319
LR369+LR319
LR370+LR319
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