

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) Au8Cu6_complex_4

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: Au8Cu6_complex_4

Bond precision: C-C = 0.0171 Å Wavelength=0.71073

Cell: a=22.9670(12) b=28.1979(16) c=39.221(2)
alpha=90 beta=92.129(2) gamma=90

Temperature: 100 K

	Calculated	Reported
Volume	25383(2)	25383(2)
Space group	C 2/c	C 2/c
Hall group	-C 2yc	-C 2yc
Moiety formula	C192 H184 Au8 Cu6 N8 [+ solvent]	?
Sum formula	C192 H184 Au8 Cu6 N8 [+ solvent]	C204 H216 Au8 Cu6 N10
Mr	4560.54	4764.83
Dx, g cm-3	1.193	1.247
Z	4	4
Mu (mm-1)	5.130	5.134
F000	8792.0	9264.0
F000'	8741.08	
h,k,lmax	28,35,49	28,35,49
Nref	26525	25796
Tmin, Tmax	0.545, 0.774	0.496, 0.745
Tmin'	0.535	

Correction method= # Reported T Limits: Tmin=0.496 Tmax=0.745
AbsCorr = MULTI-SCAN

Data completeness= 0.973 Theta(max)= 26.583

R(reflections)= 0.0584(13490) wR2(reflections)= 0.2032(25796)

S = 1.018 Npar= 953

The following ALERTS were generated. Each ALERT has the format

test-name_ALERT_alert-type_alert-level.

Click on the hyperlinks for more details of the test.

🟡 Alert level B

PLAT213_ALERT_2_B Atom C43	has ADP max/min Ratio	4.7 prolat
PLAT213_ALERT_2_B Atom C46	has ADP max/min Ratio	4.1 prolat
PLAT242_ALERT_2_B Low	'MainMol' Ueq as Compared to Neighbors of	C54 Check
PLAT910_ALERT_3_B Missing # of FCF Reflection(s) Below Theta(Min).		16 Note
PLAT919_ALERT_3_B Reflection # Likely Affected by the Beamstop ...		2 Check
PLAT934_ALERT_3_B Number of (Iobs-Icalc)/Sigma(W) > 10 Outliers ...		9 Check

🟡 Alert level C

ABSTY02_ALERT_1_C An _exptl_absorpt_correction_type has been given without a literature citation. This should be contained in the _exptl_absorpt_process_details field.
Absorption correction given as multi-scan

PLAT213_ALERT_2_C Atom C7	has ADP max/min Ratio	3.2 prolat
PLAT213_ALERT_2_C Atom C9	has ADP max/min Ratio	3.1 prolat
PLAT213_ALERT_2_C Atom C16	has ADP max/min Ratio	3.4 prolat
PLAT213_ALERT_2_C Atom C17	has ADP max/min Ratio	3.2 prolat
PLAT213_ALERT_2_C Atom C18	has ADP max/min Ratio	3.2 prolat
PLAT213_ALERT_2_C Atom C32	has ADP max/min Ratio	3.2 prolat
PLAT213_ALERT_2_C Atom C37	has ADP max/min Ratio	4.0 prolat
PLAT213_ALERT_2_C Atom C38	has ADP max/min Ratio	3.8 prolat
PLAT213_ALERT_2_C Atom C39	has ADP max/min Ratio	3.8 prolat
PLAT213_ALERT_2_C Atom C40	has ADP max/min Ratio	4.0 prolat
PLAT213_ALERT_2_C Atom C41	has ADP max/min Ratio	3.5 prolat
PLAT213_ALERT_2_C Atom C42	has ADP max/min Ratio	3.2 prolat
PLAT213_ALERT_2_C Atom C45	has ADP max/min Ratio	3.8 prolat
PLAT220_ALERT_2_C NonSolvent Resd 1 C	Ueq(max)/Ueq(min) Range	4.5 Ratio
PLAT222_ALERT_3_C NonSolvent Resd 1 H	Uiso(max)/Uiso(min) Range	5.2 Ratio
PLAT234_ALERT_4_C Large Hirshfeld Difference Au4	--C48 .	0.23 Ang.
PLAT234_ALERT_4_C Large Hirshfeld Difference Au5	--C73 .	0.23 Ang.
PLAT234_ALERT_4_C Large Hirshfeld Difference Cu3	--C47 .	0.22 Ang.
PLAT234_ALERT_4_C Large Hirshfeld Difference C5	--C10 .	0.17 Ang.
PLAT234_ALERT_4_C Large Hirshfeld Difference C6	--C7 .	0.18 Ang.
PLAT234_ALERT_4_C Large Hirshfeld Difference C29	--C34 .	0.20 Ang.
PLAT234_ALERT_4_C Large Hirshfeld Difference C30	--C31 .	0.23 Ang.
PLAT234_ALERT_4_C Large Hirshfeld Difference C35	--C38 .	0.18 Ang.
PLAT234_ALERT_4_C Large Hirshfeld Difference C47	--C48 .	0.22 Ang.
PLAT234_ALERT_4_C Large Hirshfeld Difference C54	--C55 .	0.19 Ang.
PLAT234_ALERT_4_C Large Hirshfeld Difference C63	--C64 .	0.21 Ang.
PLAT234_ALERT_4_C Large Hirshfeld Difference C70	--C71 .	0.17 Ang.
PLAT234_ALERT_4_C Large Hirshfeld Difference C73	--C74 .	0.23 Ang.
PLAT234_ALERT_4_C Large Hirshfeld Difference C75	--C84 .	0.18 Ang.
PLAT234_ALERT_4_C Large Hirshfeld Difference C76	--C77 .	0.19 Ang.
PLAT234_ALERT_4_C Large Hirshfeld Difference C83	--C86 .	0.19 Ang.
PLAT241_ALERT_2_C High	'MainMol' Ueq as Compared to Neighbors of	Cu3 Check
PLAT241_ALERT_2_C High	'MainMol' Ueq as Compared to Neighbors of	C16 Check
PLAT241_ALERT_2_C High	'MainMol' Ueq as Compared to Neighbors of	C38 Check
PLAT241_ALERT_2_C High	'MainMol' Ueq as Compared to Neighbors of	C46 Check
PLAT241_ALERT_2_C High	'MainMol' Ueq as Compared to Neighbors of	C73 Check
PLAT241_ALERT_2_C High	'MainMol' Ueq as Compared to Neighbors of	C77 Check
PLAT242_ALERT_2_C Low	'MainMol' Ueq as Compared to Neighbors of	C6 Check
PLAT242_ALERT_2_C Low	'MainMol' Ueq as Compared to Neighbors of	C15 Check
PLAT242_ALERT_2_C Low	'MainMol' Ueq as Compared to Neighbors of	C17 Check
PLAT242_ALERT_2_C Low	'MainMol' Ueq as Compared to Neighbors of	C30 Check
PLAT242_ALERT_2_C Low	'MainMol' Ueq as Compared to Neighbors of	C35 Check

PLAT242_ALERT_2_C	Low	'MainMol' Ueq as Compared to Neighbors of	C37	Check
PLAT242_ALERT_2_C	Low	'MainMol' Ueq as Compared to Neighbors of	C76	Check
PLAT250_ALERT_2_C	Large	U3/U1 Ratio for Average U(i,j) Tensor	3.1	Note
PLAT260_ALERT_2_C	Large	Average Ueq of Residue Including Aul	0.110	Check
PLAT342_ALERT_3_C	Low	Bond Precision on C-C Bonds	0.01711	Ang.
PLAT420_ALERT_2_C	D-H	Bond Without Acceptor N1 --H1A .	Please	Check
PLAT420_ALERT_2_C	D-H	Bond Without Acceptor N2 --H2A .	Please	Check
PLAT420_ALERT_2_C	D-H	Bond Without Acceptor N3 --H3A .	Please	Check
PLAT420_ALERT_2_C	D-H	Bond Without Acceptor N4 --H4A .	Please	Check
PLAT905_ALERT_3_C	Negative	K value in the Analysis of Variance ...	-6.559	Report
PLAT911_ALERT_3_C	Missing	FCF Refl Between Thmin & STh/L= 0.600	347	Report
PLAT918_ALERT_3_C	Reflection(s)	with I(obs) much Smaller I(calc) .	4	Check
PLAT977_ALERT_2_C	Check	Negative Difference Density on H31A	-0.33	eA-3
PLAT977_ALERT_2_C	Check	Negative Difference Density on H31B	-0.33	eA-3
PLAT977_ALERT_2_C	Check	Negative Difference Density on H81A	-0.39	eA-3

Alert level G

FORMU01_ALERT_2_G There is a discrepancy between the atom counts in the _chemical_formula_sum and the formula from the _atom_site* data.

Atom count from _chemical_formula_sum: C204 H216 Au8 Cu6 N10

Atom count from the _atom_site data: C192 H184 Au8 Cu6 N8

CELLZ01_ALERT_1_G Difference between formula and atom_site contents detected.

CELLZ01_ALERT_1_G ALERT: Large difference may be due to a

symmetry error - see SYMMG tests

From the CIF: _cell_formula_units_Z 4

From the CIF: _chemical_formula_sum C204 H216 Au8 Cu6 N10

TEST: Compare cell contents of formula and atom_site data

atom	Z*formula	cif	sites	diff
C	816.00	768.00	48.00	
H	864.00	736.00	128.00	
Au	32.00	32.00	0.00	
Cu	24.00	24.00	0.00	
N	40.00	32.00	8.00	

PLAT002_ALERT_2_G	Number of	Distance or Angle Restraints on AtSite	15	Note
PLAT003_ALERT_2_G	Number of	Uiyo or Uij Restrained non-H Atoms ...	29	Report
PLAT007_ALERT_5_G	Number of	Unrefined Donor-H Atoms	4	Report
PLAT041_ALERT_1_G	Calc. and	Reported SumFormula Strings Differ	Please	Check
PLAT172_ALERT_4_G	The CIF-Embedded .res	File Contains DFIX Records	3	Report
PLAT173_ALERT_4_G	The CIF-Embedded .res	File Contains DANG Records	4	Report
PLAT177_ALERT_4_G	The CIF-Embedded .res	File Contains DELU Records	6	Report
PLAT178_ALERT_4_G	The CIF-Embedded .res	File Contains SIMU Records	6	Report
PLAT232_ALERT_2_G	Hirshfeld Test	Diff (M-X) Cu3 --C48 .	6.2	s.u.
PLAT333_ALERT_2_G	Large Aver	C6-Ring C-C Dist C75 -C84 .	1.43	Ang.
PLAT335_ALERT_2_G	Check Large	C6 Ring C-C Range C75 -C84	0.21	Ang.
PLAT343_ALERT_2_G	Unusual	Angle Range in Main Residue for	C1	Check
PLAT343_ALERT_2_G	Unusual	sp? Angle Range in Main Residue for	C23	Check
PLAT343_ALERT_2_G	Unusual	sp? Angle Range in Main Residue for	C24	Check
PLAT343_ALERT_2_G	Unusual	sp? Angle Range in Main Residue for	C25	Check
PLAT343_ALERT_2_G	Unusual	sp? Angle Range in Main Residue for	C49	Check
PLAT343_ALERT_2_G	Unusual	sp? Angle Range in Main Residue for	C72	Check
PLAT343_ALERT_2_G	Unusual	sp? Angle Range in Main Residue for	C73	Check
PLAT371_ALERT_2_G	Long	C(sp2)-C(sp1) Bond C26 - C27 .	1.44	Ang.
PLAT371_ALERT_2_G	Long	C(sp2)-C(sp1) Bond C46 - C47 .	1.46	Ang.
PLAT371_ALERT_2_G	Long	C(sp2)-C(sp1) Bond C50 - C51 .	1.43	Ang.
PLAT371_ALERT_2_G	Long	C(sp2)-C(sp1) Bond C70 - C71 .	1.45	Ang.
PLAT371_ALERT_2_G	Long	C(sp2)-C(sp1) Bond C74 - C75 .	1.47	Ang.
PLAT371_ALERT_2_G	Long	C(sp2)-C(sp1) Bond C90 - C95 .	1.45	Ang.
PLAT606_ALERT_4_G	Solvent Accessible	VOID(S) in Structure	!	Info
PLAT860_ALERT_3_G	Number of	Least-Squares Restraints	241	Note

PLAT869_ALERT_4_G	ALERTS Related to the Use of SQUEEZE Suppressed	! Info
PLAT883_ALERT_1_G	No Info/Value for _atom_sites_solution_primary .	Please Do !
PLAT912_ALERT_4_G	Missing # of FCF Reflections Above STh/L= 0.600	365 Note
PLAT913_ALERT_3_G	Missing # of Very Strong Reflections in FCF	1 Note
PLAT941_ALERT_3_G	Average HKL Measurement Multiplicity	3.3 Low
PLAT966_ALERT_5_G	Note: Non-Standard (i.e. 2.0) OMIT Threshold of	2.0 Sig(I)
PLAT978_ALERT_2_G	Number C-C Bonds with Positive Residual Density.	0 Info

0 **ALERT level A** = Most likely a serious problem - resolve or explain
 6 **ALERT level B** = A potentially serious problem, consider carefully
 58 **ALERT level C** = Check. Ensure it is not caused by an omission or oversight
 36 **ALERT level G** = General information/check it is not something unexpected

5 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
 59 ALERT type 2 Indicator that the structure model may be wrong or deficient
 11 ALERT type 3 Indicator that the structure quality may be low
 23 ALERT type 4 Improvement, methodology, query or suggestion
 2 ALERT type 5 Informative message, check

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.


Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica*, *Journal of Applied Crystallography*, *Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

Datablock Au8Cu6_complex_4 - ellipsoid plot

