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Supplementary figures

[image: Macintosh HD:Users:richard:Desktop:Final submission files-2:Supplementary Figures:Supplementary Fig 1.jpg]Figure S1. Cross-polarized images of ASB basalt from subunits 1a, 1b, 1d and 1f. a, ASB basalt from subunit 1a (E71R2W90-94). b ASB basalt from subunit 1b (E72R1W83-85). c ASB basalt from subunit 1d (E81R1W54-57). d ASB basalt from subunit 1f (E88R1W139-145). 


Figure S2. Clinopyroxene cations in subunits of Unit 1 ASB basalt compared with mid-ocean ridge basalt and gabbro (MORB/G), Unit III, IV34, back arc, ophiolite37, and 352 Fore arc basalt (FAB) and boninite36. a, Na+ versus 100*Mg/(Mg+Fe2+). Unit III is subdivided into 2 groups, respectively >37Ma and <37Ma, as identified by Brandl et al. (2017)35, Unit IV data are from Waldam et al.34, As Mg number decreasing, Unit 1 clinopyroxene (solid circle) show different Na increasing tread with those of 352 FAB36, back arc data from PetDatabase, MORB/G. Unit 1 clinopyroxene have higher Mg number than 352 FAB, especially subunit 1a and 1e.  b, Na+ versus Ti4+. Positive corelationship between Na+ and Ti4+ indicates no Na loss during analysing process. c, Na+ versus octahedrally-coordinated Al3+. Clinopyroxne in 352 FAB and boninite have low Na cations and high octahedrally-coordinated Al indicating their enrichment of Al and crystallized at low temperature. Primitive clinopyroxne, i.e. subunit 1a and 1e, also have low Na cations and high octahedrally-coordinated, while subunit 1c have higher Na cations than other subunits at the same Al3+ (oct).  d, Tetrahedrally-crotordinated versus octahedrally-coordinated Al3+ (Al3+ (tet) and Al3+ (oct) respectively). All cations calculated based on 4:6 cation:oxygen anions.   

[image: D:\科研\IODP\351工作内容\LIHE\Basement\Manuscript\NC\Chinese Science Bulletin_updated\Figs\Figure 4（3）.jpg]Figure S3. Spinel compositions in subunits of 351 Unit 1 ASB basalt compared with those in MORB38,40, Oman ophiolite, back arc, fore arc (data from PetDatabase website),  and 352 Boninite36. a. Cr-Al-Fe3+ proportions. Compositions of spinel in Unit1 ASB basalt show unique compositional plots and extend from Cr+Al rich to Fe rich, especially subunit 1c. b, 100*Cr/(Cr+Al) versus 100*Mg/(Mg+Fe2+). Spinels in subunit 1b and 1c show different trend with those in back arc, fore arc, boninite and ophiolite. Offsets to lower Mg number for a given Cr/(Cr+Al) are consistent with derivation from refractory peridotite sources. c, 100*Fe3+/(Fe3++Cr+Al)) versus 100*Mg/(Mg+Fe2+). Primitive spinels with high Mg number have low Fe3+/(Fe3++Cr+Al)) ratios indicating derived from reduced host magma. d TiO2 (wt. %) versus Al2O3 (wt. %). Spinels in Unit 1 have higher TiO2 and high Al2O3 content than in fore arc, ophiolite, boninite, and have different covariation trend with those in back arc samples. Various coloured solid circles for spinel in respective subunits; the gray solid square symbols for spinel in MORB.

[image: Macintosh HD:Users:richard:Desktop:Final submission files-2:Supplementary Figures:Supplementary Fig 4.jpg]
Figure S4. Back-scattered electron image and compositional traverse of spinel in subunit b sample 73R2 74-71. Compositions range from Cr-rich cores through Al-rich to magnetite on the rim. Y-axis values are the oxide percentages or 100* specific cation ratios. Position numbers on the x-axis are keyed to the image.

[image: Macintosh HD:Users:richard:Desktop:Final submission files-2:Supplementary Figures:Supplementary Fig 5.jpg]Figure S5. Trace element abundances for clinopyroxene in subunits a, b, d, and f.  a, chondrite-normalized47 rare earth element abundances for clinopyroxene in subunits a, b, d, and f. b, primitive mantle-normalized47 trace element abundances for clinopyroxene in subunits a, b, d, and f.  Clinopyroxene in all subunit have depleted light rare earth element (REE) and positive Rb, U abnormal. Subunit 1b have higher REE concentrations.
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Figure S6. Cr vs. Zr diagram for whole rock from 351 Unit1 ASB basalt 26, 352 FAB 59, 60, Site 120152 and Site 447 52. At the same Zr concentration, 351 Unit 1 basalt has higher Cr concentrations than FAB.
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Figure. S7 Fig. 7. Ti+Cr vs. Ca cations in clinopyroxene from 351 Unit 1 ASB basalt. Data are compared with those in 351 Unit IV recording the nascent IBM arc, 352 FAB, 352 Bonininte, back arc basin, Oman ophiolite and MORB.
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