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Supplementary Eqs. 1-5
KOH activation mechanism for normal process:
                     Supplementary Eq. 1
                                                                    Supplementary Eq. 2
                                                          Supplementary Eq. 3
                                                              Supplementary Eq. 4
                                               Supplementary Eq. 5
Traditional KOH activation mechanism has been well-studied in recent years, such as Journal of Materials Chemistry 22, 23710-23725 (2012) and Carbon 45, 2529-2536 (2007). Our ex-situ XRD results well consist of the reported in the references.
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[bookmark: OLE_LINK39]Supplementary Fig. 1. (a) XPS spectrum and (b) element content information of the semi-carbonized mushroom. XPS was used to characterize the element content of the obtained semi-carbonized materials. This XPS spectrum suggests the existence of C, N and O elements in the semi-carbonized mushroom with atomic percentage of 76.8 at.%, 10.9 at.% and 12.3 at.%, respectively, which illustrates the successful incorporation of nitrogen atom into the framework of the semi-carbonized mushroom.
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[bookmark: OLE_LINK40]Supplementary Fig. 2. High-resolution N1s spectrum of the semi-carbonized mushroom. The high-resolution N1s spectrum could be deconvoluted into two components at 398.2 eV and 399.2 eV, corresponding to pyridinic-N and N-C sp3, respectively. Correspondingly, the ratio of pyridinic-N was calculated as high as 82%, which implies that the hybridization between N and carbon atoms is mainly sp2.
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Supplementary Fig. 3. (a) N2 adsorption-desorption isotherms and (b) pore size distribution curves of the as-obtained M-PC and the M-control sample. The N2 isotherms of the M-PC and the M-control sample could be categorized as type I isotherm based on the IUPAC classification, indicating the presence of the micropores and small mesopores in these porous carbons. The pore size distribution curves derived from the N2 isotherms based on NLDFT method show the pore size is around 1.2 and 2.5 nm in M-PC, while the M-control sample is dominated by micropores with pore size below 2.0 nm.
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Supplementary Fig. 4. Thermal gravimetric curve of the N-enrich resource, i.e., melamine. This curve shows that the melamine additive has a notable weight loss in the temperature range of 300~350 °C and yields very little residual carbon above 350 °C, as decomposed to volatile matters.
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[bookmark: OLE_LINK1][bookmark: OLE_LINK76][bookmark: OLE_LINK77]Supplementary Fig. 5. SEM image of the semi-carbonized mushroom. In general, as the starting materials, semi-carbonized precursors obtained at low temperatures usually consist of sp2-hybridized and sp3-hybridized carbon atoms, where those sp3-hybridized carbon atoms play important roles in crosslinking the graphite-like microcrystals within the semi-carbonized framework. Thus, the semi-carbonized mushroom displays a morphology of irregular bulk.
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[bookmark: OLE_LINK25]Supplementary Fig. 6. SEM image of the M-control sample. The sp3-hybridized carbon atoms were more reactive than sp2-hybridized carbon atoms, resulting in preferential removal of sp3-hybridized carbon atoms in normal KOH activation process. After etching the sp3-hybridized carbon atoms, the graphite-like microcrystals are no longer restricted, leading to the nanosheet-like structure.
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Supplementary Fig. 7. Photo of the as-prepared M-PC and M-control sample. The priority of removal of the sp3-hybridized carbon atoms was not only unbeneficial to generate of the pore structure of as-prepared porous carbons but also causing a relatively low yield due to more carbon species had to be consumed to construct a highly porous structure, leading to a significantly higher yield in M-PC.
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Supplementary Fig. 8. SEM image of the M-PC. With the presence of nitrogen heteroatoms, the sp2-hybridized carbon atoms but not sp3-hybridized carbon atoms were preferentially etched, and thus the M-PC can maintain the original irregular bulk as its parent sample, i.e., semi-carbonized mushroom.
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Supplementary Fig. 9. XRD patterns of the M-PC and M-control sample. In XRD patterns, the (002) diffraction peak is assigned to the sp2-hybridized carbon. In the traditional process, the sp3-hybridized carbon atoms were etched, remaining a higher proportion of sp2-hybridized carbon atoms in control sample. While introducing the nitrogen atoms, the sp2-hybridized carbon atoms were preferentially etched, resulting in a lower proportion of sp2-hybridized carbon atoms in M-PC. Thus, the diffraction intensity of (002) diffraction peak in the control sample was higher than that of the M-PC.
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Supplementary Fig. 10. Raman spectra of the M-PC and M-control sample. In the Raman spectra, the G-band located at about 1580 cm-1 corresponds to the E2g symmetry vibration mode of sp2-hybridized carbon atoms in both rings and chains. The higher intensity of the M-control sample indicates its higher proportion of sp2-hybridized carbon atoms when compared to the M-PC.
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Supplementary Fig. 11. Calculated values of ID/IG of the M-PC and M-control sample. The higher ratio of ID/IG of the M-PC indicates its higher proportion of sp3-hybridized carbon atoms when compared to the M- control sample.
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[bookmark: _Hlk25828281][bookmark: OLE_LINK3]Supplementary Fig. 12. High-resolution C1s spectra of (a) M-PC and (b) M-control sample. The content of sp3-hybridized atoms and sp2-hybridized carbon atoms can be quantitatively determined by XPS. The XPS results reveal that the ratio between sp3-hybridized carbon atoms and sp2-hybridized carbon atoms in the M-PC and M-control sample are 0.9 and 0.3, respectively. It further demonstrates that the sp3-hybridized carbon atoms were preferentially removed in the traditional KOH activation, yielding a higher ratio of sp2-hybridized carbon atoms in the M-control sample. In contrast, the M-PC possesses a higher ratio of sp2-hybridized carbon atoms because the sp3-hybridized carbon atoms were preferentially removed during the process for fabricating M-PC.
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Supplementary Fig. 13. Excess hydrogen uptake curves measured at (a) 20 bar, (b) 30 bar and (c) 40 bar for M-PC. The H2 uptake properties of the M-PC were performed at -196 oC in the pressure range from 20 to 40 bar. The M-PC delivers very excellent adsorption H2 capacities of 5.8 wt.%, 6.6 wt.% and 8.4 wt.% at 20, 30 and 40 bar, respectively.
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[bookmark: _Hlk15586384][bookmark: OLE_LINK13]Supplementary Fig. 14. CO2 capture isotherms of M-PC obtained at (a) 20 bar, (b) 30 bar and (c) 40 bar. The CO2 uptake properties of the M-PC were performed at 25 oC in the pressure range from 20 to 40 bar. The M-PC delivers very attractive adsorption CO2 capacities of 24.4 mmol g-1, 30.2 mmol g-1 and 39.6 mmol g-1 at 20, 30 and 40 bar, respectively.
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Supplementary Fig. 15. Galvanostatic charge/discharge curves measured at various current densities in a three-electrode system by using 6 mol L-1 KOH aqueous electrolyte. The curves show no appreciable voltage drop at different current densities. The M-PC shows intriguing specific capacitance of 634, 430, 343, 318, 302, 287, 283, 275, 267 and 266 F g-1 at 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 40 and 50 A g-1, respectively. 

Supplementary Table 1. Comparison of the specific surface area and yield for porous carbons prepared in this work and the state-of-the-art carbon materials reported in the literatures.
	References
	Sample
	Specific surface area (m2 g-1)
	Yield (wt.%)

	
	M-PC
	4482
	9.52

	This work
	C-PC
	3504
	9.62

	
	PR-PC
	3954
	35.08

	1
	K-RPC
	2016
	1.4

	2
	CR-850-RA
	1210
	23.2

	3
	HPNCT-800
	1776
	20.8

	4
	GLUHT/N/5.0
	2129
	4.0

	5
	Glu-180-1000
	1704
	6.0

	6
	SAC4
	618.54
	4.11

	7
	M1273-150
	3350
	2.1

	8
	SF-HPC
	3350
	6

	9
	AG-4–750
	2526
	5

	10
	PPNC-700
	178
	8.5

	11
	KOH-C
	726
	12.5

	12
	AC-4
	2264
	18.0

	13
	PFAC
	1223
	32.1

	14
	BLPC
	1521
	30.3

	15
	-
	917
	18.7

	16
	PGC
	1103
	17

	17
	KOH@LiCl/KCl
	997
	10.3

	18
	PVFC800
	1012
	35.1

	19
	MPC-750
	1881
	14

	20
	BHA-HPC
	2060
	17

	21
	CPH-09
	490
	13.5




Supplementary Table 2. Comparison of the specific surface area for M-PC and the state-of-the-art materials reported in the literatures.
	References
	Sample
	Specific surface area (m2 g-1)

	This work
	M-PC
	4482

	22
	HPC-650
	1093

	23
	HEBLC-3
	2312

	24
	C-HPC
	3532

	25
	C-PC-3
	3315

	26
	PPC
	3751

	27
	HMPC
	3257

	28
	HPC-700
	3151

	29
	AC-K5
	3190

	30
	MNC-1-AC-3
	2745

	31
	CNX-1-AC
	2864

	32
	S4800P
	3951

	33
	CN4800
	3802

	34
	L2600P
	2224

	35
	SD2600
	866

	36
	SD4800D
	2980

	37
	LAC4800
	3235

	38
	CKHP800-2
	1256

	39
	AC-CB850@5Ton
	2582

	40
	G-3.6-1
	3470

	41
	CZYP
	1897

	42
	ACGR4700
	3144

	43
	CNL1-4700P
	2315

	44
	CM800AN
	2762





Supplementary Table 3. Comparison of the hydrogen uptake capacity for M-PC and for M-PC and the state-of-the-art porous materials reported in the literatures.
	References
	Sample
	SBET (m2 g-1)
	H2 uptake (wt %)

	
	
	
	20 bar
	30 bar
	40 bar

	This work
	M-PC
	4482
	5.8
	6.6
	8.4

	45
	MOF-210
	5850
	6.9
	7.8
	8.2

	46
	MOF-5
	3800
	-
	-
	7.1

	47
	NU-100 (MOF)
	6143
	6.9
	-
	-

	48
	MOF-5
	2800
	5.1
	5.2
	5.2

	49
	MOF-177
	5700
	6.1
	6.7
	7.1

	33
	CN4800
	3802
	5.5
	5.8
	6.0

	32
	MPPY4
	3844
	6.0
	6.3
	6.5

	50
	AC-6
	3808
	5.1
	5.4
	5.6

	37
	LAC4800
	3235
	4.8
	-
	-

	51
	CA-4700
	3771
	7.0
	7.2
	-

	52
	Ch700/700/3
	3066
	-
	-
	5.6

	53
	AC-BF900@5Ton
	3323
	6.5
	-
	-

	54
	CAC850-5
	3708
	-
	-
	5.8

	55
	UMCM-150
	2300
	-
	-
	5.7

	56
	AG-4–700
	2264
	4.5
	4.6
	4.7

	57
	ILCOF-1
	2723
	-
	-
	4.7

	58
	DUT-38-A-950-4
	3100
	4.1
	4.42
	5.2

	59
	Activated carbon
	930
	-
	2.3
	-

	60
	PCN-11
	1931
	5.1
	5.2
	5.2

	61
	CAC1
	3711
	-
	-
	5.8

	62
	CAC4
	3708
	-
	-
	5.8

	63
	Mo2C, 660
	1875
	4.35
	4.35
	4.35

	64
	KUA6
	3808
	5.1
	5.4
	5.6





Supplementary Table 4. Comparison of the CO2 capture capacity for M-PC and for M-PC and the state-of-the-art carbon materials reported in the literatures.
	References
	Sample
	SBET (m2 g-1)
	Carbon dioxide capture (mmol g-1)

	
	
	
	20 bar
	30 bar
	40 bar

	This work
	M-PC
	4482
	24.4
	30.2
	39.6

	65
	MOF-117
	4833
	25.4
	29.3
	30.2

	66
	NAC
	2524
	16.3
	20
	-

	67
	uGil-800
	3800
	20.3
	24.8
	27.3

	68
	K-PAF-1-750
	2926
	21.6
	25.6
	29.5

	69
	A-NPC
	2860
	19
	23.8
	-

	70
	HPC-5b2-1000
	2734
	20.5
	27
	-

	71
	VR-5
	2895
	27
	30.7
	33.6

	72
	SPC-5
	2980
	16.5
	21.29
	-

	73
	B-PC
	3167
	19.3
	26
	-

	33
	CN4800
	3802
	19.5
	-
	-

	74
	AA-3M
	3220
	20.4
	-
	30.1

	74
	AC-2M
	3540
	20.8
	-
	29.8

	74
	AS-2M
	3420
	20.5
	-
	30.6

	75
	VR93–4:1
	3410
	22
	-
	31.8

	76
	A-rNPC
	2580
	21.1
	26
	-

	77
	HPC5b2-1100
	2734
	20.8
	27
	-

	78
	Maxsorb
	3250
	19
	-
	25.5

	79
	IRMOF-1
	2833
	19.4
	-
	22

	34
	L2600P
	2224
	12.8
	-
	-

	80
	PA-400-KOH-4-600
	3322
	21
	27.5
	34.5

	81
	CZ13XFAETP
	3021
	22
	-
	-

	82
	ACCA4800
	3537
	21.1
	-
	-

	83
	KLB2
	1122
	12.7
	15.4
	-

	84
	G-3.6-2
	3460
	-
	32.6
	-





Supplementary Table 5. Comparison of the supercapacitive performance for M-PC and representative porous carbon reported in the literatures. 
	References
	Sample
	Capacitance
(F g−1)
	Current density
(A g-1)
	Electrolyte

	This Work
	M-PC
	634
	0.1
	6 M KOH

	
	
	430
	0.2
	

	
	
	343
	0.5
	

	85
	RT-ZnCl2
	156.1
	0.1
	3 M H2SO4

	86
	AMC-4
	225
	0.5
	1 M H2SO4

	87
	HPCSLS-X-1
	247
	0.05
	7 M KOH

	88
	CL9.3
	133.4
	0.2
	6 M KOH

	89
	NMCSs-11.6
	213
	0.5
	6 M KOH

	90
	Porous carbon foams
	280
	0.1
	1 M H2SO4

	91
	PCF
	246.5
	0.5
	3 M KOH

	92
	CESM
	297
	0.2
	1 M KOH

	93
	A-CCNs-1:2
	314
	0.1
	6 M KOH

	94
	BHNC
	301
	0.1
	6 M KOH

	95
	NC-700-3
	311
	0.25
	30 wt.% KOH

	96
	ACSB
	202
	[bookmark: OLE_LINK230][bookmark: OLE_LINK231]0.5
	6 M KOH

	97
	CAC2
	239
	0.05
	2 M KOH

	98
	AK
	325
	0.125
	1 M H2SO4

	99
	AC-700
	357
	0.05
	6 M KOH

	100
	HLPC
	342
	0.2
	6 M KOH

	101
	N,S-ACS2:1
	404
	0.1
	6 M KOH

	102
	BSPC-800
	255
	0.5
	6 M KOH

	103
	BNC-15
	268
	0.1
	6 M KOH

	104
	CA-C-1
	363
	0.1
	1 M H2SO4

	105
	GN/MWCNT
	265
	0.1
	6 M KOH

	106
	H3PO4/C-500
	206
	0.1
	6 M KOH

	107
	Carbon-ZS
	285.8
	0.1
	6 M KOH

	108
	N-OMCS
	288
	0.1
	6 M KOH

	109
	AC-600
	340
	0.1
	6 M KOH

	110
	PM-600-1.0
	278
	0.1
	1 M H2SO4

	111
	HC/N/KOH
	492
	0.1
	1 M H2SO4

	112
	N-MCN850
	397
	0.1
	6 M KOH

	113
	NS-PCMSs-SU-750
	271
	0.1
	6 M KOH

	114
	NHGCS
	306
	0.1
	2 M H2SO4

	115
	GSS
	172
	0.1
	6 M KOH
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