

Table S2 Thermal history model input table modified from Flowers et al. (2015)¹.

1. Thermochronological data

Samples and data used in simulations

Zuogong plateau

ZHe data: CD272, CD274, CD276

AHe date: CD272, CD273, CD274, CD275, CD276, CD277, CD279, CD280, CD282

AFT ages and lengths: CD272, CD273, CD274, CD275, CD276, CD277, CD279, CD280, CD282

Markam plateau

AHe data: CD260

AFT ages and lengths: CD260

Weixi plateau

ZHe data^a: CD252, WX11_03*, WX11_07*, WX11_08*, WX11_10*

AHe data^a: CD253, CD255, WX11_03*, WX11_07*, WX11_08*, WX11_10*

AFT ages and lengths: CD252, CD253, CD254

Data treatment, uncertainties, and other relevant constraints for all samples

Treatment: the individual crystals of the samples collected from the low-relief surfaces as input for bulk constraints in QTQt.

He data (Ma): Mean uncorrected He dates of each sample.

Fission-track annealing and He diffusion algorithms are from Ketcham et al. (2007)² and Gautheron et al. (2009)³, respectively.

For zircons with potential radiation damage (cf., having negative eU and age relationship), the diffusion model is from Guenthner et al. (2013)⁴.

Error (Ma) applied in modeling: The 1σ sample standard deviation of each sample was applied.

Grain dimensions (μm): Mean length and width of apatite crystals were used (Dataset S1).

Rs (μm): Mean equivalent spherical radius of zircon crystals for each sample (Dataset S2).

2. Additional geological information

Assumption

Explanation and data source

At present temperature of 10 ± 10 °C by 0 Ma

Modern annual ground surface temperature in eastern Tibet from National Climate Center of China Meteorological Administration (CMA)

	(http://www.nmic.cn/).
Simulations begin at near surface temperatures of 20 ± 10 °C at 35 ± 5 Ma for the Markam plateau	The sampled rocks must be exhumed to the surface because volcanic rocks were in angular contact with the underlying Mesozoic sediments around ~ 35 Ma (Su et al., 2018 ⁵ ; Dataset S4).
Simulations begin at peak temperatures of 750 ± 50 °C at 210 ± 10 Ma for the Zuogong plateau	Based on the intrusion ages of the Zuogong batholith ranging from 214 ± 3 to 216 ± 2 Ma dated by zircon U-Pb (Dataset S4).
Simulations begin at peak temperatures of 750 ± 50 °C at 230 ± 10 Ma for the Weixi plateau	Based on the intrusion ages of the Weixi batholith ranging from 232 ± 9 Ma dated by zircon U-Pb (Dataset S4).

3. System- and model-specific parameters

Modeling code	QTQt 5.5.0
Number of burn-in and post-burn-in iterations attempted	Each 1,000,000 for all simulations
Reheating allowed or not.	No reheating for simulations of Zuogong, Weixi and Markam samples

Data source:

* Liu-Zeng et al. (2018)⁶, see Table S1.

References

1. Flowers, R. M., Farley, K. A. & Ketcham, R. A. A reporting protocol for thermochronologic modeling illustrated with data from the Grand Canyon. *Earth Planet. Sc. Lett.* **432**, 425-435 (2015).
2. Ketcham, R. A., Carter, A., Donelick, R. A., Barbarand, J. & Hurford, A. J. Improved modeling of fission-track annealing in apatite. *Am. Mineral.* **92**, 799-810 (2007).
3. Gautheron, C., Tassan-Got, L., Barbarand, J. & Pagel, M. Effect of alpha-damage annealing on apatite (U-Th)/He thermochronology. *Chem. Geol.* **266**, 157-170 (2009).
4. Guenthner, W. R., Reiners, P. W., Ketcham, R. A., Nasdala, L. & Giester, G. Helium diffusion in natural zircon: Radiation damage, anisotropy, and the interpretation of zircon (U-Th)/He thermochronology. *Am. J. Sci.* **313**, 145-198 (2013).
5. Su, T. et al. Uplift, climate and biotic changes at the Eocene–Oligocene transition in south-eastern Tibet. *National Science Review*, 1-10 (2018).
6. Liu-Zeng, J. et al. Multiple episodes of fast exhumation since Cretaceous in southeast Tibet, revealed by low-temperature thermochronology. *Earth Planet. Sc. Lett.* **490**, 62-76 (2018).