

1 **Supplementary Information**

2 **Serum proteins potentiate therapeutic efficacy of lysocin E against *S. aureus***

3
4 Hiroshi Hamamoto¹, Suresh Panthee¹, Atmika Paudel^{1,4}, Kenichi Ishii^{2,5}, Jyunichiro Yasukawa^{2,6}, Su Jie^{2,7}, Hiroaki Itoh²,
5 Kotaro Tokumoto², Masayuki Inoue², Kazuhisa Sekimizu^{1,3}

6
7 ¹ Teikyo University Institute of Medical Mycology, Tokyo, Japan

8 ² Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan

9 ³ Genome Pharmaceuticals Institute, Ltd, Tokyo, Japan

10
11 e-mail: sekimizu@main.teikyo-u.ac.jp

12
13 Present address

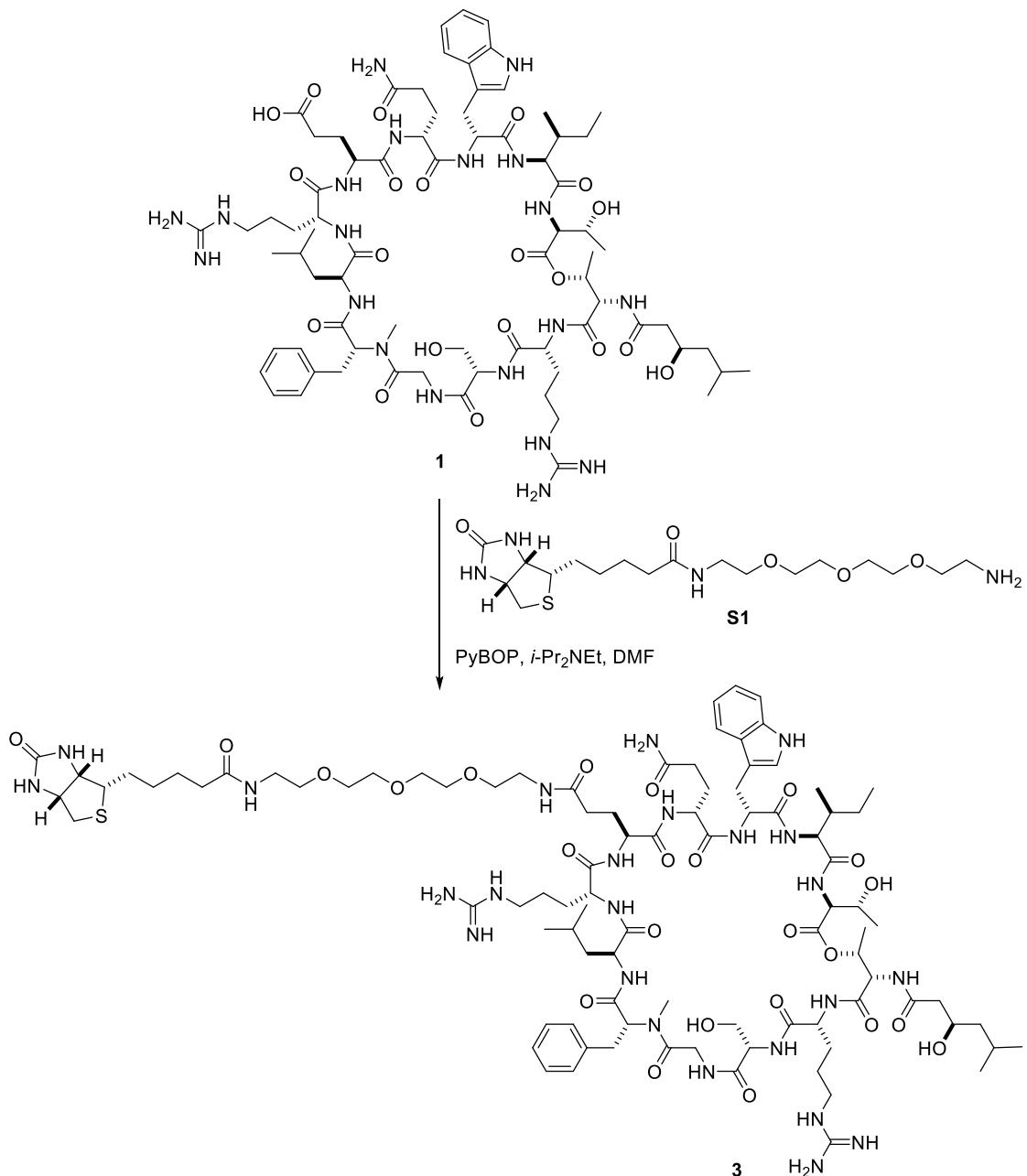
14 ⁴ Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan.

15 ⁵ Department of Biological Sciences, School of Science, The University of Tokyo, Tokyo, Japan.

16 ⁶ Department of Biochemistry, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kyoto,
17 Japan

18 ⁷ National Marine Environmental Monitoring Center, Dalian, China

20 **Supplementary information included in this file:**

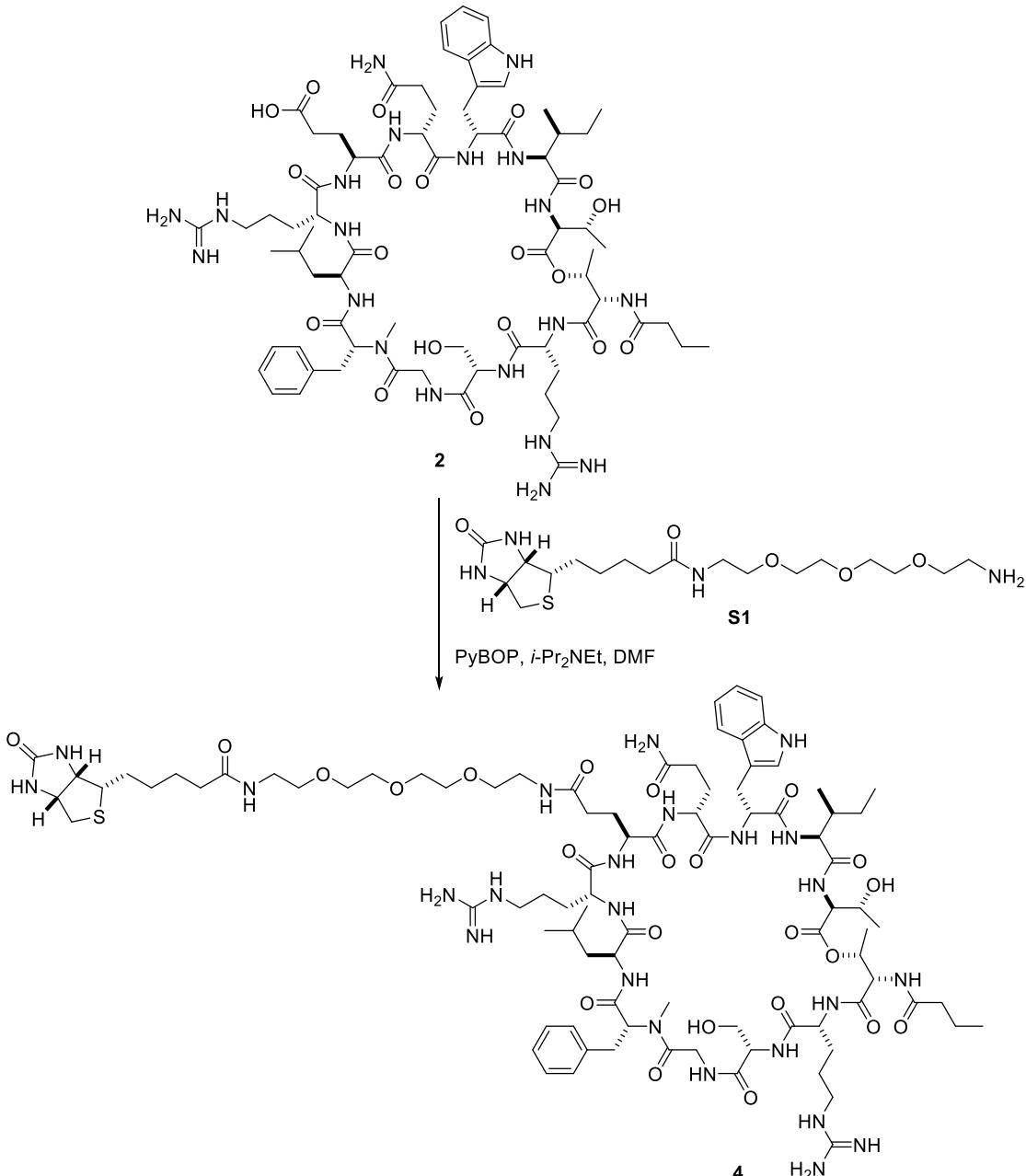

21 (i)	Supplementary Methods	3
22 (ii)	Supplementary Reference	7
23 (iii)	Supplementary Figures	8

24

25 **Supplementary Methods**

26 **General Remarks.** All reactions sensitive to air or moisture were performed under argon (Ar) atmosphere in
27 dry solvents, unless otherwise noted. CH_2Cl_2 and DMF were purified by a Glass Contour Solvent Dispensing
28 System (Nikko Hansen & Co., Osaka, Japan). All other reagents were used as supplied unless otherwise stated.
29 Analytical thin-layer chromatography was performed using E. Merck Silica gel 60 F254 pre-coated plates. High
30 performance liquid chromatography (HPLC) experiments were performed on an HPLC system equipped with
31 a PU-4180 RHPLC pump (JASCO Products Co., Oklahoma City, OK, USA), an 1100 HPLC system (Agilent
32 Technologies, Santa Clara, CA, USA), or a 1200 HPLC system (Agilent). ^1H and $^{13}\text{C}\{^1\text{H}\}$ nuclear magnetic
33 resonance (NMR) spectra were recorded on an ECX 500 (500 MHz for ^1H NMR, 125 MHz for ^{13}C NMR)
34 spectrometer (JEOL Ltd., Tokyo, Japan). Chemical shifts are denoted in δ (ppm) relative to residual solvent
35 peaks as an internal standard (CDCl_3 , ^1H δ 7.26, ^{13}C δ 77.0; $\text{DMSO-}d_6$, ^1H δ 2.50). Infrared spectra were
36 recorded on an FT/IR-4100 spectrometer (JASCO). HRMS spectra were recorded on a MicrOTOFII (Bruker
37 Daltonics, Billerica, MA, USA) electrospray ionisation time of flight (TOF) mass spectrometer. Optical
38 rotations were recorded on a P-2200 polarimeter (JASCO).

39



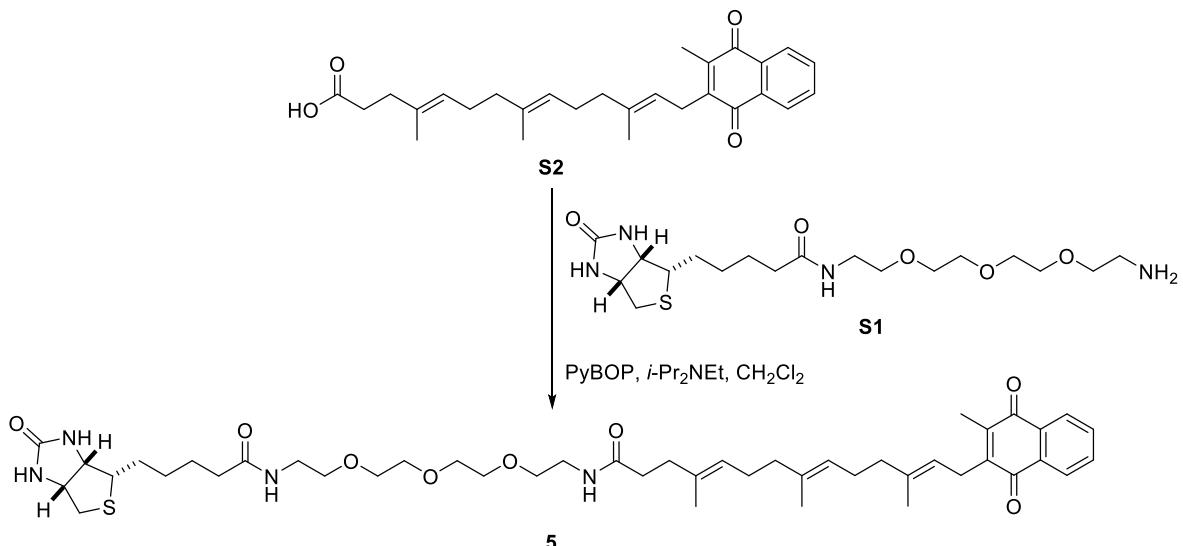
40

41 **3 (Biotinylated lysocin E).** A solution of PyBOP (3.12 mg, 6.00 μ mol) in DMF (150 μ L) and *i*-Pr₂NEt (1.95
 42 μ L, 12.0 μ mol) was added to a solution of **1** (Lysocin E) (0.993 mg, 0.600 μ mol) and amine **S1** (7.53 mg, 18.0
 43 μ mol) in DMF (150 μ L) at 24 °C. The resultant mixture was stirred at 24 °C for 3 h. MeOH/H₂O (58.0/42.0)
 44 containing 0.05% TFA (400 μ L) was added to the reaction mixture at 0 °C. The resultant solution was
 45 concentrated. The residue was purified by a first HPLC purification (column: Inertsil ODS-4 4.6 \times 250 mm,
 46 eluent A: MeOH + 0.05% TFA, eluent B: H₂O + 0.05% TFA, A/B = 62.0/38.0, flow rate: 0.80 mL/min,
 47 temperature: 40 °C, detection: UV 280 nm), second HPLC purification (column: TSKgel Amide-80 7.8 \times 300
 48 mm, eluent A: MeCN + 0.05% TFA, eluent B: H₂O + 0.05% TFA, A/B = 88.0/12.0, flow rate: 2.0 mL/min,
 49 temperature: 40 °C, UV 280 nm), and third HPLC purification (column: Inertsil ODS-4 4.6 \times 250 mm, eluent
 50 A: MeOH + 0.05% TFA, eluent B: H₂O + 0.05% TFA, linear gradient A/B = 53.0/47.0 to 78.0/22.0 over 50 min,

51 flow rate: 2.0 mL/min, temperature: 40 °C, detection: UV 280 nm) to give **3** (0.583 mg, 0.258 µmol, 43%):
52 white solid; HRMS (ESI-TOF) calcd for C₉₃H₁₅₀N₂₄O₂₄S [M+2H]²⁺ 1010.0499, found 1010.0511.

53

54


55 **4 (Biotinylated Lysocin E Bu-type).** Lysocin E Bu-type (**2**) was prepared according to the main references¹³. The
56 HRMS and HPLC data of **2** were identical to those of the reported data [CAS 2027547-29-9].

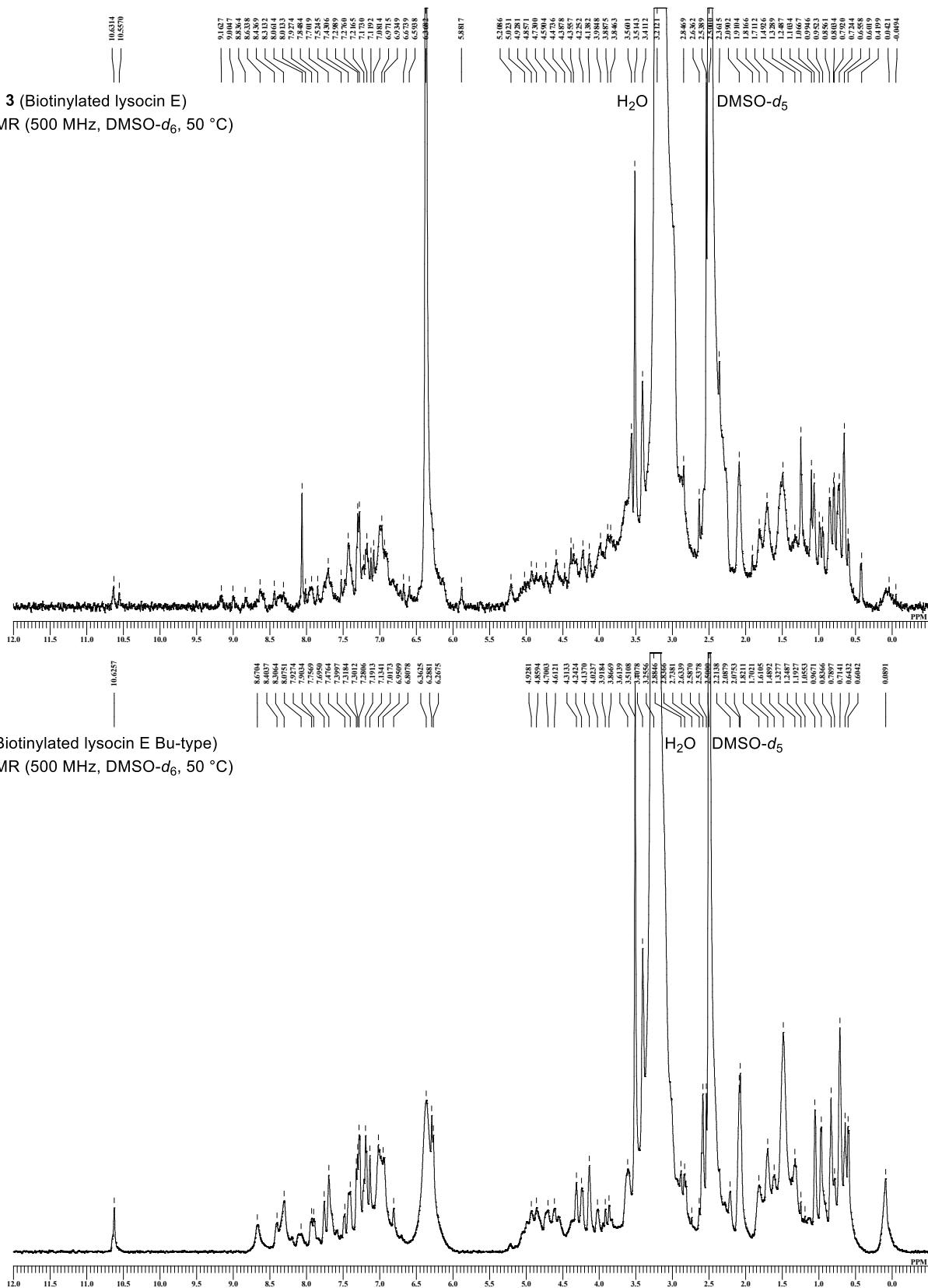
57 A solution of PyBOP (3.73 mg, 7.16 µmol) in DMF (179 µL) and *i*-Pr₂NEt (2.32 µL, 14.3 µmol) was added
58 to a solution of **2** (Lysocin E Bu-type) (1.20 mg, 0.716 µmol) and amine **S1** (9.00 mg, 21.5 µmol) in DMF (179
59 µL) at 29 °C. The resultant mixture was stirred at 29 °C for 3 h. H₂O containing 0.05% TFA (1.80 mL) was
60 added to the reaction mixture at 0 °C. The resultant solution was lyophilised. The residue was dissolved in
61 MeCN/H₂O (25.0/75.0) containing 0.05% TFA (5.00 mL). The solution was loaded onto an InertSep Slim C18-

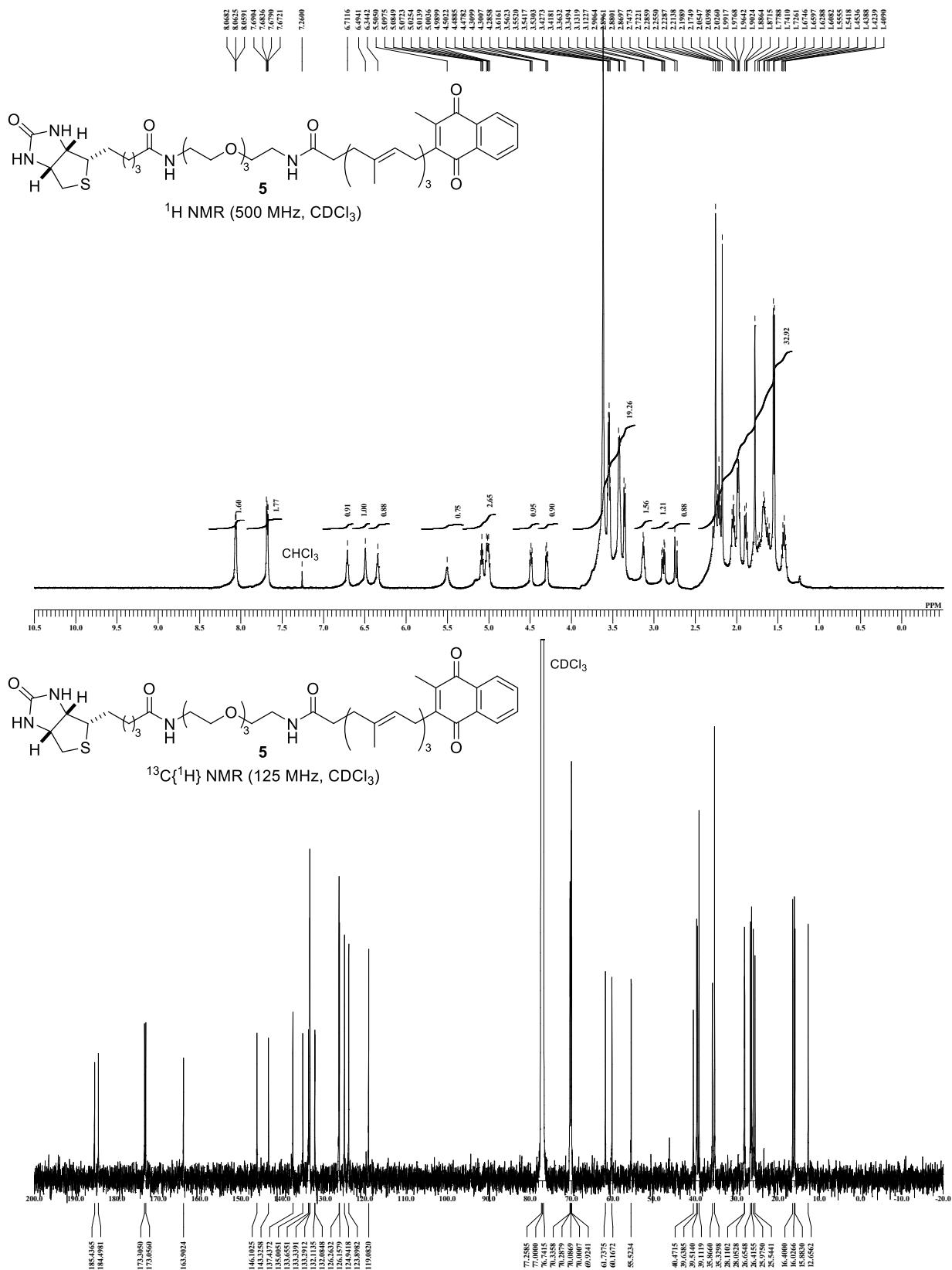
62 B column (360 mg). The column was washed with MeCN/H₂O (25.0/75.0) containing 0.05% TFA (5.00 mL).
63 The crude peptide was eluted with MeCN/H₂O (60.0/40.0) containing 0.05% TFA (10.0 mL). The eluate was
64 lyophilised. The residue was purified by a first HPLC purification (column: TSKgel Amide-80 7.8 × 300 mm,
65 eluent A: MeCN + 0.05% TFA, eluent B: H₂O + 0.05% TFA, A/B = 88.0/12.0, flow rate: 2.0 mL/min,
66 temperature: 40 °C, detection: UV 280 nm) and second HPLC purification (column: Inertsil ODS-4 10 × 250
67 mm, eluent A: MeOH + 0.05% TFA, eluent B: H₂O + 0.05% TFA, A/B = 65.0/35.0, flow rate: 2.0 mL/min,
68 temperature: 40 °C, detection: UV 280 nm) to give **4** (0.723 mg, 0.329 μmol, 46%): white solid; HRMS (ESI-
69 TOF) calcd for C₉₀H₁₄₃N₂₄O₂₃S [M+H]⁺ 1960.0474, found 1960.0446.

70

71

72

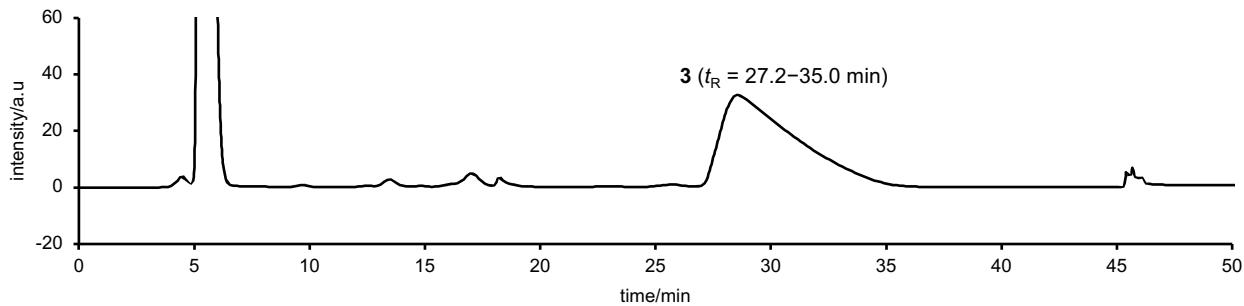

73 **5 (Biotinylated menaquinone).** Carboxylic acid **S2** was synthesised according to the literature^{S1}. The ¹H NMR
 74 spectrum of **S2** was identical to that of the reported data [CAS 85216-29-1]^{S1}.
 75 A solution of PyBOP (6.57 mg, 12.6 μ mol) in CH₂Cl₂ (56.2 μ L) and a solution of *i*-Pr₂NEt (2.20 μ L, 12.6 μ mol)
 76 in CH₂Cl₂ (56.2 μ L) were added to a solution of the above carboxylic acid **S2** (3.66 mg, 8.42 μ mol) and amine
 77 **S1** (5.29 mg, 12.6 μ mol) in CH₂Cl₂ (56.2 μ L) at 0 °C. The reaction mixture was stirred at room temperature for
 78 2 h, and then concentrated. The residue was purified by preparative thin-layer chromatography (CHCl₃/MeOH
 79 10/1) to give biotinylated menaquinone **5** (5.14 mg, 6.15 μ mol, 73%): yellow film; $[\alpha]_D^{23} +17.5$ (*c* 0.257,
 80 CHCl₃); IR (film) 3287, 3081, 2922, 1696, 1655, 1549, 1451, 1293, 1100 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ
 81 1.41–2.29 (34H, m), 2.73 (1H, d, *J* = 12.6 Hz), 2.89 (1H, dd, *J* = 13.2, 5.2 Hz), 3.13 (1H, m), 3.35–3.62 (16H,
 82 m), 4.30 (1H, dd, *J* = 7.5, 4.6 Hz), 4.49 (1H, dd, *J* = 6.9, 5.2 Hz), 4.99–5.20 (3H, m), 5.51 (1H, s), 6.34 (1H, t,
 83 *J* = 5.2 Hz), 6.49 (1H, s), 6.71 (1H, t, *J* = 5.2 Hz), 7.68 (2H, dd, *J* = 5.7, 3.4 Hz), 8.06 (2H, m); ¹³C{¹H} NMR
 84 (125 MHz, CDCl₃) δ 12.7, 15.9, 16.0, 16.4, 25.5, 26.0, 26.4, 26.7, 28.1, 35.3, 35.9, 39.1, 39.5, 39.6, 40.5, 55.5,
 85 60.2, 61.7, 69.9–70.3 (8C), 119.1, 123.9, 124.9, 126.2, 126.3 (2C), 132.1, 133.29, 133.34 (2C), 133.7, 135.0,
 86 137.4, 143.3, 146.1, 163.9, 173.1, 173.3, 184.5, 185.4; HRMS (ESI-TOF) calcd for C₄₆H₆₆N₄O₈SNa [M+Na]⁺
 87 857.4494, found 857.4472.


88

89 Supplementary Reference

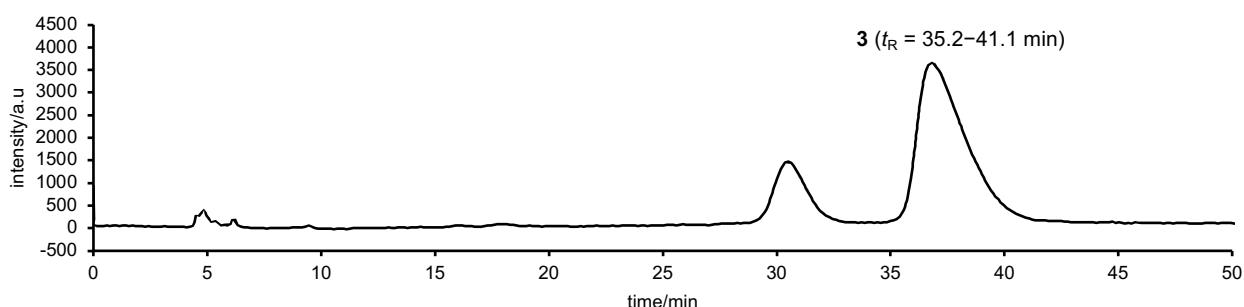
90 S1 Fujii, S. *et al.* Systematic synthesis and anti-inflammatory activity of omega-carboxylated menaquinone
 91 derivatives--Investigations on identified and putative vitamin K(2) metabolites. *Bioorg. Med. Chem.* **23**, 2344–
 92 2352, doi:10.1016/j.bmc.2015.03.070 (2015).

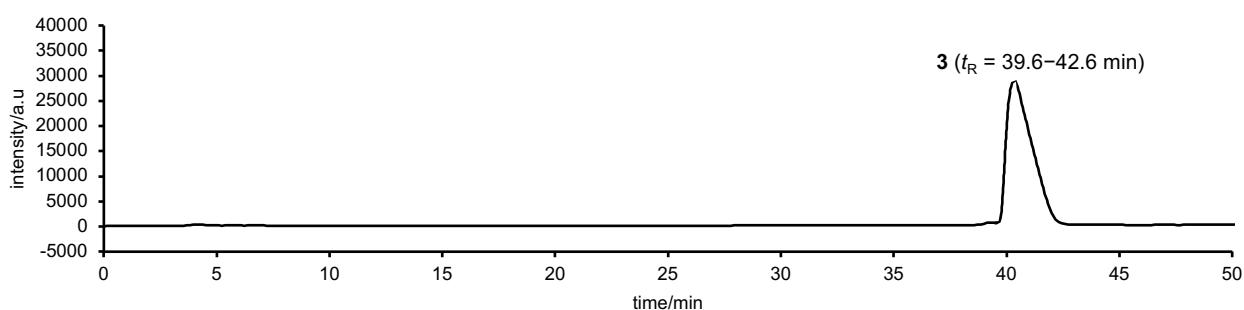
93



96

97 Supplementary Figure 2. ^1H and $^{13}\text{C}\{^1\text{H}\}$ NMR spectra of **5** (Biotinylated menaquinone).

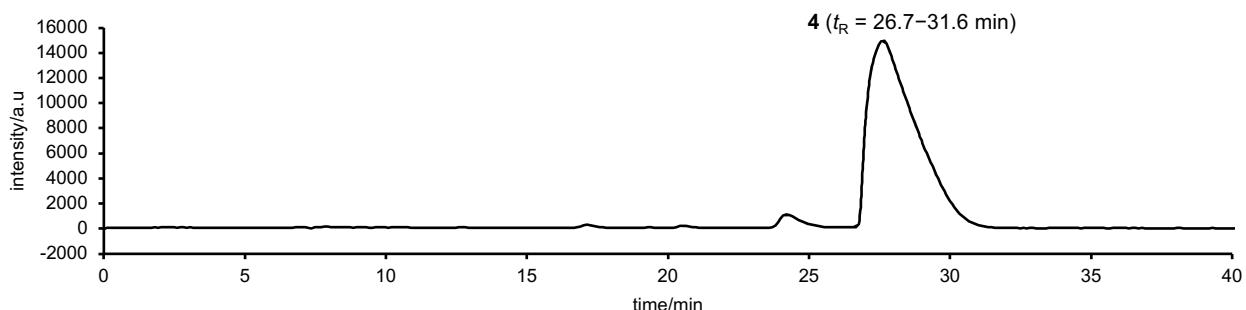

98


99

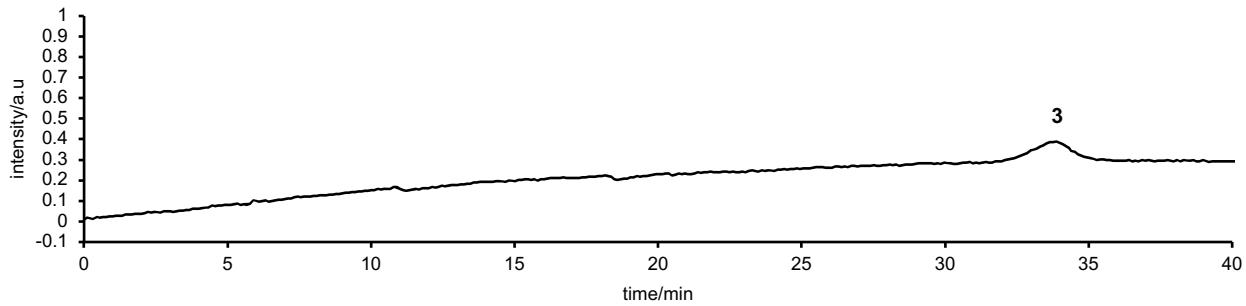
100 **Supplementary Figure 3.** HPLC chromatogram for first HPLC purification of **3** (Biotinylated lysocin E).
 101 Column: Inertsil ODS-4 4.6 × 250 mm, eluent A: MeOH + 0.05% TFA, eluent B: H₂O + 0.05% TFA, A/B =
 102 62.0/38.0, flow rate: 0.80 mL/min, temperature: 40 °C, detection: UV 280 nm.


103

108

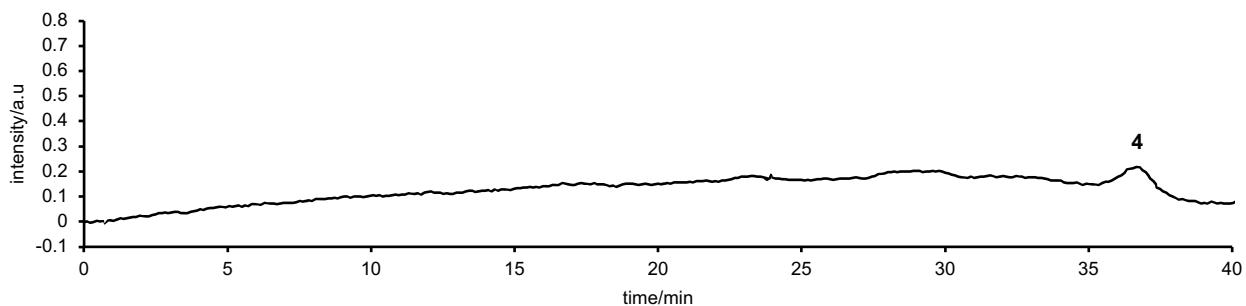

114

115


116 **Supplementary Figure 6.** HPLC chromatogram for first HPLC purification of **4** (Biotinylated lysocin E Bu-
117 type). Column: TSKgel Amide-80 7.8 × 300 mm, eluent A: MeCN + 0.05% TFA, eluent B: H₂O + 0.05% TFA,
118 A/B = 88.0/12.0, flow rate: 2.0 mL/min, temperature: 40 °C, UV 280 nm.

119

120


121 **Supplementary Figure 7.** HPLC chromatogram for second HPLC purification of **4** (Biotinylated lysocin E Bu-
122 type). Column: Inertsil ODS-4 10 × 250 mm, eluent A: MeOH + 0.05% TFA, eluent B: H₂O + 0.05% TFA, A/B
123 = 65.0/35.0, flow rate: 2.0 mL/min, temperature: 40 °C, detection: UV 280 nm.

124

125 **Supplementary Figure 8.** HPLC chromatogram of purified **3** (Biotinylated lysocin E). Column: Inertsil ODS-
 126 4 4.6 × 250 mm, eluent A: MeOH + 0.05% TFA, eluent B: H₂O + 0.05% TFA, A/B = 64.0/36.0, flow rate: 0.50
 127 mL/min, temperature: 40 °C, detection: UV 280 nm.

128

129

130 **Supplementary Figure 9.** HPLC chromatogram hart of purified **4** (Biotinylated lysocin E Bu-type). Column:
 131 Inertsil ODS-4 4.6 × 250 mm, eluent A: MeOH + 0.05% TFA, eluent B: H₂O + 0.05% TFA, A/B = 62.0/38.0,
 132 flow rate: 0.50 mL/min, temperature: 40 °C, detection: UV 280 nm.

133