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Supplementary Note 1 Derivation of total abundance

In this section, we calculate the total number and total mass of the plastic fragments. In
the main text, the amplitude A is nondimensional when S(2) is fitted to an observed size
spectrum per unit volume of sea water or it has the dimension of length cubed when the
observation is a raw size spectrum as in Cézar et al. Accordingly, the following total number
and mass are regarded as per unit volume of sea water or raw depending on which type of

size spectrum S(A1) denotes.

A transformation of variables v/ = v/y* in (4) leads to

1
S(v)dv = A7*3v’2,—1dv'. (S1)
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The total number of plastic fragments over 0 < A < A (< L) can then be written as
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and with this familiar formula (¢”" - 1)~! = Z;‘;l e,

N = Ay™ Z / VvZ2e V' dv'
j=1 1/’}/*/\

. 1 . 1)\ .
= Ay [2Li3(e V") 42| — | Lip(e "™ = [ — | In(1 =7 1/"™)|,  (S3a)
YA YA

where

o0

. 7/
Lis(z) = Z F
j=1
When A > y*1,
N ~ Ay™2Li3(1) = 0 Ay™, (S3b)

2



where o = 2.404, because Liz(1) = Z;’;l j73 =~ 1.202 (known as Apéry’s constant;

&

see https://oeis.org/A002117). This approximation is equivalent to /17L S()da

fooo S(A)dA. This approximation is a natural one when A ~ L because 1/y*A ~ 1/y*L

2LAh¢/y and this factor is therefore the ratio of the surface energy LAh¢ to the mean
environmental energy y. We naturally assume that LAh¢ < vy because otherwise not many

small fragments would be generated.

Similarly, the total mass of plastics is
A
M = / pA2ARS(Q)dA, (S4)
0

where p is the mass density of the plastic material and A# is the thickness of the original

plate. After similar transformations as above,
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using the same approximation, y*A > 1, as for N. Unlike N, M depends on A even when
v*A > 1 because the contribution of larger plastic pieces is significant to M whereas it is

negligible to N.


https://oeis.org/A002117

Supplementary Note 2 Analogy with black body radiation

Our size distribution (Egs. 4 and 5) is analogous to Planck’s spectrum of black body radia-

tion’!, which is given by>°
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where 4 is the Planck constant, c is the electromagnetic wave speed, k is the Boltzmann
constant, and 7 is temperature. As compared to (4), this formula can be obtained formally
if we take A — 27h/c® and y — kT and multiply the right-hand side of (4) by v. The last
difference is merely due to the dimensionality of the v-space: the numerator of our formula
becomes also proportional to v3 if the fragmentation of plastics is three-dimensional (see
below). The corresponding wavelength (size) spectrum is obtained from the relation A = ¢/v

for Planck’s and A = 1/v for our spectrum.

Planck’s formula is originally derived for electromagnetic radiation within a vacuum
cavity®. The atoms on the cavity wall absorb and emits electromagnetic waves or photons.
A photon with a wavenumber of v has an energy of hv. The term hv/(e™/*T — 1) in (S6)
represents the expected value of the energy under an equilibrium state, and this term divided
by hv is the so called Bose distribution®’, which provides the expected value of the number
of photons. Since the wavenumber interval (v, v + dv) includes 87v2dv/c® modes per unit
volume of the three-dimensional cavity, the energy spectrum is expressed in the form of the

product between the number of modes and the expected value of the energy (Eq. S6).



The last point does not have a close analogy with the plastic model. As we have seen,

Planck’s energy distribution is essentially

(number of modes o v?) x (energy of a photon hv) x (Bose distribution),

where the Bose distribution describes the expected number of photons for each mode. On

the other hand, our plastic “wavenumber” spectrum is essentially

(number of fragments oc v?) x (Bose distribution),

where the Bose distribution describes the expected number of original plastic pieces which are
fragmented. If the original plastic piece is a block and its fragmentation is three-dimensional,
the number of fragments will be proportional to »* and the functional form of the plastic

“wavenumber” distribution with respect to v will be exactly the same as Planck’s.



Supplementary Note 3 Superposition of size distributions

Size distribution. We explore how the size distribution is modified if multiple source regions
with different parameters contribute. Here we assume that each source region contributes the
same number of plastic fragments (), which gives A in (5) as a function of y*:

N N
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according to (6). In this case, the size spectrum (5) can be written as

b3 1

S*(A;a,b”) = aFeb*/ﬂ——l’

where a is a nondimensional constant and b* = b/y = 1/y".

We next calculate the average of S*(A; 1, 5*) from b — Ab*/2 to b} + Ab*/2. The
order of magnitude of b* is known because the value of A that gives the peak of the size
spectrum is O(b*) (it can be shown that it is approximately 0.255b* from Eq. 5 and this
A value is constrained by observations. The average is calculated numerically changing b*
at an interval of 0.1 mm. For an illustration, and we look at three cases with (b}, Ab™) =
(4 mm, 4 mm), (7 mm, 4 mm), (5mm, 8 mm), and plot the results in Suppl. Figs. S3a, S3c,
and S3e, respectively. The solid black curve plots the averaged S*; the dashed and dotted

curves plot §*(4; 1, b}) and $*(4; 1, b3), where b} = by — Ab*/2 and b} = by + Ab* /2.

We then fit $*(41; a, b*) to the average profile by adjusting a and b*, which is the red
curve. This is to simulate the fitting of our theoretical curve to an observation which may be
a mixture of plastic pieces from different origins. Compared to the “pure” profile (red curve),
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the peak of the average profile (black curve) shifts leftward, the peak value is lower, and the

values are larger in the smallest size range.

The right panels of Suppl. Fig. S3 plot the error (cyan curve) of the fitting of the pure
profile to the average as a function of Ab* with the same b value as in the respective left
panel, which corresponds to the maximum value of Ab* of the right panel. As expected, the
fitting error grows with Ab*. The green curve plots the optimal b* as a function of Ab*. The
optimal »* changes little and stays close to b}, (thin gray line), indicating that the value of b*

(= 1/y* by definition) obtained by fitting observations is close to its average value.

Suppl. Fig. S4 plots the average and optimal profiles from Suppl. Fig. S3a but with the
horizontal axis logarithmic (panel a) and with both axes logarithmic (panel b). The difference
between the two curves is qualitatively similar to the difference between the observed and the

best-fit theoretical curves for Cézar et al’s South Atlantic data in Fig. 3d.

Total mass. Here we explore the impacts of superposition on the total mass. Suppose that
the observed size distribution is a superposition of different distributions with different values
of A, y, ¢, L, and Ah (See Fig. 1). We denote those parameter values for each distribution
by Ag, yi, etc. for k = 1,..., K. Assume that the shape of the superposition is similar to a

“pure” distribution as in Figs. S3a and S3c.

By fitting our model spectrum to the observed, we obtain optimal values for 5* and A.

Because the size distribution is similar to the corresponding “pure” distribution, (S5a) or



(S5b) should give an accurate total mass. In the main text, we used this approach to infer the
value of A# so that the calculated total mass agrees with the observed. This approach can be

formulated by, if we use the approximate form (S5b) for simplicity,

K
PkA In A
Ck CkA/’lk’

PAhA
b*

In(A/b*) =

k=1
where ¢ = by [Ahy = 2Li¢k /vk- The values of A and b* on the left-hand side are those
obtained by fitting the observed distribution and A / on the left-hand side is the inferred value.

Therefore, the inferred A/ is an “average” of Ahy’s in the sense that

K
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Obviously, the result depends on the parameters Ay, yi, etc. If, for example, we
assume that the each source contributes an equal number of plastic fragments (), then

A = b;fN/U = (ckAhg)’N /o, and the resultant dependency of the inferred A% on A hy is
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Supplementary Figures and Tables

All the plastics are contained here —

\

System

Environment (Heat bath) ~ m

\ Energy characterized by y (kT)

Fig. S1: Analogy between black-body radiation and microplastics. The “system” corresponds to
the vacuum cavity where electromagnetic radiation occurs or the beaches where microplastics are
produced. The “environment” is the heat bath, the material surrounding the cavity characterized by

kT, or the energy reservoir (winds and waves) characterized by vy.



Table. S1: Optimal y* for different observation regions

10

Environmental energy y* [mm™!]

Region

Literature

0.24 North Atlantic Ocean Cozar et al. 2014
0.24 Around Japan Isobe et al. 2015
0.26 Western Pacific transoceanic section  Isobe et al. 2019
0.27 South Indian Ocean Cozar et al. 2014
0.27 South Atlantic Ocean Cézar et al. 2014
0.35 North Pacific Ocean Cézar et al. 2014
0.35 South Pacific Ocean Cézar et al. 2014
0.39 Seto Inland Sea Isobe et al. 2014
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Fig. S2: Size distribution expressed as a histogram (a) and as a spectral density (b) from Isobe et
al’s’! observation around Japan. The histogram is a replot of Isobe et al’s Fig2. We have obtained
the data by digitizing the original figure using WebPlotDigitizer version 4.3 (https://automeris.
io/WebPlotDigitizer/). The size spectral density is indicated by black bars with its scale shown
on the left axis of panel (b), and the gray bars on panel (b) are the same histogram with its scale on
the right axis. The spectral density is plotted in such a way that the black bars exactly coincide with
the gray ones for 4 < Smm. In panel (b), sizes larger than 10 mm are omitted because the spectral

values are almost zero there.
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Fig. S3: Superposition of size distributions with different values of * (= 1/y*) ranging from
bl — Ab*/2to bl + Ab*/2 for (a) b} = 4mm and Ab* = 4mm, (¢) b;. = 7mm and Ab* = 4 mm, and
(e) b7 = 5mm and Ab* = 8 mm. The dashed and dotted curves on the left panels are S(4; 1, b’l‘) and
S 1, b;), respectively, where b}"z = b £ Ab* /2. The solid black curve is S(4; 1, b*) averaged from
b} to b3. The red curve indicates the best-fit size spectral density S(A; dopt, bgpt) to the average. The
right panels (b,d,f) show the fitting error (cyan) and the optimal b* of the best-fit curve (green) as a
function of Ab*, where b}. and the maximum value of Ab* are the same as in the corresponding left

panel. The error is defined as the ratio of the norm of the difference between the average and best-fit

curves to the norm of the average. The thin horizontal gray line denotes b:..
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Fig. S4: Size spectral density averaged over b (black) and the best-fit curve (red) with optimal values
for b* and a. Both curves are the same as the black and red curves of Fig. S3a except the horizontal

axis (a) and both axes (b) are logarithmic in this figure.



a. ISA-based scenario
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Fig. S5: Expected wave energy level for accumulation zone in Southern Indian Ocean (SIO), North

Atlantic (NA), North Pacific (NP), South Atlantic (SA), and South Pacific (SP) (blue bars). Dashed

orange bars denote the case without the contribution from China in the North Pacific accumulation

zone.
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Fig. S6: Size spectral density of microplastics on Korean sand beaches collected by Eo et al2.
See Methods for conversion from histogram into size spectrum. Blue and orange curves denote the
theoretical size spectra in our model and lognormal distribution, respectively. Blue dashed curve
shows theoretical size distribution multiplied by A='. This multiplication is in consideration of a
3-dimensional process. The original plate model implicitly assumes a finite thickness sufficiently
smaller than any fragment cell. However, we can consider a case that a plastic fragment with the size
smaller than the plate thickness. This case may be modeled by a fracture of a cube into n X n X n
cubic cells, which can be expressed as L3v3, as an expansion of the original plate model. This result
is one order larger than the case of the plate model, L>v?, with respect to v. By the relation between
the wavelength and wavenumber, this means that the size distribution in the 3-dimensional process is
obtained by multiplying that in the plate model by 1~!. Since Eo et al’s data is the number of plastic

fragments per unit area of the beach, the units of A are 10~ m for 2-dimensional case (plate model)

and 10712 m? for 3-dimensional case (cube model).
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