
SUPPLEMENTARY MATERIAL FOR FAST INVERSE DESIGN OF
MICROSTRUCTURES VIA GENERATIVE INVARIANCE NETWORKS

1 Architectures1

In the following sub-sections below, we provide model architecture details for the neural networks that we used2

in the main manuscript.3

1.1 InvNet architecture4

In Tables S1, we provide the specific details of the parameters used for each layer in the Generator and5

Discriminator respectively. As described in the main manuscript, the Residual blocks in the Generator consists of6

two sequential pairs of batch-normalization and convolutional layers with the parameters tabulated in top section7

of Table S1. The first convolution layer in each Residual block is coupled with an up-sampling operation while8

the second convolution layer is a normal convolution layer. Note that in every Residual blocks, there is also a9

skip-connection that is parameterized by a single convolution layer. The output of each Residual block is finally10

computed by performing an element-wise addition between the output convolution features and skip-connection11

features. The output of the final convolution layer in the Generator is a grayscale 128 × 128 image of a morphology.12

In the Discriminator, the Residual blocks consists of two sequential pairs of layer-normalization and convolutional13

layers with parameters shown in bottom section of Table S1. The first convolution layer in each Residual block is14

paired with a down-sampling operation while the second convolution layer is a normal convolution layer. There is15

also a skip connection in every Residual block that is parameterized by a single convolution layer. The output of16

the final Dense layer in the Discriminator is a single scalar value representing the Wasserstein Distance.17

[Table 1 about here.]18

1.2 High-fidelity regressor architecture19

Next, we provide details on the network architecture that was used to train the high-fidelity surrogate model,20

RHF . The model consists of the following layers in sequential order: two convolution blocks (each having a21

convolution layer, batch normalization layer, ReLU activation, and a max pooling layer) and two dense layers.22

Dropout layers with a dropout rate of 0.3 were also used in between every convolution block and dense layers23

during training to avoid over-fitting. The output of the final dense layer is the estimated values of Jsc and FF24

respectively. The parameters of each layers are provided in Table S2.25

[Table 2 about here.]26

1.3 Multi-fidelity regressor architecture27

The mult-fidelity regressor, RMF consist of two sub-networks, the shared embedding network and the low-28

fidelity network, as illustrated in Figure.1(c) of the main text.29

We begin with the description of the low-fidelity network’s architecture. As seen in Figure S1(a), the low-fidelity30

network consist of two branches. The top branch consists of three convolutional and max-pooling layers, while the31

bottom branch consists of two dense layers. The output of these two branches are concatenated together into a32

single branch, which contains three additional dense layers. ReLU activation functions are also used in between33

every layer. The output of the low-fidelity network are the estimates of the low-fidelity descriptors of a given34

morphology. The parameters for each layers are tabulated in Table S3 for reference. Empirically, we observed35

that the convolutional branch is helpful in learning features to estimate g1 while the dense branch is helpful in36

estimating the values of g2 and g337

We now focus on the architecture of the shared embedding network, which consists of two interconnected38

branches as depicted in Figure S1(b). The first branch (bounded by the top dotted-line box, labeled Branch 1)39

consists of an initial convolution layer, ConvH (colored gray) and a dropout layer with a rate of 0.1. The branch40

then splits into two identical sub-branches (shown in blue and yellow) that both consist of a convolution layer,41

max pooling, dropout, and two more convolution layers. The output of the first sub-branch is combined with the42

predictions from the low-fidelity network and passed through a final dense layer to predict the values of Jsc. The43

second branch (bounded by the second dotted line box at the bottom of Figure S1(b), labeled Branch 2) consists of44

three convolution layers, each followed with max-pooling and a dropout layer, and a additional convolution layer.45

The outputs of the second main branch are combined with the predictions of the low-fidelity network along with46

the outputs from the second sub-branch of Branch 1. These concatenated outputs are passed through another two47

dense layers to estimate the values of the FF . Table S3 tabulates the parameters used for each layer in the shared48

embeddings network.49

[Figure 1 about here.]50

[Table 3 about here.]51
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2 Additional results on multi-fidelity experiments52

2.1 Details on training low-fidelity model53

As described in the main text, training the multi-fidelity surrogate model requires the availability of differentiable54

low-fidelity descriptors. Following in line with the paradigm of leveraging the capacity of neural networks as55

function approximators, we trained another neural network, Rg, that maps a morphology to the low-fidelity56

descriptors. As the computation of the low-fidelity descriptors are computationally cheaper than the high-fidelity57

labels, we trained Rg on the entire dataset of 38k pairs of images and descriptors.58

The low-fidelity surrogate Rg network architecture consists of two blocks that runs in parallel, a convolutional59

block with convolutional layers and a dense block with only fully-connected layers. The output of these two60

blocks are then concatenated through another dense block to predict a vector of the three low-fidelity descriptors as61

illustrated in Figure S1(a). Since this results in a regression formulation, the loss function is expressed as:62

LRg = ‖Rω,g1(I)− g1‖22 + ‖Rω,g2(I)− g2‖22 + ‖Rω,g3(I)− g3‖22 (1)

where ω denotes the parameters of the deep neural network and g1, g2 and g3 denotes the ground truth values63

of the low-fidelity descriptors. We trained the low-fidelity surrogate model with Stochastic Gradient Descent (SGD)64

optimizer with a learning rate of 1E-3 for 250 epochs. During training, the magnitudes of g1, g2 and g3 were scaled65

according to their minimum and maximum values so that all three descriptors fall within the same numerical range.66

2.2 Results from low-fidelity model’s training67

The results of training Rg to estimate the low-fidelity descriptors of a morphology are provided in Figure S2.68

We observe that the estimates and true values of g1 form an almost perfect fit with along the diagonal, signifying69

that the low-fidelity model is capable of estimating the first morphological descriptor accurately. On the other70

hand, the estimates of the g2 and g3 predicted by the model are more varied, as compared to estimates of g1.71

Nevertheless, all three estimations had high R2 values with g1, g2 and g3 having an R2 of 0.998, 0.977 and 0.97672

respectively. While the performance of this low-fidelity model is sufficient in training the overall multi-fidelity73

model, we hypothesize that the architecture and hyper-parameters of this low-fidelity can definitely be further74

optimized to decreased the variances of the estimated g2 and g3.75

[Figure 2 about here.]76

2.3 Effects of different ratios of data77

We provide additional results for an ablation study conducted using the multi-fidelity model. After pre-training78

the low-fidelity model to estimate the low-fidelity descriptors accurately, we performed an ablation study on the79

effect of high-fidelity labels by progressively decreasing the amount high-fidelity labels in the training set from80

70% of to 1%. As the primary aim of the multi-fidelity model within the InvNet framework is to reduce the amount81

of high-fidelity labels required, it is essential to understand the limits of the multi-fidelity model’s performance as a82

function of high-fidelity training data size. This ensures that we are able to appropriately reduced the amount of83

high-fidelity labels without disrupting the training process of InvNet significantly. Table S4 summarizes the results84

of the ablation study. We observed that the R2 values for both Jsc and FF decreases as we decrease the amount85

of high-fidelity labels, which is expected of a data-driven model. More importantly, we note that the R2 values86

experiences a sharper decrease when the labels were decreased from 20% and below. Hence, we determined that87

the 20% threshold is an appropriate amount of high-fidelity labels for training a multi-fidelity surrogate model that88

has similar performance to the high-fidelity model while reducing the required number of expensive high-fidelity89

labels.90

[Table 4 about here.]91

3 Out-of-distribution experiments92

In this section, we show the behavior of the trained InvNet outside the support of training distribution. Since the93

proposed InvNet is entirely data-driven, it is imperative to understand how InvNet will perform when queried for94

morphologies that are outside the training data distribution, e.g., generate morphologies with both high Jsc and FF95

values. Since such morphologies do not exist in the training dataset (both in the training set of the surrogate physics96

model as well as the training set of InvNet), generating such morphologies will require InvNet to extrapolate to97

previously unseen regions of the data distribution.98

Figure S3 shows four examples of such scenarios. In Figure S3(a), we queried for microstructures with low Jsc99

and FF values. Since microstructures with such properties do exist in the training data, albeit sparsely, InvNet100

2



was able to generate the specified microstructures. However, observe that the property densities of the generated101

microstructure have slightly shifted peaks and are not as uniformly distributed as the specified densities. Figure S3(b)102

illustrates a more extreme case where we queried InvNet for microstructures with high values of Jsc and FF .103

Such microstructures do not exist in the dataset. As observed, InvNet fails to generate such microstructures and104

instead generated microstructures with properties in ranges that are supported by data. Additionally, Figures S3(c)105

and (d) represent slightly relaxed extrapolation scenarios, where we queried InvNet for microstructures with one106

property being well supported by training data while the other property being out-of-distribution. In Figure S3(c),107

we queried for microstructures with Jsc that are out of the training distribution but kept the design specifications of108

FF within the range of training data. That resulted in generated microstructures with FF values that were close to109

the specified FF , while the Jsc values of the generated microstructures defaulted to the values ranging around110

8, which is the range of highest Jsc values present in the training data. Last but not least, Figure S3 illustrates111

InvNet’s behavior when queried for microstructures with moderate Jsc but high FF values. Here, we observed that112

the generated microstructures had Jsc values relatively closer to the design specifications of Jsc, as compared to113

the FF property, which was far from the specified FF values.114

Collectively, we have observed that the reliability of the performance does decrease when queried for samples115

that are out of the training data distributions since InvNet was trained entirely based on data. This is a limitation of116

our proposed method and does highlight the emphasis required for hybrid methods, which learns from data and117

domain-based knowledge in future works.118

[Figure 3 about here.]119

4 Full physics interrogation of designed microstructures120

[Figure 4 about here.]121

We evaluate the performance of a set of high performing morphologies (i.e. high Jsc) produced by the InvNet.122

Three morphologies from this set are shown in Figure. S4(b). We compute the photovoltaic performance of these123

morphologies by solving the full physics XDD equations and plot the current voltage curve in Figure. S4(a). The124

photovoltaic properties evaluated from the full physics simulation is very closely matched by that predicted by the125

InvNet as iilustrated in Figure. S4(c). This suggests that design exploration can be rapidly performed using the126

InvNet to identify a very small subset of promising morphologies. These morphologies can then be evaluated using127

the full physics simulator, dramatically reducing design time and cost.128

5 Visualization of morphologies in low dimensional embedding space129

To obtain a clearer insight into the distribution of morphologies, we perform a dimensional reduction on the130

images of microstructures and visualize the low-dimensional embeddings. We achieve this by flattening every 128 x131

128 image of microstructure in the training dataset into a 16384 feature vector. We then project these feature vectors132

onto a two-dimensional plane using Uniform Manifold Approximation and Projection (UMAP) [1]. The results of133

the projection is shown in Figure S5(a), using a hyper-parameter of 25 neighbours to perform the embeddings. The134

embeddings of each morphology image is color-coded according to the magnitude of their short-circuit current135

Jsc. From Figure S5(a), we observed that morphologies with high magnitudes of Jsc do form distinctive clusters136

while morphologies with lower magnitudes (≈ 0-2 mA/m2) of Jsc form a single large central cluster. Furthermore,137

visualization of the morphologies from the distinctive clusters with high-performing Jsc reveals that each cluster138

has a distinctive form of geometry. This anecdotally confirms the hypothesis that there exist several families of139

high-performing morphologies.140

In Figures S5(b) and (c), we project samples of microstructures with a wide range of Jsc values generated by141

the high-fidelity and multi-fidelity InvNet using the same projection mapping learnt for embedding the training142

data. The projection of these generated data points(colored) are superimposed onto the embeddings of the training143

data(gray) for a clearer comparison. In both visualizations, we observe that the embeddings of the generated144

microstructures do follow the distributions of training data embeddings. Another interesting observation is that145

both versions of InvNets also generated microstructures with high Jsc values in the embedding regions where146

the microstructures in the training dataset only have medium Jsc values. We hypothesize that this is attributed to147

InvNet’s generalization capabilities which resulted in the generation of novel morphologies which have similar148

geometry to morphologies with medium-ranged Jsc yet actually have high magnitudes of Jsc.149

[Figure 5 about here.]150
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Figure S1: Illustrations of network architectures for multi-fidelity surrogate model. (a) Architecture of low-
fidelity Network that is initially pre-trained before being used in the multi-fidelity network. (b) Illustration of
the multi-fidelity network, consisting of the shared embedding network (shown in grey, blue and yellow) and the
low-fidelity network (green).
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Figure S2: Results from training the low-fidelity model RLF to estimate the low-fidelity descriptors of a
morphology. Observe that the model is capable of estimating all three descriptors with high accuracy, although the
variance of g2 and g3 estimates are a little higher than g1.
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Figure S3: Exploration of Invnet’s behaviour in regions that are out of the training data’s support for (a)
low Jsc and FF (b) high Jsc and FF (c) high Jsc and mid FF and (d) mid Jsc and high FF . Scenarios
(a) and (b) represents more extreme extrapolations where the data is sparse for both Jsc and FF while (c) and
(d)represents a slightly relaxed extrapolation where data is available for one property but sparse for the other, i.e.
mid-range Jsc which is available in the training data but high-range FF which is not present in the training data as
shown in (d).
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Figure S4: Results of full physics simulation for InvNet-designed microstructures. (a) JV-Curves of the top
three high performing morphologies (high Jsc) sampled from the set of morphologies generated by InvNet. (b)
Morphologies corresponding to JV curves shown in (a). (c) Comparison of Jsc values obtained from full physics
simulation of 35 Invnet-generated morphologies with the Jsc predicted values by the surrogate model.
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Figure S5: Visualization of morphologies in low dimensional embedding space. (a)Visualization of morpholo-
gies in the entire training dataset projected onto a two-dimensional plane via UMAP with 25 nearest neighbours.
We observe that morphologies with high magnitudes of Jsc do form distinctive clusters. Additional visualizations
reveal that each clusters contains microstructures with a specific type of geometry. (b) UMAP visualization of
microstructure samples generated by high-fidelity InvNet and (c) microstructure samples generated by multi-fidelity
InvNet super-imposed on training data. Observe that the generated microstructures closely follows the distribution
of the training data in the embedding space. Microstructures with high Jsc values were also generated in embedding
regions where the training data only contains microstructures with medium-ranged Jsc.
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Generator
Input Features Output Features Kernel Size Stride

Dense Layer 128 16384 - -
Residual Block 1 1024 1024 3 1
Residual Block 2 1024 512 3 1
Residual Block 3 512 256 3 1
Residual Block 4 256 128 3 1
Residual Block 5 128 128 3 1

Convolution Layer 128 1 3 1
Discriminator

Input Features Output Features Kernel Size Stride
Convolution Layer 1 128 3 1
Residual Block 1 128 256 3 1
Residual Block 2 256 512 3 1
Residual Block 3 512 1024 3 1
Residual Block 4 1024 1024 3 1

Dense Layer 65536 1 - -

Table S1: Number of input features, output features, kernel size and stride for each layer used in the Gener-
ator and Discriminator’s network.
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Layer Name Input Features Output Features Kernel Size Stride
Conv1 1 16 9 1
Conv2 16 32 9 1
Dense1 21632 8192 - -
Dense2 8192 2 - -

Table S2: Number of input features, output features, kernel size and stride for each layer used in high-fidelity
surrogate model RHF .
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Low Fidelity Network
Layer Name Input Features Output Features Kernel Size Stride

Conv1 1 128 3 3
Conv2 128 64 3 1
Conv2 64 1 3 1
Dense1 16384 2048 - -
Dense2 2048 1024 - -
Dense1 1024 256 - -
Dense2 512 256 - -
Dense1 256 64 - -
Dense2 64 3 - -

Shared Embedding Network
Layer Name Input Features Output Features Kernel Size Stride

ConvH 1 20 4 4
ConvJ1 20 10 2 2
ConvJ2 10 5 3 1
ConvJ3 5 1 2 2
DenseJ 19 1 - -
ConvFF1 1 20 3 1
ConvFF2 20 10 2 2
ConvFF3 10 5 3 2
ConvFF4 5 1 3 1
ConvFF5 20 10 2 2
ConvFF6 10 5 3 1
ConvFF7 5 1 2 2
DenseFF1 35 10 - -
DenseFF2 10 1 - -

Table S3: Parameters of layers used in the low-fidelity network and in the shared embeddings network.
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% of Training Data R2 for Jsc R2 for FF
70% 0.994 0.947
50% 0.992 0.935
40% 0.992 0.928
30% 0.990 0.916
20% 0.989 0.894
10% 0.981 0.854
5% 0.971 0.817
1% 0.944 0.682

Table S4: Ablation study results performed using multi-fidelity network to study the effects of reducing
high-fidelity training data labels. Observe that the decreasing trends for both R2 values are mostly linear until
the 20% threshold, upon which the R2 starts to decrease more sharply
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