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SUPPLEMENTARY MATERIAL FOR FAST INVERSE DESIGN OF
MICROSTRUCTURES VIA GENERATIVE INVARIANCE NETWORKS

1 Architectures

In the following sub-sections below, we provide model architecture details for the neural networks that we used
in the main manuscript.

1.1 InvNet architecture

In Tables [ST] we provide the specific details of the parameters used for each layer in the Generator and
Discriminator respectively. As described in the main manuscript, the Residual blocks in the Generator consists of
two sequential pairs of batch-normalization and convolutional layers with the parameters tabulated in top section
of Table The first convolution layer in each Residual block is coupled with an up-sampling operation while
the second convolution layer is a normal convolution layer. Note that in every Residual blocks, there is also a
skip-connection that is parameterized by a single convolution layer. The output of each Residual block is finally
computed by performing an element-wise addition between the output convolution features and skip-connection
features. The output of the final convolution layer in the Generator is a grayscale 128 x 128 image of a morphology.
In the Discriminator, the Residual blocks consists of two sequential pairs of layer-normalization and convolutional
layers with parameters shown in bottom section of Table[S1] The first convolution layer in each Residual block is
paired with a down-sampling operation while the second convolution layer is a normal convolution layer. There is
also a skip connection in every Residual block that is parameterized by a single convolution layer. The output of
the final Dense layer in the Discriminator is a single scalar value representing the Wasserstein Distance.

[Table 1 about here.]

1.2 High-fidelity regressor architecture

Next, we provide details on the network architecture that was used to train the high-fidelity surrogate model,
Ry r. The model consists of the following layers in sequential order: two convolution blocks (each having a
convolution layer, batch normalization layer, ReLU activation, and a max pooling layer) and two dense layers.
Dropout layers with a dropout rate of 0.3 were also used in between every convolution block and dense layers
during training to avoid over-fitting. The output of the final dense layer is the estimated values of J,. and F'F
respectively. The parameters of each layers are provided in Table[S2}

[Table 2 about here.]

1.3 Multi-fidelity regressor architecture

The mult-fidelity regressor, R, consist of two sub-networks, the shared embedding network and the low-
fidelity network, as illustrated in Figure.1(c) of the main text.

We begin with the description of the low-fidelity network’s architecture. As seen in Figure[ST|a), the low-fidelity
network consist of two branches. The top branch consists of three convolutional and max-pooling layers, while the
bottom branch consists of two dense layers. The output of these two branches are concatenated together into a
single branch, which contains three additional dense layers. ReLU activation functions are also used in between
every layer. The output of the low-fidelity network are the estimates of the low-fidelity descriptors of a given
morphology. The parameters for each layers are tabulated in Table [S3|for reference. Empirically, we observed
that the convolutional branch is helpful in learning features to estimate g1 while the dense branch is helpful in
estimating the values of g2 and g3

We now focus on the architecture of the shared embedding network, which consists of two interconnected
branches as depicted in Figure [ST[b). The first branch (bounded by the top dotted-line box, labeled Branch 1)
consists of an initial convolution layer, Conwvy(colored gray) and a dropout layer with a rate of 0.1. The branch
then splits into two identical sub-branches (shown in blue and yellow) that both consist of a convolution layer,
max pooling, dropout, and two more convolution layers. The output of the first sub-branch is combined with the
predictions from the low-fidelity network and passed through a final dense layer to predict the values of J;.. The
second branch (bounded by the second dotted line box at the bottom of Figure [ST[b), labeled Branch 2) consists of
three convolution layers, each followed with max-pooling and a dropout layer, and a additional convolution layer.
The outputs of the second main branch are combined with the predictions of the low-fidelity network along with
the outputs from the second sub-branch of Branch 1. These concatenated outputs are passed through another two
dense layers to estimate the values of the F'F'. Table[S3|tabulates the parameters used for each layer in the shared
embeddings network.

[Figure 1 about here.]
[Table 3 about here.]
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2 Additional results on multi-fidelity experiments
2.1 Details on training low-fidelity model

As described in the main text, training the multi-fidelity surrogate model requires the availability of differentiable
low-fidelity descriptors. Following in line with the paradigm of leveraging the capacity of neural networks as
function approximators, we trained another neural network, I, that maps a morphology to the low-fidelity
descriptors. As the computation of the low-fidelity descriptors are computationally cheaper than the high-fidelity
labels, we trained R, on the entire dataset of 38k pairs of images and descriptors.

The low-fidelity surrogate %, network architecture consists of two blocks that runs in parallel, a convolutional
block with convolutional layers and a dense block with only fully-connected layers. The output of these two
blocks are then concatenated through another dense block to predict a vector of the three low-fidelity descriptors as
illustrated in Figure[ST|(a). Since this results in a regression formulation, the loss function is expressed as:

L, = |Rug1(I) = 9113 + | Ru,g2(I) = 92/3 + || R g3(I) — 93|13 e))

where w denotes the parameters of the deep neural network and g1, g2 and g3 denotes the ground truth values
of the low-fidelity descriptors. We trained the low-fidelity surrogate model with Stochastic Gradient Descent (SGD)
optimizer with a learning rate of 1E-3 for 250 epochs. During training, the magnitudes of g1, g2 and g3 were scaled
according to their minimum and maximum values so that all three descriptors fall within the same numerical range.

2.2 Results from low-fidelity model’s training

The results of training I, to estimate the low-fidelity descriptors of a morphology are provided in Figure
We observe that the estimates and true values of g1 form an almost perfect fit with along the diagonal, signifying
that the low-fidelity model is capable of estimating the first morphological descriptor accurately. On the other
hand, the estimates of the g2 and g3 predicted by the model are more varied, as compared to estimates of g1.
Nevertheless, all three estimations had high R? values with g1, g2 and g3 having an R? of 0.998, 0.977 and 0.976
respectively. While the performance of this low-fidelity model is sufficient in training the overall multi-fidelity
model, we hypothesize that the architecture and hyper-parameters of this low-fidelity can definitely be further
optimized to decreased the variances of the estimated g2 and ¢3.

[Figure 2 about here.]

2.3 Effects of different ratios of data

We provide additional results for an ablation study conducted using the multi-fidelity model. After pre-training
the low-fidelity model to estimate the low-fidelity descriptors accurately, we performed an ablation study on the
effect of high-fidelity labels by progressively decreasing the amount high-fidelity labels in the training set from
70% of to 1%. As the primary aim of the multi-fidelity model within the InvNet framework is to reduce the amount
of high-fidelity labels required, it is essential to understand the limits of the multi-fidelity model’s performance as a
function of high-fidelity training data size. This ensures that we are able to appropriately reduced the amount of
high-fidelity labels without disrupting the training process of InvNet significantly. Table [S4] summarizes the results
of the ablation study. We observed that the R? values for both J,. and F'F decreases as we decrease the amount
of high-fidelity labels, which is expected of a data-driven model. More importantly, we note that the R? values
experiences a sharper decrease when the labels were decreased from 20% and below. Hence, we determined that
the 20% threshold is an appropriate amount of high-fidelity labels for training a multi-fidelity surrogate model that
has similar performance to the high-fidelity model while reducing the required number of expensive high-fidelity
labels.

[Table 4 about here.]

3 Out-of-distribution experiments

In this section, we show the behavior of the trained InvNet outside the support of training distribution. Since the
proposed InvNet is entirely data-driven, it is imperative to understand how InvNet will perform when queried for
morphologies that are outside the training data distribution, e.g., generate morphologies with both high J,. and F'F'
values. Since such morphologies do not exist in the training dataset (both in the training set of the surrogate physics
model as well as the training set of InvNet), generating such morphologies will require InvNet to extrapolate to
previously unseen regions of the data distribution.

Figure [S3]shows four examples of such scenarios. In Figure[S3|a), we queried for microstructures with low J.
and F'F values. Since microstructures with such properties do exist in the training data, albeit sparsely, InvNet
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was able to generate the specified microstructures. However, observe that the property densities of the generated
microstructure have slightly shifted peaks and are not as uniformly distributed as the specified densities. Figure[S3|b)
illustrates a more extreme case where we queried InvNet for microstructures with high values of J,. and F'F.
Such microstructures do not exist in the dataset. As observed, InvNet fails to generate such microstructures and
instead generated microstructures with properties in ranges that are supported by data. Additionally, Figures[S3]c)
and (d) represent slightly relaxed extrapolation scenarios, where we queried InvNet for microstructures with one
property being well supported by training data while the other property being out-of-distribution. In Figure [S3]c),
we queried for microstructures with J,. that are out of the training distribution but kept the design specifications of
F'F within the range of training data. That resulted in generated microstructures with F'F' values that were close to
the specified F'F', while the .J,. values of the generated microstructures defaulted to the values ranging around
8, which is the range of highest J,. values present in the training data. Last but not least, Figure [S3|illustrates
InvNet’s behavior when queried for microstructures with moderate .J,. but high F'F' values. Here, we observed that
the generated microstructures had J,. values relatively closer to the design specifications of J,., as compared to
the F'F property, which was far from the specified F'F’ values.

Collectively, we have observed that the reliability of the performance does decrease when queried for samples
that are out of the training data distributions since InvNet was trained entirely based on data. This is a limitation of
our proposed method and does highlight the emphasis required for hybrid methods, which learns from data and
domain-based knowledge in future works.

[Figure 3 about here.]

4 Full physics interrogation of designed microstructures
[Figure 4 about here.]

We evaluate the performance of a set of high performing morphologies (i.e. high J;.) produced by the InvNet.
Three morphologies from this set are shown in Figure. [S4(b). We compute the photovoltaic performance of these
morphologies by solving the full physics XDD equations and plot the current voltage curve in Figure.[S4{a). The
photovoltaic properties evaluated from the full physics simulation is very closely matched by that predicted by the
InvNet as iilustrated in Figure. [S4|c). This suggests that design exploration can be rapidly performed using the
InvNet to identify a very small subset of promising morphologies. These morphologies can then be evaluated using
the full physics simulator, dramatically reducing design time and cost.

5 Visualization of morphologies in low dimensional embedding space

To obtain a clearer insight into the distribution of morphologies, we perform a dimensional reduction on the
images of microstructures and visualize the low-dimensional embeddings. We achieve this by flattening every 128 x
128 image of microstructure in the training dataset into a 16384 feature vector. We then project these feature vectors
onto a two-dimensional plane using Uniform Manifold Approximation and Projection (UMAP) [1]]. The results of
the projection is shown in Figure[S5]a), using a hyper-parameter of 25 neighbours to perform the embeddings. The
embeddings of each morphology image is color-coded according to the magnitude of their short-circuit current
Jsc. From Figure a), we observed that morphologies with high magnitudes of J. do form distinctive clusters
while morphologies with lower magnitudes (~ 0-2 mA/m?) of J,. form a single large central cluster. Furthermore,
visualization of the morphologies from the distinctive clusters with high-performing .J,. reveals that each cluster
has a distinctive form of geometry. This anecdotally confirms the hypothesis that there exist several families of
high-performing morphologies.

In Figures [S3[b) and (c), we project samples of microstructures with a wide range of J,. values generated by
the high-fidelity and multi-fidelity InvNet using the same projection mapping learnt for embedding the training
data. The projection of these generated data points(colored) are superimposed onto the embeddings of the training
data(gray) for a clearer comparison. In both visualizations, we observe that the embeddings of the generated
microstructures do follow the distributions of training data embeddings. Another interesting observation is that
both versions of InvNets also generated microstructures with high J,. values in the embedding regions where
the microstructures in the training dataset only have medium J,. values. We hypothesize that this is attributed to
InvNet’s generalization capabilities which resulted in the generation of novel morphologies which have similar
geometry to morphologies with medium-ranged .J. yet actually have high magnitudes of J..

[Figure 5 about here.]
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Figure S1: Illustrations of network architectures for multi-fidelity surrogate model. (a) Architecture of low-
fidelity Network that is initially pre-trained before being used in the multi-fidelity network. (b) Illustration of
the multi-fidelity network, consisting of the shared embedding network (shown in grey, blue and yellow) and the
low-fidelity network (green).
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Figure S2: Results from training the low-fidelity model R, to estimate the low-fidelity descriptors of a

morphology. Observe that the model is capable of estimating all three descriptors with high accuracy, although the
variance of g2 and g3 estimates are a little higher than g1.
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low J;. and F'F' (b) high J,. and F'F' (c) high J;. and mid F'F' and (d) mid J;. and high F'F. Scenarios
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mid-range Js. which is available in the training data but high-range F'F’ which is not present in the training data as

shown in (d).
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Figure S4: Results of full physics simulation for InvNet-designed microstructures. (a) JV-Curves of the top
three high performing morphologies (high J;.) sampled from the set of morphologies generated by InvNet. (b)
Morphologies corresponding to JV curves shown in (a). (¢) Comparison of J,. values obtained from full physics
simulation of 35 Invnet-generated morphologies with the .J,. predicted values by the surrogate model.



Figure S5: Visualization of morphologies in low dimensional embedding space. (a)Visualization of morpholo-
gies in the entire training dataset projected onto a two-dimensional plane via UMAP with 25 nearest neighbours.
We observe that morphologies with high magnitudes of J,. do form distinctive clusters. Additional visualizations
reveal that each clusters contains microstructures with a specific type of geometry. (b) UMAP visualization of
microstructure samples generated by high-fidelity InvNet and (c) microstructure samples generated by multi-fidelity
InvNet super-imposed on training data. Observe that the generated microstructures closely follows the distribution
of the training data in the embedding space. Microstructures with high J;. values were also generated in embedding
regions where the training data only contains microstructures with medium-ranged J..
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Generator

Input Features  Output Features Kernel Size  Stride
Dense Layer 128 16384 - -
Residual Block 1 1024 1024 3 1
Residual Block 2 1024 512 3 1
Residual Block 3 512 256 3 1
Residual Block 4 256 128 3 1
Residual Block 5 128 128 3 1
Convolution Layer 128 1 3 1

Discriminator

Input Features  Output Features  Kernel Size  Stride
Convolution Layer 1 128 3 1
Residual Block 1 128 256 3 1
Residual Block 2 256 512 3 1
Residual Block 3 512 1024 3 1
Residual Block 4 1024 1024 3 1
Dense Layer 65536 1 - -

11

Table S1: Number of input features, output features, kernel size and stride for each layer used in the Gener-
ator and Discriminator’s network.



Layer Name | Input Features Output Features Kernel Size  Stride
Conv, 1 16 9 1
Conv, 16 32 9 1
Dense; 21632 8192 - -
Dense, 8192 2 - -

Table S2: Number of input features, output features, kernel size and stride for each layer used in high-fidelity
surrogate model R r.

12



Low Fidelity Network

Layer Name | Input Features Output Features Kernel Size  Stride
Conv; 1 128 3 3
Conv, 128 64 3 1
Conv, 64 1 3 1
Dense; 16384 2048 - -
Dense, 2048 1024 - -
Dense; 1024 256 - -
Dense, 512 256 - -
Dense; 256 64 - -
Dense, 64 3 - -

Shared Embedding Network

Layer Name | Input Features Output Features Kernel Size  Stride
Convy 1 20 4 4
Convy; 20 10 2 2
Convj, 10 5 3 1
Conv 13 5 1 2 2
Dense; 19 1 - -

COHVFpl 1 20 3 1
Convgg 20 10 2 2
Convggs 10 5 3 2
COHVFF4 5 1 3 1
COnVFFS 20 10 2 2
COl’lVFF6 10 5 3 1
CODVFF7 5 1 2 2
Denserg; 35 10 - -
Denserp 10 1 - -

Table S3: Parameters of layers used in the low-fidelity network and in the shared embeddings network.

13



% of Training Data | R? for J,. R?for FF

T70% 0.994 0.947
50% 0.992 0.935
40% 0.992 0.928
30% 0.990 0.916
20% 0.989 0.894
10% 0.981 0.854
5% 0.971 0.817
1% 0.944 0.682

Table S4: Ablation study results performed using multi-fidelity network to study the effects of reducing
high-fidelity training data labels. Observe that the decreasing trends for both R? values are mostly linear until
the 20% threshold, upon which the R? starts to decrease more sharply
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