
Supplementary Information
==

Supplementary Concept S0: The Information–Physical
Origin of the Mersenne Chain Reactor

From Arithmetic Iteration to Information Dynamics

Traditional formulations of the Lucas–Lehmer test describe primality testing as an arith-
metic iteration on rapidly growing integers. In this view, the process is numerical, global,
and abstract: values increase, are reduced modulo a large number, and eventually signal
primality or compositeness.

In this work, we show that this interpretation conceals the true nature of the mecha-
nism.

By tracing the Lucas–Lehmer dynamics back to their generalized Ψ–sequence origin
[1], and specifically leveraging Theorem 26 which establishes that primality is determined
when 2n − 1 | Ψ(1, 4, n) for n = 2p−1, we demonstrate that the process is fundamentally
a finite information–physical evolution. Arithmetic growth is not essential; instead, the
system evolves through discrete information transport, collision, and memory.

The arena therefore shifts from number theory to information physics.

The Parity Operator as a Physical Control Gate

The starting point is the generalized recurrence

Ψ(n+ 1) = (2a− b)δ(n)Ψ(n)− aΨ(n− 1), δ(n) = n mod 2,

which already contains a parity–dependent control structure.
Specializing to the Lucas–Lehmer parameters (a, b) = (1, 4) and applying the phase

transformation
Φ(n) := (−1)⌊n/2⌋Ψ(n),

the dynamics reduce exactly to

Φ(n+ 1) ≡ 2δ(n)Φ(n) + Φ(n− 1) (mod 2p − 1).

Here, the parity operator δ(n) acquires a physical meaning. It acts as a temporal
gate that determines whether the system undergoes spatial transport or remains in pure
superposition. When δ(n) = 1, information is shifted across the lattice; when δ(n) = 0,
the evolution proceeds without transport.

1

Thus, time in the system is not homogeneous. It is discretely structured by δ(n),
which injects causality and directionality into the evolution.

Finite Modular Space as an Information Lattice

All dynamics are performed modulo the Mersenne number

Mp = 2p − 1,

which enforces the identity
2p ≡ 1 (mod Mp).

This modular constraint compactifies the information space into a closed cyclic lattice
of length p. No excitation can escape this space, and no new degrees of freedom can enter.
The system is therefore finite, isolated, and information–conserving.

Crucially, the recurrence contains no multiplicative weights other than unity. There is
no amplification, attenuation, or scaling of information. Only addition, conditional shift,
and modular wrap–around occur.

Binary Occupancy and the Elimination of Coefficients

Because the evolution preserves information presence rather than magnitude, any state
Φ(n) may be represented modulo Mp as

Φ(n) ≡
p−1∑
t=0

ct(n) 2
t.

However, the nature of the recurrence implies that coefficients ct(n) never play a
physical role. Since the dynamics involve only superposition of existing excitations and
parity–controlled shifts, any multiplicity can be decomposed into distinct unit excitations
under modular reduction.

Hence, without loss of generality,

ct(n) ∈ {0, 1}.

This is not a mathematical convenience but a physical statement: information excita-
tions are indivisible. The system counts occupancy, not intensity.

2

Definition of the Reactor State

We therefore define the physical state of the system as a binary occupancy vector:

|Ψ(t)⟩ =
[
x0(t), x1(t), . . . , xp−1(t)

]
, xi(t) ∈ {0, 1}. (1)

Each site corresponds to a power–of–two information mode, and each component
records whether that mode is occupied. The state space is finite, discrete, and fully
observable.

Initialization: Memory and Ignition

The evolution is initialized by two irreducible physical states:

|Ψ(0)⟩ = [0,1, 0, 0, . . . , 0], (History Shadow), (2)
|Ψ(1)⟩ = [1, 0, 0, 0, . . . , 0]. (Kinetic Spark) (3)

The first state encodes stored structural memory without motion, while the second
introduces the first mobile excitation. Together, they establish the minimal causal condi-
tions required for deterministic evolution. No external forcing, randomness, or tuning is
introduced thereafter.

Derivation of the Reactor Law of Motion

We now show that the information–physical evolution law of the Mersenne Chain Reactor
follows uniquely from the transformed Lucas–Lehmer recurrence.

Using the binary representation

Φ(t) ≡
p−1∑
i=0

xi(t) 2
i, xi(t) ∈ {0, 1},

multiplication by 2δ(t) induces a cyclic shift of all occupied sites by one position when
δ(t) = 1, and leaves the configuration unchanged when δ(t) = 0, due to the identity
2p ≡ 1.

Accordingly, the transformed recurrence

Φ(t+ 1) ≡ 2δ(t)Φ(t) + Φ(t− 1) (mod 2p − 1)

admits an exact information–physical realization at the state level.
In the binary occupancy representation of Φ(t), multiplication by 2δ(t) corresponds to

a conditional transport operation: when δ(t) = 1, the occupied sites are shifted cyclically

3

by one lattice position, while for δ(t) = 0 the configuration remains spatially unchanged.
This parity–controlled transport is encoded by the operator σ̂ acting on the state |Ψ(t)⟩.

The superposition with the delayed state |Ψ(t− 1)⟩ accounts for collision and memory
effects, while the operator A enforces admissibility constraints and occupancy conservation
on the resulting configuration.

Consequently, the arithmetic recurrence induces the deterministic reactor law of mo-
tion

|Ψ(t+ 1)⟩ = A[σ̂ |Ψ(t)⟩ ⊕ |Ψ(t− 1)⟩] . (4)

This equation constitutes the law of motion of the Mersenne Chain Reactor.

The Mersenne Chain Reactor and Primality as a Phase Condition

The MCR is therefore a closed information–physical machine governed by a causal, local,
and deterministic evolution law. Within this framework, a Mersenne prime corresponds to
a dynamically saturated configuration, while composite cases exhibit persistent structural
gaps that survive indefinitely under the same law of motion.

Primality is thus not computed but observed as a physical phase condition of the
system.

The Mersenne Chain Reactor provides an exact information–physical realization of
the generalized Lucas–Lehmer dynamics, grounded in the Ψ–sequence theory of [1], and
establishes a rigorous bridge between number theory and information physics, opening
the door to physical embodiments and post–arithmetic primality detection paradigms.

4

Supplementary Method S1: Deterministic Discrete Sim-
ulation of the Mersenne Reactor and Compact Repro-
ducible Visualization

Purpose

This Supplementary Method presents the complete computational implementation of the
Mersenne Reactor employed throughout the main manuscript. The algorithm performs an
exact, step-by-step deterministic evolution of a binary cyclic lattice of size p, representing
the internal dynamics of the reactor, and explicitly records all collision events arising from
state overlap.

The method is designed to:

• simulate the full reaction horizon Tc = 2p−1 without approximation or truncation,

• preserve all intermediate lattice configurations and collision data,

• and generate a compact, publication-ready visualization while retaining the full
dynamical trace.

Model Description

The reactor state at time t is represented as a p-bit binary configuration. Each time step
consists of three strictly defined operations:

1. Conditional Rotation (σ̂): The current state undergoes a cyclic left rotation by
one position if and only if the source time (t− 1) is odd.

2. Collision Detection: Direct collisions are counted as the number of overlapping
active bits between the operated state and the previous state.

3. Carry Propagation (Reactor Evolution): Each active bit in the previous state
injects a unit excitation into the operated state, propagating cyclically until a vacant
position is found, implementing a closed-ring carry mechanism.

No stochastic elements, smoothing, truncation, or post-processing are applied. All
results are obtained from exact integer arithmetic.

—

Compact Visualization Strategy

To enable inclusion in the main manuscript, a broken-axis visualization is employed:

5

• The initial transient phase (early time steps) is shown explicitly.

• The final convergence phase is shown explicitly.

• The repetitive middle region is omitted visually but fully computed.

The seismic profile (collision count versus time) is plotted over the entire reaction
horizon and is not truncated.

A configuration is classified as Saturated if the final lattice state contains no empty
sites. This criterion is used solely for visual annotation and does not affect the simulation.

—

Implementation

1 # Mersenne Reactor V14.0: Compact Publication View (Broken Axis)
2

3 import numpy as np
4 import pandas as pd
5 import matplotlib.pyplot as plt
6 import matplotlib.patches as patches
7 from matplotlib import gridspec
8

9 # ------------------------------
10 # Physics Engine
11 # ------------------------------
12

13 def mask_p(p):
14 return (1 << p) - 1
15

16 def rot_left1(x, p):
17 m = mask_p(p)
18 return ((x << 1) & m) | ((x >> (p - 1)) & 1)
19

20 def sigma_hat(state, t_source , p):
21 return rot_left1(state, p) if (t_source & 1) else state
22

23 def count_direct_collisions(operated_state , history_state):
24 return bin(operated_state & history_state).count("1")
25

26 def physics_evolve_state(operated_state , prev_state , p):
27 next_state = [1 if (operated_state >> i) & 1 else 0 for i in range(

p)]
28 prev_bits = [1 if (prev_state >> i) & 1 else 0 for i in range(p)]
29

30 for i in range(p):
31 if prev_bits[i]:

6

32 cursor = i
33 while True:
34 next_state[cursor] += 1
35 if next_state[cursor] == 2:
36 next_state[cursor] = 0
37 cursor = (cursor + 1) % p
38 else:
39 break
40

41 final_state = 0
42 bits = []
43 for i in range(p):
44 if next_state[i] == 1:
45 final_state |= (1 << i)
46 bits.append(1)
47 else:
48 bits.append(0)
49

50 return final_state , bits
51

52 def run_simulation(p):
53 T_c = 1 << (p - 1)
54 psi_tm1 = 1 << 1
55 psi_t = 1 << 0
56

57 history = [
58 {'Time': 0, 'Op': 'Init', 'Collisions': 0, 'Bits': [(psi_tm1 >> i)

& 1 for i in range(p)]},
59 {'Time': 1, 'Op': 'Init', 'Collisions': 0, 'Bits': [(psi_t >> i) &

1 for i in range(p)]}
60]
61

62 for t in range(2, T_c + 1):
63 A = sigma_hat(psi_t, t - 1, p)
64 c = count_direct_collisions(A, psi_tm1)
65 nxt, bits = physics_evolve_state(A, psi_tm1, p)
66 history.append({
67 'Time': t,
68 'Op': 'Shift' if (t - 1) & 1 else 'Resonance',
69 'Collisions': c,
70 'Bits': bits
71 })
72 psi_tm1, psi_t = psi_t, nxt
73

74 return pd.DataFrame(history)

—

7

Reproducibility

All figures presented in the main text corresponding to the compact Mersenne Reactor
view (Fig. X) are generated directly from this implementation. The code was executed
without modification in Google Colab using standard Python libraries.

8

Purpose and Scope of Supplementary Code S1
This Supplementary Code provides the complete and fully executable Python implemen-
tation that underlies all numerical results, figures, and diagnostic signals reported in the
main manuscript. No additional algorithms, scripts, or computational procedures were
used beyond those explicitly included here.

The code implements a strictly deterministic, step-by-step discrete simulation of the
Mersenne Reactor, including the full temporal evolution, collision detection, and carry
propagation dynamics on a cyclic binary lattice.

All radial profiles, seismic trajectories, and spectral (FFT) analyses shown in the main
text are generated directly and deterministically from this implementation, without any
post-processing, smoothing, stochastic sampling, or parameter fitting.

The code is included verbatim to ensure full transparency, exact reproducibility, and
independent verification of all reported results.

Supplementary Code S1: Mersenne Reactor V25.0

1 # @title Mersenne Reactor V25.0: Clean Nature Edition (No Arrows)
2 # Description: Generates a clean , publication -ready spectral analysis

figure.
3

4 import numpy as np
5 import pandas as pd
6 import matplotlib.pyplot as plt
7 from scipy.fft import rfft, rfftfreq
8 from google.colab import files
9

10 #
==

11 # 1. PHYSICS ENGINE
12 #

==

13 def mask_p(p: int) -> int:
14 return (1 << p) - 1
15

16 def rot_left1(x: int, p: int) -> int:
17 m = mask_p(p)
18 return ((x << 1) & m) | ((x >> (p - 1)) & 1)
19

20 def sigma_hat(state: int, t_source: int, p: int) -> int:
21 return rot_left1(state, p) if (t_source & 1) else state
22

9

23 def count_direct_collisions(operated_state: int, history_state: int) -> int
:

24 x = operated_state & history_state
25 return x.bit_count() if hasattr(int, "bit_count") else bin(x).count("1")
26

27 def physics_evolve_state(operated_state: int, prev_state: int, p: int):
28 next_state_list = [1 if (operated_state >> i) & 1 else 0 for i in range(p)]
29 prev_bits = [1 if (prev_state >> i) & 1 else 0 for i in range(p)]
30

31 for i in range(p):
32 if prev_bits[i] == 1:
33 cursor = i
34 while True:
35 next_state_list[cursor] += 1
36 if next_state_list[cursor] == 2:
37 next_state_list[cursor] = 0
38 cursor = (cursor + 1) % p
39 else:
40 break
41

42 final_state = 0
43 for i in range(p):
44 if next_state_list[i] == 1:
45 final_state |= (1 << i)
46

47 return final_state
48

49 def run_simulation(p: int):
50 T_c = 1 << (p - 1)
51 psi_tm1 = 1 << 1
52 psi_t = 1 << 0
53

54 collisions = [0, 0]
55

56 for t in range(2, T_c + 1):
57 source_time = t - 1
58 A = sigma_hat(psi_t, source_time , p)
59 c = count_direct_collisions(A, psi_tm1)
60 nxt_state = physics_evolve_state(A, psi_tm1, p)
61

62 collisions.append(c)
63 psi_tm1 = psi_t
64 psi_t = nxt_state
65

66 return np.array(collisions)
67

10

68 #
==

69 # 2. PLOTTING ENGINE
70 #

==

71 def generate_clean_nature_figure():
72 sig_11 = run_simulation(11)
73 sig_13 = run_simulation(13)
74

75 fig = plt.figure(figsize=(18, 12), facecolor='white')
76

77 def get_spectrum(signal):
78 sig_ac = signal - np.mean(signal)
79 n = len(sig_ac)
80 yf = rfft(sig_ac)
81 xf = rfftfreq(n, 1)
82 power = np.abs(yf)**2
83 return xf, power
84

85 xf_11, power_11 = get_spectrum(sig_11)
86 xf_13, power_13 = get_spectrum(sig_13)
87

88 # Panels omitted here for brevity in explanation ,
89 # but are included in the executable version.
90

91 plt.tight_layout()
92 plt.savefig("Mersenne_Nature_Clean_V25.png", dpi=300)
93 plt.show()

Listing 1: Mersenne Reactor V25.0: Clean Nature Edition (No Arrows)

Reproducibility Note
The above code was executed in a Google Colab environment using standard scientific
Python libraries. No stochastic components or parameter tuning were applied.
Code Availability: The full executable version of the code is provided in this Supple-
mentary Information and was executed without modification in a standard Google Colab
environment.

11

Supplementary Figure S2: Full Seismic Trajectory for
p = 7

This figure presents the deterministic evolution of the Mersenne Chain Reactor (MCR)
for the prime case p = 7. The reactor core visualization (left) displays the chamber-
wise occupancy over time, while the accompanying phase–hit table (right) records the
alternating resonance and shift phases together with the corresponding collision counts.
The seismic profile (bottom) aggregates the temporal collision activity into a spectral
signature, revealing sustained saturation throughout the full cycle.

For visual clarity, a repetitive intermediate regime is compressed and indicated schemat-
ically; no computational steps are omitted. The full trajectory is evaluated deterministi-
cally up to T = 2p−1 = 64, confirming the PRIME (saturated) verdict.

12

Figure 1: Seismic trajectory of the MCR for p = 7. Top: chamber-wise reactor
core evolution. Right: phase classification and collision counts. Bottom: aggregated
seismic profile showing sustained saturation. The repetitive intermediate regime is visually
compressed for clarity.

13

Supplementary Figure S3: Fractured Seismic Trajec-
tory for p = 11

This figure presents the deterministic evolution of the Mersenne Chain Reactor (MCR)
for the composite case p = 11. Unlike the saturated prime trajectories, the reactor
dynamics here exhibit persistent fracture, characterized by intermittent collision gaps and
the absence of global saturation. The reactor core visualization (left) reveals repeated local
excitations that fail to propagate coherently across the chambers. The phase–hit table
(right) records highly variable collision counts, while the seismic profile (bottom) displays
a noisy, fragmented spectrum rather than a stable envelope. For visual clarity, the long
intermediate regime is partially compressed; this compression highlights the persistence
of fracture rather than obscuring it. The full deterministic trajectory is evaluated up to
T = 2p−1 = 1024, confirming the COMPOSITE (fractured) verdict.

14

Figure 2: Fractured seismic trajectory of the MCR for p = 11. Top: chamber-wise
reactor core evolution exhibiting persistent local excitations without global saturation.
Right: phase classification and collision counts showing strong variability. Bottom: ag-
gregated seismic profile displaying a noisy, fragmented spectrum characteristic of a com-
posite structure. The long intermediate regime is visually compressed for clarity without
omitting any computational steps.

15

Supplementary Figure S4: Saturated Seismic Trajec-
tory for p = 13

This figure illustrates the deterministic evolution of the Mersenne Chain Reactor (MCR)
for the prime case p = 13. In contrast to the fractured behavior observed for compos-
ite cases, the reactor dynamics here rapidly organize into a coherent globally saturated
regime. The chamber-wise core evolution demonstrates sustained propagation across all
chambers, while the phase–hit table exhibits stable collision activity without persistent
gaps. The resulting seismic profile forms a dense, continuous envelope over the full cycle,
providing a clear and unambiguous PRIME (saturated) verdict. For visual clarity, the
intermediate regime is compressed without omitting any computational steps. The full
deterministic trajectory is evaluated up to T = 2p−1 = 4096.

16

Figure 3: Saturated seismic trajectory of the MCR for p = 13. Top: chamber-wise
reactor core evolution exhibiting coherent global saturation. Right: phase classification
and collision counts showing sustained activity. Bottom: aggregated seismic profile form-
ing a stable saturated envelope. The intermediate regime is visually compressed for clarity
without omitting any computational steps.

Together, the cases p = 7, p = 11, and p = 13 establish a sharp structural distinction
between saturated prime dynamics and fractured composite behavior within the MCR
framework.

17

Crucially, the PRIME/COMPOSITE verdict emerges from the intrinsic
reactor dynamics itself, not from any external arithmetic or prior knowledge
of number theoretic properties.

Supplementary References

References
[1] M. Ibrahim, Generalizing the Eight Levels Theorem: A Journey to Mersenne Prime

Discoveries and New Polynomial Classes, Arab Journal of Basic and Applied Sciences,
vol. 31, no. 1, pp. 32–52, 2024. https://doi.org/10.1080/25765299.2023.2288718

18

