On the clinical acceptance of black-box systems
for EEG seizure prediction
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1 The seizure prediction ecosystem

In here, we present the seizure prediction ecosystem (the obtained network)
with full detail, which describes the relations between actors. Actors (z) and
relations (z-y) are named with numbers and grouped in colours to provide a
better understanding. We will explain these relations throughout this section
while deepening parts that require more detail. In the end, we provide guidelines
to help authors design their research. There is also available an interactive
version as Supplementary Material which allows a free exploration and may be
more intuitive.

Real life and Pre-Surgical Monitoring

We begin with the real life of an epileptic patient (1). Years after diagnosed
with Drug-Resistant Epilepsy (DRE), a patient is referred to an epilepsy centre
to undergo pre-surgical monitoring (5). The latter evaluates brain electrical
activity (4) to localize the epileptic focus. If easily localized, removing the
epileptic region is a possible solution [1, 2]. To perform this evaluation, one
must perform signal acquisition (2), being the EEG the most commonly used
signal (2-4). To acquire and study this data, we require patient consent (16—3)
and an ethical justification (3). In this case, there is a strong motivation. Please
note that this is a simplification of the pre-surgical monitoring process. We
provide a more detailed explanation in the next subsection.



Despite pre-surgical monitoring is not as frequent as desired, happening for
less than 1% of DRE patients, most studies are performed using pre-surgical
monitoring data. Therefore, this data may not represent real life (2—5): the
patient is in a controlled environment [3, 4]; the patient body may take time to
adapt to the acquisition material (as initial data may need to be discarded) [5];
clinicians suppress medication to increase seizure occurrence frequency; and the
short period, tipically, a couple of weeks of clinic admission and signal recording
[6, 7] may mask the influence (1--5) of day-to-day confounding factors (6- -4),
such as stress, circadian and ultradian rhythms.

Most databases comprise pre-surgical monitoring recordings, which corre-
spond to retrospective data (7) that authors can indefinitely use in academic
studies (8). To collect prospective data during a clinical trial in a real life
scenario (2—14), it is also necessary to find sufficiently strong and ethical moti-
vation, which we will discuss later. Briefly, prospective studies require a signif-
icantly higher patient complacency, involve longer time periods, demand addi-
tional resources, and include higher risks for the patient. Prospective data then
becomes retrospective (14--7) [3, 4].

Pre-surgical monitoring details

Pre-surgical monitoring has the goal of successfully localize and the delineate
the extension of the epileptogenic zone, ideally followed by a surgery to remove
it. Towards this, clinicians begin patient analysis with a multimodal approach:
long-term EEG and video recording, structural MRI, and neuropsychological
evaluation. With this information, patients undergo resective surgery if: i)
different approaches present coherent findings, ii) there is a well-defined epileptic
region, and iii) there is a reasonable risk-benefit ratio.

When this process fails to identify and/or delinate the epileptic region, other
signals can be acquired, such as magnetic source imaging (MSI), functional
MRI, SPECT, PET. With these, clinicians verify if there is a chance of gener-
ating a testable hypothesis regarding the epileptogenic zone. In a positive case,
the patient will undergo intracranial EEG acquisition, cortical stimulation, and
mapping. If the epileptognenc zone can then be localized and be resected, the
patient will undergo surgery. Otherwise, antiepileptic drugs, ketogenic diet, or
neurostimulation are the possible current solutions [8].

In the literature, one can find different studies using data acquired during
pre-surgical monitoring collected uing both scalp EEG and intracranial EEG
(iEEG) [1, 9]. Thus, when comparing EEG seizure prediction among different
types of EEG, it is relevant to understand and consider the situation that lead
to the iEEG acquisition.

One must not forget that a patient is referred to a level 3 or 4 epilepsy centre
[10] to do pre-surgical monitoring only after being diagnosed as drug-resistant,
which can take many years after diagnosis, often too late to prevent irreversible
damage cause by seizures. In fact, in the USA, fewer than 1% of DRE patients
are examined by a multidisciplinary epilepsy team [2].



Brain Dynamics

Brain dynamics (4) play a fundamental role in predicting seizures. Ictogenesis
is known for leading to a hyperexcitability state that increases brain synchro-
nization (see Figure 1). Thus, the EEG (4.1.1) is the most used signal. It can
be acquired using scalp or intracranial (iIEEG) electrodes, each one addressing
different assumptions on brain dynamics and therefore being more compatible
with specific applications [1, 11].

Scalp EEG obtains electrical activity from all surface regions, which is more
suitable for handling the network theory (4.2.1): the latter proposes that seizures
may arise from abnormal activity that results from a large-scale functional net-
work and spans across lobes and hemispheres [1]. Still, scalp EEG requires sig-
nificant patient complacency as they cause stigma and discomfort. One can also
expect frequent signal artefacts and noise. Its intervention application could be
a warning system to reduce seizure consequences, which may be the most afford-
able option and, therefore, the one that requires fewer resources [11]. Although
iEEG has a higher signal-to-noise ratio and can be used to develop closed-loop
intervention systems, patients may suffer from haemorrhage, device movement
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Figure 1: Details on the relations between actors concerning brain dynamics.
Non-major actors are inside boxes.



or infection, among others [12]. Authors commonly focus on brain activity be-
longing to a given region, generally the epileptic focus (4.2.2). In fact, authors
assume it is possible to predict seizures by only inspecting the epileptogenic
area. Furthermore, the SeizelT2 clinical trial [13] also explores EEG behind-
the-ear that brings higher patient comfort, and Debener et al. [14] developed
an EEG-ear array which demonstrated feasibility for long-term recordings.

Other sources of information (4.1.2) can be used to explore changes in brain
dynamics (e.g., MRI) and also alterations in other non-neurological physiological
parameters occurring during pre-ictal interval [4]. For example, the cardiovascu-
lar dynamics regulated by the autonomous nervous system can be captured by
the electrocardiogram and has been proven to carry complementary information
for seizure prediction. Hence the growing belief that the analysis of multimodal
data may provide improved results [4]. In fact, multiple confirmations that the
same dynamics may be present at different scales and biosignals (4.3) might
enhance explainability and therefore, increase trust (19—13), as mentioned in
the following sections.

Moreover, the large clinical heterogeneity associated with epilepsy (4.4) also
promotes current research directed at deepening understanding of this disease.
There are several types of epilepsy syndromes, characterised by different types
of epilepsy. Clinicians distinguish epilepsy types according to the types of
seizures, clinical history, EEG data and imaging features. Furthermore, sev-
eral co-morbidities may arise, such as intellectual and psychiatric dysfunction
[15]. Seizure generating mechanisms are specific for each patient and each type
of seizure [3, 4, 9], even though the source of spiking activity, for example, still
remains unclear [1]. Additionally, it has been suggested that brain hyperex-
citability induces a time dependency on seizures that leads to the occurrence of
clusters of seizures (4.5) [3, 4]. This aspect turns the ictogenesis process more
complex and difficult to understand [?].

Academic Studies

Academic studies attempt to discover relevant brain dynamics by, under some
requirements, finding optimal signal processing strategies, predictive character-
istics (further referred to as features), and accurate models (8- -4). The majority
uses retrospective data because of its availability. In such cases, findings should
be interpreted as a proof-of-concept to demonstrate that some methodologies
may be more suitable, even though they still need to be tested in a real context
[4]. To understand academic studies, we also need to inspect Figure 2 for more
details. Inevitably, we make several assumptions (see ” Assumptions” section in
this document for more information) when we design a new study. These may
result from the used mathematical models, available data and other limitations,
or even reflect the researcher knowledge concerning brain dynamics (8- -4).
Authors attempt to predict seizures by assuming the existence of the pre-
ictal period. The latter is the transition between the normal brain state (inter-
ictal period) and a seizure (ictal period). We can define the pre-ictal period
in two different ways (8.1). One approach assumes it as a point of no return
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Figure 2: Details on the relations between actors concerning academic stud-
ies. System design parameters are also commonly named as ”seizure prediction
characteristics” in the literature [16]. Non-major actors are inside boxes.

(8.1.1), leading necessarily to a seizure [1]. Another method is to envision it
as a period of brain susceptibility (8.1.2) where a hyperexcitable state may not
lead to a seizure [5, 3]. These hypothesis influence significantly the experimental
design, as it may be more difficult to have a ground truth or, in other words,
a correct labelling on brain hyperexcitability when no seizure occurred. Thus,
despite limiting the understanding of brain dynamics, the point of no return is
commonly used in academic studies.

Studies have requirements (9), which constitute established assumptions
among peers on data representativity of either real life or a trustful proof-of-
concept. By fulfilling these requirements, authors assume the best possible
simulation of a real context. The testing data requirements are: long term
recordings (9.1), continuous data, without manually removing any segments
due to noise or artifacts (9.2), minimum number of seizures to allow for training
and testing of the models (9.3), rigorous patient selection criteria (9.4) where
no patient was discarded based on performance, and models tested in unseen
data (9.5) [1, 17, 4].

It is relevant to note the existence of two types of studies (8.2): characterisa-



tion (8.2.1) and prediction (8.2.2) [1]. In the first, authors try to find predictive
models and/or predictive features that capture a clear distinct behaviour be-
tween a normal brain state and the pre-ictal period. However, the prediction
potential of these should be further evaluated by integrating this information
in a seizure prediction methodology (8.2.1—8.2.2) and observing the obtained
performance. Prediction studies are the ones that simulate a real life scenario
and are designed to deliver timely interventions (8- -15). Therefore, these are
the most reported in the literature and are the ones we focus here.

When considering a seizure intervention, system design parameters (10) have
a significant role [1, 16]. An alarm must be interpreted considering a Seizure Oc-
currence Period (SOP, 10.1), where a seizure is expected to occur, and a Seizure
Prediction Horizon (SPH, 10.2), that guarantees time for an intervention. Fur-
thermore, methodologies have converged for patient-specific algorithms (10.3)
as authors have proven the existence of individual epileptic biomarkers. This
influences study requirements (9--10), as patient-specific strategies require a
higher minimum recording duration (10.3—9.1) and a higher minimum number
of seizures per patient (10.3—9.3). Finally, authors also must state the used
seizure independence concept [3] or in other words, the minimum period neces-
sary to assume that seizures have no relation (10.4). Due to brain excitability,
consecutive seizures may occur in a short period. These create a cluster where
the first seizure is the leading (and independent) one. It influences the num-
ber of independent seizures per patient (10.4—9.3) and also limits the amount
of data that can be used. Note that there is no definition/rule to consider a
seizure as independent, which represents another difficulty regarding brain dy-
namics (4). Additionally, it is worth noting that, authors in prediction studies
with pre-surgical monitoring data, tend to use shorter periods of time [9] for
defining seizure independence comparing to a real life scenario [?].

Model Design

Figure 3 shows detail concerning the design of mathematical prediction models.
Seizure prediction entails the analysis of time-series, which is typically initiated
by segmenting into sliding windows. Thus, a seizure prediction model (11) might
be able to distinguish brain states (inter-ictal or pre-ictal) throughout time. This
model is a mathematical approach (11.1), which uses strategies from different
domains, such as computational modelling (11.1.1), control theory (11.1.2), and
the most common, machine learning (11.1.3), among others [1, 17, 4, 9].
Before training a model, authors may pre-process (11.2) the signals to re-
move noise while maintaining the frequencies of interest and then, they extract
predictive features (11.3) [17, 9]. These two steps may be optional as more com-
plex mathematical models have the theoretical potential to handle raw signals.
A model, especially a machine learning one, can be distinguished by its abstrac-
tion level (20). Briefly, higher abstraction methods may intrinsically perform
signal pre-processing (20- -11.2) and feature extraction (20--11.3). Another rel-
evant factor is computational complexity (18), where higher abstraction levels
usually require higher processing power for algorithm developing (18- -20). This
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Figure 3: Details on the relations between actors concerning model design.
Non-major actors are inside boxes.

can be an arising problem for real applications (17—18), as low computational
requirements may be necessary [3, 4].

Although not mentioned directly, by choosing a given preprocessing method,
feature, and model, we may be undertaking several assumptions on a physio-
logical signal. Therefore, when constructing a pipeline, we challenge authors to
inspect them. Here is a list of questions one can ask: inside the chosen win-
dow length, can the, is the signal considered stationary, does it have noise, is
it the result of linear interactions? Are the assumed brain dynamics simple or
complex? Do they involve interactions? Although these may not change the
experimental design, they can improve discussion and consequent comparison
(see in this document the ” Assumptions” section).

Performance

Performance is one of the most discussed aspects in seizure prediction studies
(see Figure 4). A promising methodology is naturally associated with model
performance, which increases trust in the correspondent study (12—13). Sensi-
tivity (12.1) corresponds to the ratio of correctly predicted seizures. Specificity
(12.2) quantifies the number of false positives and is commonly obtained by
counting the number of false alarms per hour (FPR/h) [1, 17, 16]. Statisti-
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cal validation (12.3) [4, 18, 19] has the goal of understanding if performance
is above chance level as there is a trade-off between sensitivity and specificity
(12.1- -12.2). In other words, this validation makes it possible to understand if
the model’s performance is the result of the identification of random phenom-
ena in the biosignals rather than seizure-related patterns. This aspect becomes
more relevant considering that seizure predition is a rare-event problem with
considerable imbalance between inter-ictal and pre-ictal intervals.

Some researchers suggest presenting an overall performance by computing
the area under the receiver operating characteristic curve (relating false posi-
tive rate and true positive rate) [4, 16]. However, the results can be interpreted
according to the envisioned clinical application, specifically by considering in-
tervention consequences for patients (16—12.2). For instance, when considering
the use of a warning system during pre-surgical monitoring, a maximum value
of 0.15 FPR/h [1, 16] has been considered as the upper limit of false alarms
that cause bearable/tolerable levels of stress and anxiety.

Studies comparison (12.4) enables to find methodologies that perform ac-
ceptably in different datasets and contexts, while handling publication bias
(12.4.1). This may occur when using retrospective data while trying several
methodologies. When authors only report the best results and do not interpret
failures as advances, their studies show overestimated performances or, in other
words, overfitting to data [4, 9].

Proper comparison of studies requires more than comparing similar metrics.
Authors are strongly recommended to use statistical validation to prove that
the developed models overcome a random predictor in terms of performance [1].
Nevertheless, it would be appropriate to compare results with a gold standard
methodology applied in the same conditions [4].

Trust and Explainability

After proper studies comparison, one can ask what a good performance is, or
even inquire about the minimum performance that justifies the design of a clin-
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ical trial. We believe that a proper methodology is the one which we trust.
In literature, trust seems to be represented by studies reporting high perfor-
mance (12—13) and complying with consensual study requirements (9- -13). By
analysing data from longer recordings and/or higher number of patient, trust
increases as the testing data is more likely to represent real life conditions [4].

Although a given methodology, eventually, makes incorrect decisions, we
can still trust it if one can explain its decisions (19—13). A great scepticism
concerning machine learning and high-level abstraction models may be due to
the difficulty in delivering explanations about models’ decisions [20]. Although
authors and/or clinicians are more willing to trust black-box models when they
make correct decisions, wrong ones lead to mistrust because there is no human-
comprehensible explanation [3].

Trust should be a matter of concern when one designs a study. High-level
abstraction models may have the potential to handle complex dynamics but
require strong efforts towards providing explanations (19- -20). Current clinical
knowledge on physiology should be the source of explanations as well as the
basis for new findings (19- -4). As an explanation is an exchange of beliefs [21],
its acceptance may differ among patients, clinicians, and data scientists. To
better understand trust and explainability, we need to inspect Figure 5.

Explainability evaluation (19.1) is required. We can evaluate an explanation
on three levels: application (19.1.1) where it must satisfy an expert (e.g. a



clinician and a data scientist); human (19.1.2) where it must explain the decision
to a person with no field knowledge (e.g. a patient); and proxy (19.1.3) by
establishing concrete criteria (e.g. the depth of a decision tree). The proxy level
is the one requiring fewer resources. Nevertheless, it should be used with great
care when a model has not proved its quality in delivering explanations, both
in application and human levels [20, 22].

There are several strategies [20, 23] to retrieve an explanation which can be
grouped in: i) intrinsically interpretable models (19.2.1) with a reduced set of
features (such as decision trees, generalised linear models, k-NN, among others);
ii) feature statistics (19.2.2) summary and visualization; iii) agnostic methods
(19.2.3), which work on top of developed models [24, 25, 26, 27, 28, 29, 30]; and
iv) example-based (19.2.4) by representing determined samples and showing
the model decision [31, 32, 33, 34, 35]. The explanation range is also a topic of
concern. It is local (19.3.1) when only explains a given decision for a sample and
respective neighbourhood [20]. If it explains all samples, it is global (19.3.2).

Note that we did not consider a possible relation between patient and trust
(16—13), as it concerns solely the algorithm design. Additionally, we also did
not mention any connection between patient and explanation (16—19) directly,
despite considering that a patient has the right for an adequate explanation
concerning the device decisions. In fact, such rights are covered on article 22
from 2018 General Data Protection Regulation (GDPR) [36, 22, 31]. We be-
lieve that explanation and trust concern field experts, such as data scientists
and clinicians. Nevertheless, patient comfort, trust and a proper explanation
are fundamental. Therefore, we implicitly included these on the relation from
patient to the ethics committee (16—3), represented by the act of volunteer-
ing. When a patient volunteers, he/she demonstrates trust in researchers and
clinicians, having these already shown commitment to his/her well-being and
ensured an adequate explanation.

Prospective Data and Applications

A methodology can be clinically approved (3—2 and 2—14) after years of re-
search when it becomes trustworthy to experts, and patients are willing to vol-
unteer. Studies are trustworthy when they report high performance and good
explainability while fulfilling all data requirements. We can inspect details con-
cerning prospective applications with Figure 6.

Ideally, studies using retrospective data envision and open the way to the
enrollment in potential prospective scenarios (8- -15) [1, 11]. It is also possible
to undergo a clinical trial without using any seizure intervention, as it happens
with the ongoing SeizeIT2 clinical trial (NCT04284072). These studies may not
achieve the goal of disarming a seizure yet, but they provide valuable data for
authors, which may be seen as a good compromise between patient safety and
research progress.

A prospective application has an intervention mechanism (15.1), which could
be integrated in a closed-loop system, as is the case of vagus nerve stimu-
lation (15.1.1) [37], responsive cortical stimulation as with the RNS®system

10
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Figure 6: Detail on the relations between actors concerning a prospective ap-

plication. Non-major actors are inside boxes.

(15.1.2) [12], or deep brain stimulation (15.1.3) [38]. The last was recently ap-
proved by the FDA [39] and encompasses two ongoing trials (NCT03900468,
NCT02076698). An alternative could be a warning system (15.1.4) designed
to minimise seizure consequences [1, 11] and/or taking seizure rescue medica-
tion, as benzodiazepines (15.1.5) [40, 41, 42]. Selecting an adequate intervention

strategy is a complex task and must account for patient complacency and con-

sequences (16—15).

It is interesting to reflect on the ideal scenario [1].

constant and effective intervention (15.2), such as chronic or scheduled stim-
ulation from implantable devices, without any side effects (stress and anxiety,

11

The development of a



long exposure to medication) and device-related problems (infection, intracra-
nial haemorrhage, tissue reaction, skin erosion, lead migration, among others)
would change the paradigm. Academic prediction studies would just focus on
increasing knowledge on brain dynamics (15.2—8) as there was no need to inves-
tigate another prospective application. Given the amount of today’s limitations,
this may be utopic. However, we find it relevant to stress the purpose of seizure
prediction research.

Naturally, device manufacturers must obey to industry standards and reg-
ulations (17—15) related to hardware safety aspects (15.2), such as recharging
and low-energy consumption (15.2.1), heating (15.2.2), placement and removal
(15.2.3), and maintenance (15.2.4). Others that are equally important concern
an affordable price (15.3) and permanent client support (15.4). Consequently,
the design of the models should consider the use of fast processing methods al-
lowing its integration in small devices (17.1) [4, 11]. It is important to mention
that considerable advances have been made in these devices, which is the case
of IBM’s neuromorphic TrueNorth chip [?] that already allows for deployment
of deep learning models.

In fact, the price may be fundamental to the industry. Electrostimulation by
implanting iEEG electrodes is currently considered the most promising strategy,
as both RNS®system and Neurovista’s system used iEEG [1, 5, 3, 4]. However,
these may demand higher human and monetary resources than pre-surgical scalp
EEG monitoring, which is already inaccessible to a large part of DRE patients.
In the USA, for example, fewer than 1% of DRE patients are examined by a
multidisciplinary epilepsy team. Besides, several only have access to level 3 or
4 epilepsy centres many years after onset, often too late to prevent irreversible
damage caused by seizures [2, 10]. Thus, by focusing immediate efforts on low-
cost and accessible warning systems followed by rescue medication intake, we
may reach considerably more DRE patients.

The 2018 GDPR (17.2), for European citizens and European economic space
[36], is also an important aspect. Article 22 presents the first steps towards
legislation on algorithm explainability for high-risk decisions based on personal
data (17—19). Thus, standards and regulations orientate authors towards the
patient safety (16—17).

12



2 Assumptions

Assumptions are a crucial part of any study for any scientific field. We often
need to make assumptions about the world. Depending on the question we are
asking, we may use a different perspective and therefore, different assumptions.
In established areas, as the seizure prediction field authors may consider several
assumptions that are not stated directly or even addressed properly in the dis-
cussion section. These assumptions may subconsciously be considered as part
of public domain, particularly among peers. For non-experienced researchers,
this may be a critical aspect.

Although we need to make assumptions to solve a problem, we should pe-
riodically review them. Table S1 presents what we considered to be the major
assumptions often adopted by authors. These concern the used data, signal
acquisition, problem definition, types of studies, requirements, system parame-
ters, and model design. Note that this list might not be complete as other topics
can be missing, e.g., assuming a post-ictal period (a brain refractory period) or
defining a period of adaptation of the brain to the seizure prediction device
hardware.

Finally, an author must pay attention to all the assumptions made to verify
if there are inconsistencies. For example, with an intracranial EEG, electros-
timulation is usually the envisioned intervention. Thus, as the RNS system
performs discharges up to 5000 ms, SOP periods must be short. If an author
uses scalp EEG instead, a warning system is the envisioned intervention. Thus,
SPH periods must be significant to allow an intervention or medication intake
followed by time to take effect.

There are assumptions concerning the used mathematical tools that must
be accounted for, as well. These can be related to pre-processing, feature ex-
traction, and/or model training. For example, when simply using a deep convo-
lutional neural network, authors assume that the algorithm can automatically
train a robust model while learning discriminative features and dealing with
noise.

Another example, regarding feature selection: by using filtering methods
(such as the absolute value of Pearson correlation), researchers assume that
features have independent discriminative power and therefore, they choose the
features with the highest discriminative power. With a regularization method
(such as the LASSO regression), the best group of features is chosen, instead of
the individual best. With a regularization method, authors also account for the
interaction between features, by choosing the group with highest discriminative
power (these may not have a high individual discriminative power). Thus,
biologically speaking, regularization methods assume the possibility of existing
more complex interactions in the brain when compared to filtering methods.
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Approach

Assumption

Data

Using pre-surgical monitoring data

Pre-surgical monitoring data is either representative of real-life
or constitutes a good proof-of-concept of it.

Signal Acquisition

Scalp EEG

Intracranial iEEG

Seizure generation mechanisms may occur in any place of the
brain. Supports the network theory. A warning device is
envisioned.

Seizure generation mechanisms can be detected by inspecting
only a given region, usually the epileptogenic focus. An
invasive application, such as electrostimulation, is envisioned.

Other EEG method

The used method is more suited for a real application (as patient
comfort) while ensuring effective performance.

Other physiological signals

The used method is more suited to a real application (providing
more comfort to the patient) while capturing non-neurological
seizure related dynamics. For example, the ECG signal.

Problem definition

Pre-ictal period

There is a point of no return in the brain after a seizure
will always occur.

Using seizure susceptibility

There is a brain susceptibility period where hyperexcitability
and synchronization are probable. It may not lead to a seizure.

Fixed pre-ictal period

All seizures are generated in an equal window of time.

Study types

Characterization

A good performance represents a proof-of-concept for
potential use in a prediction study.

Prediction

A good performance constitutes a proof-of-concept for
potential use in a clinical application.

Study Requirements

Long-term continuous recordings,
and testing in unseen data

These conditions represent a good proof-of-concept of a real
application scenario.

Number of Seizures

The number of seizures is enough to represent real-life or to
constitute a good proof-of-concept.

System Parameters

Patient-specific models

Seizure generation mechanisms vary among patients.

Not using patient-specific models

Seizure generation mechanisms are similar among patients.

Specific models for each stage
of circadian and or multidian rhythms

Circadian and or multidian rhythms influence seizure
generation mechanisms.

Using the same model for all stages
of circadian and or multidian rhythms

Circadian and or multidian rhythms do not influence seizure
generation mechanisms.

Specific models for specific epilepsy
syndromes, epilepsy types, medication,
and so forth

The selected factors influence seizure generation mechanisms.

Using the same model for all epilepsy
syndromes, epilepsy types, medication,
and so forth

SOP and SPH

The selected factors do not influence seizure generation
mechanisms.

Seizure generation mechanisms occur necessarily within the
period determined from SOP+SPH to SPH, before seizure onset.

SOP

The used seizure occurrence period has an adequate duration
to make an intervention effective.

SPH

The used seizure prediction horizon allows time enough to
render the envisioned intervention possible.

Model Design

Pre-Processing

The acquired signals have artefacts and noise that can be
removed with pre-processing.

Feature Extraction

It is possible to extract more robust measures of signal
dynamics that characterize a pre-seizure state.

Mathematical model training

It is possible to develop a mathematical model that
discriminates a normal brain state and a pre-seizure one.

Table S 1: Major assumptions on seizure prediction studies. Others are also
possible, especially the ones concerning mathematical operations.
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3 Questions about the seizure prediction future

Explanations and trust

Explanations help to detect data bias while increasing robustness of the seizure
prediction models. They are important to improve patient safety. They also
help to mitigate scepticism regarding machine learning methodologies. Based
on this, the following questions appeared, which must be handled among data
scientists and clinicians:

1. Which are the concerns on explainability when designing seizure prediction
models to prospective testing? Are clinicians sceptic about how the models
work? Or are they afraid to compromise patient’s safety? Do clinicians
and data scientists have different needs concerning human-comprehensible
explanations or are these equal?

2. When compromising patient safety is the only main problem with non-
human interpretable systems, do data scientists need to work on delivering
deep explanations on the ictogenesis process? Or can they opt to improve
some other parts of their methodology, e.g., increasing model robustness
against data bias and noise?

Explanations and clinical approval

The need for explanations may justify that all clinically approved studies, such
as the phase IV Neuropace RNS system (NCT00572195) and the phase I Neu-
roVista Seizure Advisory System (NCT01043406), use algorithms with features
that are clinically intuitive [3].

These two clinical trials demonstrate that, despite all the literature efforts
put in developing complex models and consequent increase in performance, it
may be necessary a fully explainable model to provide trust. Secondly, the
Seizure Advisory System clinical trial demonstrates the possibility of using mod-
els that are not necessarily intrinsically interpretable, as long as they produce
human-comprehensible explanations, while ensuring patient safety, handling
data bias detection, and dealing with model robustness. Based on this, the
following questions arose, which must be handled between data scientists and
clinicians:

4. If those new approaches have a satisfactory performance on the application
and human levels, can they be used?

5. Do we need a human-comprehensible explanation at every moment the
algorithm is being used in real-time? Or do we need it only at certain
moments, as with raised alarms and incorrect decisions? This may handle
the fact that we, data scientists, tend to trust on model decisions when
they are correct and only tend to inspect errors. In fact, when we train
a machine learning model, we do it by minimizing errors of misclassified
samples.
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6. Can counterfactual explanations be interesting? Counterfactual explana-
tions are very human-friendly and used widely by humans in daily life,
because they can answer to a "why” question. This question can be for-
mulated [20] as: what is the smallest change to the features that would
change the prediction from alarm to no-alarm?

7. The used features in these studies [12, 5] (line-length, bandpass, and
energy-related measures) are clinically intuitive and many others have
been widely used in the literature, such as decorrelation time, Hjorth pa-
rameters, spectral relative power, wavelet decomposition, auto-correlation
measures, auto-regressive modelling coefficients, and entropy. Which ones
could also be used in a clinical trial?

8. These studies have used, as input in the decision models, features that
are clinically intuitive. With the proper guarantee of model robustness,
data bias detection, and patient safety, could Deep Learning approaches,
with raw data as input, be used in clinical trials to automatically perform
feature extraction? In a positive scenario, would authors’ methods need
to explain which features were extracted by the Deep Learning model, or
could an explanation simply consist in showing the relevant data points
for a given decision?

Patients and real-applications

In the only (to the best of our knowledge) survey [43] on DRE patients con-
cerning seizure prediction devices, patients expressed their preference for an
invasive solution. Acceptable performance concerned high values, with an SOP
of 10 minutes, which, by inspecting literature, is currently not achievable, to the
best of our knowledge. This study was mostly a fixed questionnaire with few
open questions on these parameters (SOP, SPH, and minimum performance)
and preferences. For example, what would be an acceptable SOP duration?
The options were: 10 minutes, 30 minutes, 1 hour, 3 hours, or more than 3
hours. The possibility of biasing answers is significant, which must be stressed.
These led us to several questions, which must be handled among data scientists,
clinicians, and patients:

8. Could we obtain a different patient point of view, with the same subjects
if we undergo a different approach, such as open questions only followed
by a grounded theory analysis?

9. Despite their preferences, do patients have financial resources to acquire a
seizure intervention device? Can the study be biased towards people with
significant money resources? Do patients know the success rate of such
applications? Are they truly aware of all possible consequences and prob-
lems (infections, haemorrhage) with implantable invasive systems, and its
chance of happening? Moreover, the latter may lead to even higher mon-
etary and psychological costs.
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10. Concerning scalp EEG, few patients are willing to use long term acqui-
sition systems. Should researchers make efforts in other formats of EEG
scalp aquisition, as the two-electrode system from SeizeIT2 [13] or the
ear-EEG array [14]? Or should they focus in other signals, despite having
a lower theoretical potential, as the electroencephalogram (ECG)? For in-
stance, smartwatches are more comfortable and can record an one-channel
ECG. Are these strong reasons to promote the enrolling in long-term clin-
ical trials using these devices, instead? They certainly allow more comfort
and mitigate stigma, but its prediction performance might be not as good.

11. Patients claim to accept, as minimum performance and SOP duration, val-
ues that are not achievable, at least yet, in literature [4, 1, 3] (10 minutes
of SOP, minimum sensitivity of 90%, and very low FPR /h, simultaneously
[43]). If they knew more about current research, could they change their
minds? Regarding an invasive solution with electrostimulation, is it rele-
vant to have a low false alarm rate if electrical stimuli may not represent
great harm? Note that in this case, we are excluding additional problems
of device heating or energy consumption.

12. Should authors investigate the maximum false alarm rate that a patient
can hold, without large physical and/or psychological consequences (due
do too much electroelectroestimulation or medication intake) concerning
all intervention systems? Is there another alternative to evaluate speci-
ficity quality?

The only commercial intervention device: The RNS system

The RNS system reduces seizure frequency over time. Nevertheless, patients still
suffer seizures. Thus, the following question appeared, addressed to clinicians
and data scientists:

13. Why do patients continue to have seizures? When a patient suffers a
seizure, are these devices acting too late, during points of no return, or
are they not detecting any pre-ictal activity at all? Efforts have already
been made towards a proper system evaluation [44]. Would these electroes-
timulation systems benefit from using more robust algorithms to predict
these sooner or are there seizures that brain electroestimulation can not
disarm?
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4 Social network iteration and refinement de-
tails

Figures 7-11 concern major iterations of the social network construction. Figure
11 concerns the complex network obtained before refinement and encapsulation.
Please note that we also have changed some actors name and we renumbered
them, during the refinement stage.

During network discussion, we also decided to add more details to some
parts, as the explanation case. We added the evaluation levels, explanation
range, and explanation strategies, found in Interpretable Machine Learning
book [20] and in related articles [22]. Technological requirements and commer-
cialization were also more detailed. We included i) hardware aspects, such as
recharging, heating, placement and removal, maintenance, price, client support,
fast processing, that can be found in Ramgopal et al. [11], and ii) information
regarding GDPR’s article 22 that can be found by analyzing Doshi Velez et
al. [22] and Goodman et al. [36]. The GDPR is a clear case where we suc-
cessfully inspected related articles within the initial ones [20], until reaching
saturation. We also decided to highlight possible seizure interventions, found
on several initial papers [11, 3, 4]. For the case of seizure interventions that
deliver anti-epileptic drugs, we got input from the clinician that is also author-
ing this study regarding rescue medication such as diazepam. He advised us
to search for epilepsy seizure rescue medication and also stressed the impor-
tance of epilepsy clinical heterogeneity, which we considered as well. Clusters
of seizures (4.5) did not appear in the iteration models as it was included in the
system requirements only. This was a codification limitation of our work which
was successfully corrected by discussing the network among all authors of this
study.

Figure 7: Social network iteration after analyzing Mormann et al. 2007 [1] and
related articles. Red relations concern doubts raised at the time.
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Figure 8: Social network iteration after analyzing Freestone et al. 2017 [3] and
related articles.
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Figure 9: Social network iteration after analyzing Kuhlmann et al. 2018 [4] and

related articles.
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Figure 10: Social network iteration after analyzing Ramgopal et al. 2014 [11]
and related articles.
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Figure 11: Social network iteration after analyzing Interpretable Machine Learn-
ing book [20] and related articles. Technical aspects on explainability evaluation
and range are not present simply due to the figure size.
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