Supplementary Code for:
Droplet Hamilton Dynamics 1: the rolling angle of a water droplet on an inclined surface

Code for : Figure S4.The flow chart of “ and calculations”
Please save the following code in a separate file V_control.m in the same directory:

function [d_best, V_best, ok, z1_best, z2_best] = V_control(beta1, best_arc, a_x, a_z, target_volume, tolerance)

g = 9.8;
phi = 10;
Gm = 0.072;
dr = 1000 - 1.29;

% Slope of the inclined plane: dx/dz
known_slope = tan((90-phi)*pi/180); % = cot(phi)

% Fitting order

m = 10;

% d_move search range
d_low0 = 0.0;
d_move_max = 0.05;

% ODE Settings
initial_x = 1e-6;
tspan = linspace(0, best_arc, 6000);
odefun = @(s,y)[cos(y(3));
sin(y(3));
(2+beta1*y(2))-(sin(y(3))/y(1))];

b = sqrt(beta1*Gm) / ((sqrt(dr) * sqrt(sqrt((g*cos(phi*pi/180)+a_z)^2 + (g*sin(phi*pi/180)-a_x)^2))));

% Default output
d_best = NaN; V_best = NaN; ok = false;
z1_best = NaN; z2_best = NaN;

% ===
% 0) Pre-calculation: One ODE integration + one fitting (to be reused later)
% ===
y0 = [initial_x 0 0];
[~, y] = ode45(odefun, tspan, y0);

y(:,1) = (y(:,1)-initial_x) * b; % r
y(:,2) = y(:,2) * b; % z

zmin = min(y(:,2));
zmax = max(y(:,2));

% polyfit
[p,S,mu] = polyfit(y(:,2), y(:,1), m);
xhat = @(z) (z - mu(1)) ./ mu(2);

curve_eq = @(z) polyval(p, z, S, mu); % r(z)
curve_eq_1 = @(z) polyval(polyder(p), xhat(z)) ./ mu(2); % dr/dz（链式法则）

% ===
%
1) Intersection point: Solve dr/dz = known_slope (using discrete approximation and interval bisection to avoid instability issues with the `roots()` function).
% ===
f_tan = @(z) curve_eq_1(z) - known_slope;
zt = find_roots_discrete(f_tan, zmin, zmax, 8000, 1e-12);

if isempty(zt)
return;
end

z_tan = zt(1);
x_tan = curve_eq(z_tan);

tangent_slope = curve_eq_1(z_tan);
tangent_intercept = x_tan - tangent_slope*z_tan;

% Translated tangent (slope) function：x_plane(z; d) = k z + b0 - d
x_plane = @(z, d) tangent_slope*z + tangent_intercept - d;

% Numerical safety
clip = @(u) max(-1, min(1, u));
safesqrt = @(u) sqrt(max(u, 0));

% ===
% Internal: Find the intersection point at a given d (used only for: volume_at(d) or the final return value)
% ===
function [z1, z2, feasible] = intersections_at(d)
z1 = NaN; z2 = NaN; feasible = true;

if d <= tangent_intercept
f = @(z) curve_eq(z) - x_plane(z, d);
zr = find_roots_discrete(f, zmin, zmax, 6000, 1e-12);

% Endpoint root fallback: If z_peak is a root but is missed.
[~, idxp] = max(y(:,2));
z_peak_local = y(idxp,2);
if abs(f(z_peak_local)) < 1e-10
zr = sort([zr(:); z_peak_local]);
end

if numel(zr) < 2
feasible = false; return;
end
z1 = zr(1);
z2 = zr(end);

else
fR = @(z) curve_eq(z) - x_plane(z, d);
fL = @(z) curve_eq(z) + x_plane(z, d);

zL = find_roots_discrete(fL, zmin, zmax, 6000, 1e-12);
zR = find_roots_discrete(fR, zmin, zmax, 6000, 1e-12);

if isempty(zL) || isempty(zR)
feasible = false; return;
end

z1 = min(zL); % Left intersection point
z2 = max(zR); % Right branch intersection point
end
end

% ===
% Internal: Volume function (find intersection points if necessary; when determining maximum volume, z2 can be forced to equal z_peak).
% ===
function [V, feasible] = volume_at(d)
[z1,z2, feasible] = intersections_at(d);
if ~feasible
V = 0; return;
end

if d <= tangent_intercept
S3 = @(z) (acos(clip(x_plane(z,d)./curve_eq(z))) .* (curve_eq(z)).^2 ...
- x_plane(z,d) .* safesqrt((curve_eq(z)).^2 - (x_plane(z,d)).^2));
V = real(integral(@(z) S3(z), z1, z2, 'ArrayValued', true));
else
zc = -(tangent_intercept - d)/tangent_slope;

S1 = @(z) pi.*(curve_eq(z)).^2;
S2 = @(z) pi.*(curve_eq(z)).^2 - ...
(acos(clip(x_plane(z,d)./curve_eq(z))) .* (curve_eq(z)).^2 ...
- x_plane(z,d) .* safesqrt((curve_eq(z)).^2 - (x_plane(z,d)).^2));
S3 = @(z) (acos(clip(x_plane(z,d)./curve_eq(z))) .* (curve_eq(z)).^2 ...
- x_plane(z,d) .* safesqrt((curve_eq(z)).^2 - (x_plane(z,d)).^2));

V = real(...
integral(@(z) S1(z), 0, z1, 'ArrayValued', true) + ...
integral(@(z) S2(z), z1, zc, 'ArrayValued', true) + ...
integral(@(z) S3(z), zc, z2, 'ArrayValued', true));
end

if ~isfinite(V) || V < 0
V = 0; feasible = false;
end
end

function [V, feasible] = volume_at_with_z2(d, z2_fixed)
% For "maximum volume determination" only: the second intersection point is forced to be z2_fixed (usually z_peak).
feasible = true;
if d > tangent_intercept
[V, feasible] = volume_at(d);
return;
end

f = @(z) curve_eq(z) - x_plane(z, d);

% Find the first intersection point (z1)
zr = find_roots_discrete(f, zmin, z2_fixed, 8000, 1e-12);

% Add z2_fixed as a "known root".
if abs(f(z2_fixed)) < 1e-10
zr = sort([zr(:); z2_fixed]);
end

% Remove points that are very close to z2_fixed to avoid mistaking them for z1.
zr = zr(abs(zr - z2_fixed) > 1e-8);

if isempty(zr)
V = 0; feasible = false; return;
end

z1 = zr(1);
z2 = z2_fixed;

S3 = @(z) (acos(clip(x_plane(z,d)./curve_eq(z))) .* (curve_eq(z)).^2 ...
- x_plane(z,d) .* safesqrt((curve_eq(z)).^2 - (x_plane(z,d)).^2));
V = real(integral(@(z) S3(z), z1, z2, 'ArrayValued', true));

if ~isfinite(V) || V < 0
V = 0; feasible = false;
end
end

% ===
% 2) Rapid determination of maximum achievable volume (using z_peak as the second intersection point)
% ===
[~, idx_peak] = max(y(:,2));
z_peak = y(idx_peak, 2);
x_peak = curve_eq(z_peak);

d_peak = tangent_slope*z_peak + tangent_intercept - x_peak;

d_upper = min(d_move_max, d_peak);
if d_upper < 0, d_upper = 0; end

% Calculate the maximum volume at d_upper.
V_upper = 0; feasible_upper = false;

if abs(d_upper - d_peak) < 1e-14
[V_upper, feasible_upper] = volume_at_with_z2(d_upper, z_peak);
else
[V_upper, feasible_upper] = volume_at(d_upper);
end

% If this is not feasible, perform a small rollback.
for back = 1:20
if feasible_upper
break;
end
d_upper = d_upper * 0.9;
if abs(d_upper - d_peak) < 1e-14
[V_upper, feasible_upper] = volume_at_with_z2(d_upper, z_peak);
else
[V_upper, feasible_upper] = volume_at(d_upper);
end
end

if ~feasible_upper
ok = false;
return;
end

% If the volume is still less than the target volume even near the "maximum reachable point," skip this step.
if V_upper + tolerance < target_volume
ok = false;
d_best = d_upper; V_best = V_upper;
return;
end

% ===
% 3) First fast, then slow: Coarse search/exponential expansion to find the bounding interval [dL, dU].
% ===
dL = d_low0;
[V_L, feasL] = volume_at(dL);

if ~feasL
dL = 1e-6;
[V_L, feasL] = volume_at(dL);
if ~feasL
ok = false; return;
end
end

dU = dL;
V_U = V_L;

step = max(1e-4, 0.05*d_upper);
for k = 1:60
dU = min(d_upper, dU + step);
[V_U, feasU] = volume_at(dU);

if ~feasU
dU = dU - step;
step = step/2;
continue;
end

if V_U >= target_volume
break;
end

step = min(step*2, 0.25*d_upper);
if abs(dU - d_upper) < 1e-14
break;
end
end

if V_U < target_volume
ok = false;
d_best = dU; V_best = V_U;
return;
end

% ===
% 4) Binary search (to find d_best)
% ===
for iter = 1:60
dM = 0.5*(dL + dU);
[V_M, feasM] = volume_at(dM);

if ~feasM
dU = dM;
continue;
end

if abs(V_M - target_volume) <= tolerance
d_best = dM;
V_best = V_M;
ok = true;
break;
end

if V_M < target_volume
dL = dM;
V_L = V_M;
else
dU = dM;
V_U = V_M;
end

if (dU - dL) < 1e-10
break;
end
end

if ~ok
if abs(V_L - target_volume) < abs(V_U - target_volume)
d_best = dL; V_best = V_L;
else
d_best = dU; V_best = V_U;
end
ok = abs(V_best - target_volume) <= tolerance;
end

% ===
% 5) The intersection point is calculated only once here and then returned to the main program / E_solve
% ===
[z1_best, z2_best, feaS_z] = intersections_at(d_best);
if ~feaS_z
ok = false;
return;
end

% Double-check the volume to ensure consistency.
[V_best, feasV] = volume_at(d_best);
ok = ok && feasV && isfinite(z1_best) && isfinite(z2_best) && (z2_best > z1_best);

end

% ===
% Robust root finding: discrete sampling to find intervals + fzero bisection method + tangent line fallback + duplicate removal + endpoint/zero value handling.% ===
function z_roots = find_roots_discrete(fun, zmin, zmax, N, tolRoot)
if nargin < 4 || isempty(N), N = 5000; end
if nargin < 5 || isempty(tolRoot), tolRoot = 1e-12; end

z = linspace(zmin, zmax, N);
f = arrayfun(fun, z);

good = isfinite(f);
z = z(good); f = f(good);
if numel(z) < 5
z_roots = [];
return;
end

roots_list = [];

absf = abs(f);
tolNear = max(1e-10, 1e-6 * max(1, max(absf)));

if abs(fun(z(1))) < tolNear
roots_list(end+1,1) = z(1);
end
if abs(fun(z(end))) < tolNear
roots_list(end+1,1) = z(end);
end

hit = find(absf < tolNear);
if ~isempty(hit)
roots_list = [roots_list; z(hit(:))];
end

s = sign(f);
idx = find(s(1:end-1).*s(2:end) < 0);

for k = idx(:).'
a = z(k); b = z(k+1);
try
r = fzero(fun, [a, b]);
catch
r = a + (b-a) * abs(f(k)) / (abs(f(k)) + abs(f(k+1)) + eps);
end
roots_list(end+1,1) = r;
end

for k = 2:numel(z)-1
if absf(k) < absf(k-1) && absf(k) < absf(k+1) && absf(k) < tolNear
a = z(k-1); b = z(k+1);
try
r = fminbnd(@(zz) abs(fun(zz)), a, b);
if abs(fun(r)) < tolNear
roots_list(end+1,1) = r;
end
catch
end
end
end

if isempty(roots_list)
z_roots = [];
return;
end

roots_list = sort(roots_list);
z_roots = roots_list(1);
for k = 2:numel(roots_list)
if abs(roots_list(k) - z_roots(end)) > 1e-8
z_roots(end+1,1) = roots_list(k);
end
end

% Limited to within the specified range.
z_roots = z_roots(z_roots >= zmin-1e-12 & z_roots <= zmax+1e-12 & isfinite(z_roots));
end

Please save the following code in a separate file E_solve.m in the same directory:

function [d_c,E_serf,E_g,E_total,volume,L_c,S_lv,S_ls, ...
S_x,D_x,S_z,D_z] = ...
E_solve(beta1,best_arc,d_move_result,a_x_change,a_z_change,DO_PLOT,PLOT_SHOW,PLOT_FOLDER,z1_in,z2_in)

if nargin < 6 || isempty(DO_PLOT), DO_PLOT = true; end
if nargin < 7 || isempty(PLOT_SHOW), PLOT_SHOW = false; end
if nargin < 8 || isempty(PLOT_FOLDER), PLOT_FOLDER = 'fig_out'; end
if nargin < 9, z1_in = NaN; end
if nargin < 10, z2_in = NaN; end

phi = 15;
m = 10;

a_x = a_x_change;
a_z = a_z_change;

g = 9.8;
r_gh = 1.00;
phi_2 = 85; %contact angle
Gm = 0.072; %Surface tension coefficient(lv)
Gsv = 0.045; %Surface tension coefficient(sv)
Gsl = Gsv - Gm*(cos(phi_2/180*pi)/r_gh); %Surface tension coefficient(sl)
Gm_ls = Gsl - Gsv;
dr = 1000 - 1.29;

% Slope of the inclined plane：dx/dz = cot(phi)
known_slope = tan((90-phi)*pi/180);

b = sqrt(beta1*Gm) / ((sqrt(dr)*sqrt(sqrt((g*cos(phi*pi/180)+a_z)^2 + (g*sin(phi*pi/180)-a_x)^2))));

% -----------------------------
% Solving the B-A contour ODE
% -----------------------------
initial_x = 1e-6;
tspan = linspace(0, best_arc, 6000);

odefun = @(s,y)[cos(y(3));
sin(y(3));
(2 + beta1*y(2)) - (sin(y(3))/y(1))];

y0 = [initial_x 0 0];
[~, y] = ode45(odefun, tspan, y0);

y(:,1) = (y(:,1)-initial_x) * b; % r
y(:,2) = y(:,2) * b; % z

zmin = min(y(:,2));
zmax = max(y(:,2));

[p,S,mu] = polyfit(y(:,2), y(:,1), m);
xhat = @(z) (z - mu(1)) ./ mu(2);

curve_eq = @(z) polyval(p, z, S, mu); % r(z)
curve_eq_1 = @(z) polyval(polyder(p), xhat(z)) ./ mu(2);% dr/dz

f_tan = @(z) curve_eq_1(z) - known_slope;
zt = find_roots_discrete(f_tan, zmin, zmax, 8000, 1e-12);
if isempty(zt)
error('E_solve: No tangent point satisfying the given slope was found.');
end

z_tan = zt(1);
x_tan = curve_eq(z_tan);

tangent_slope = curve_eq_1(z_tan); % = known_slope
tangent_intercept = x_tan - tangent_slope*z_tan;

% plane：x = k z + b0 - d
x_plane = @(z) tangent_slope*z + tangent_intercept - d_move_result;

% Intersection with the z-axis
z_axis = -(tangent_intercept - d_move_result)/tangent_slope;
d_c = z_axis;

% Numerical safety
clip = @(u) max(-1, min(1, u));
safesqrt = @(u) sqrt(max(u, 0));

% -----------------------------
% Cross-sectional area/surface area, etc.
% -----------------------------
A_seg = @(z) (acos(clip(x_plane(z)./curve_eq(z))) .* (curve_eq(z)).^2 ...
- x_plane(z) .* safesqrt((curve_eq(z)).^2 - (x_plane(z)).^2));
A_full = @(z) pi.*(curve_eq(z)).^2;
A_comp = @(z) A_full(z) - A_seg(z);

phi_1 = @(z) acos(clip(x_plane(z)./curve_eq(z)));
xbar_seg = @(z) xbar_seg_safe(z, curve_eq, phi_1);
xbar_comp = @(z) - (A_seg(z).*xbar_seg(z)) ./ max(A_comp(z), 1e-30);

ds_factor = @(z) sqrt(1 + (curve_eq_1(z)).^2);
s_lv_full = @(z) 2*pi.*curve_eq(z).*ds_factor(z);
s_lv_seg = @(z) 2.*phi_1(z).*curve_eq(z).*ds_factor(z);
s_lv_comp = @(z) 2.*(pi - phi_1(z)).*curve_eq(z).*ds_factor(z);

plane_sec = sqrt(1 + tangent_slope^2); % = 1/cos(atan(k))
chord_len = @(z) 2.*safesqrt((curve_eq(z)).^2 - (x_plane(z)).^2);
s_ls = @(z) chord_len(z) .* plane_sec;

% ===
% Use the intersection points provided.
% ===
use_given = isfinite(z1_in) && isfinite(z2_in) && (z2_in > z1_in);

% "Cutting mode information" for the projection module.
mode = "";
zA = NaN; zB = NaN; zc = NaN; z2 = NaN;

if d_move_result <= tangent_intercept
% -----------------------------
% Shallow cut
% -----------------------------
mode = "shallow";
if use_given
z1 = z1_in; z2 = z2_in;
else
fR = @(z) curve_eq(z) - x_plane(z);
zr = find_roots_discrete(fR, zmin, zmax, 6000, 1e-12);
if numel(zr) < 2
error('E_solve: The intersection points are insufficient.');
end
z1 = zr(1); z2 = zr(end);
end

% Volume and center of mass
epS_z = max(1e-12, 1e-6*(z2 - z1));
z1i = z1 + epS_z; z2i = z2 - epS_z;
if z2i <= z1i, z1i = z1; z2i = z2; end

[volume, x_centroid, z_centroid] = centroid_shallow_trapz(z1i, z2i, A_seg, xbar_seg);

S_lv = real(trapz_integral(z1i, z2i, @(zz) s_lv_seg(zz)));
S_ls = real(trapz_integral(z1i, z2i, @(zz) s_ls(zz)));
L_c = contact_line_length_discrete(z1, z2, curve_eq, x_plane);

else
% -----------------------------
% deep
% -----------------------------
mode = "deep";
if use_given
zA = z1_in; zB = z2_in;
else
fL = @(z) curve_eq(z) + x_plane(z);
fR = @(z) curve_eq(z) - x_plane(z);
zL = find_roots_discrete(fL, zmin, zmax, 6000, 1e-12);
zR = find_roots_discrete(fR, zmin, zmax, 6000, 1e-12);
if isempty(zL) || isempty(zR)
error('E_solve: Insufficient depth of intersection.');
end
zA = min(zL);
zB = max(zR);
end

zc = z_axis;
zc = min(max(zc, zA), zB);

epsA = max(1e-12, 1e-6*(zB - zA));
zAi = zA + epsA; zBi = zB - epsA;
if zBi <= zAi, zAi = zA; zBi = zB; end
zci = min(max(zc, zAi), zBi);

[volume, x_centroid, z_centroid] = centroid_deep_trapz(0, zAi, zci, zBi, A_full, A_comp, A_seg, xbar_comp, xbar_seg);

S_lv = real(trapz_integral(0, zAi, @(zz) s_lv_full(zz)) + ...
trapz_integral(zAi, zci, @(zz) s_lv_comp(zz)) + ...
trapz_integral(zci, zBi, @(zz) s_lv_seg(zz)));

S_ls = real(trapz_integral(zAi, zBi, @(zz) s_ls(zz)));
L_c = contact_line_length_discrete(zA, zB, curve_eq, x_plane);
end

% -----------------------------
% energy
% -----------------------------
E_serf = real(S_lv*Gm + S_ls*Gm_ls);
E_g = real((-z_centroid) * g * volume * dr);
E_total = real(E_g + E_serf);

k = tangent_slope;

if mode == "shallow"
z_end = z2;
[S_x, D_x, S_z, D_z] = compute_projections(curve_eq, x_plane, k, ...
"shallow", z_end, NaN, NaN, NaN);
else
z_end = zB;
[S_x, D_x, S_z, D_z] = compute_projections(curve_eq, x_plane, k, ...
"deep", z_end, zA, zB, zc);
end

% -----------------------------
% Drawing
% -----------------------------
if DO_PLOT
if ~exist(PLOT_FOLDER,'dir'), mkdir(PLOT_FOLDER); end
fig = figure('Visible', ternary(PLOT_SHOW,'on','off')); hold on; grid on; box on;

plot(y(:,1), y(:,2), '.', 'MarkerSize', 6);
plot(-y(:,1), y(:,2), '.', 'MarkerSize', 6);

z_plot = linspace(zmin, zmax, 800);
xR = curve_eq(z_plot);
plot(xR, z_plot, 'b-', 'LineWidth', 1.6);
plot(-xR, z_plot, 'b-', 'LineWidth', 1.6);

plot(x_plane(z_plot), z_plot, 'r--', 'LineWidth', 1.6);

plot(x_tan, z_tan, 'ko', 'MarkerSize', 8, 'LineWidth', 1.6);
text(x_tan, z_tan, ' tangent');

if isfinite(x_centroid) && isfinite(z_centroid)
plot(x_centroid, z_centroid, 'md', 'MarkerSize', 9, 'LineWidth', 1.8);
text(x_centroid, z_centroid, ' centroid');
end

set(gca,'YDir','reverse'); axis equal;
xlabel('x (m)'); ylabel('z (m)');
title(sprintf('beta=%.3f, d=%.6f, V=%.3e | S_x=%.3e S_z=%.3e', beta1, d_move_result, volume, S_x, S_z));

fname = fullfile(PLOT_FOLDER, sprintf('check_beta%.3f_d%.6f.png', beta1, d_move_result));
saveas(fig, fname);
close(fig);
end

end

% ===
% Projection calculation
% ===
function [S_x, D_x, S_z, D_z] = compute_projections(rfun, xplane_fun, k, mode, z_end, zA, zB, zc)
% Direction unit vector (only in the x-z plane)
t = [k, 0, 1] / sqrt(1+k^2); % Along the tangential direction of the inclined plane (x-z)
n = [1, 0,-k] / sqrt(1+k^2); % Slope normal (x-z)

Nz = 420;
Nphi = 360;
z_list = linspace(0, z_end, Nz);
phi = linspace(0, 2*pi, Nphi);

X = []; Y = []; Z = [];

for i = 1:numel(z_list)
z = z_list(i);
r = rfun(z);
if ~isfinite(r) || r <= 0, continue; end

a = xplane_fun(z);

keep_all = false;
keep_ge = false; % x >= a
keep_le = false; % x <= a

if mode == "shallow"
keep_ge = true;
else
if z < zA
keep_all = true;
elseif z < zc
keep_le = true;
else
keep_ge = true;
end
end

cp = cos(phi);
sp = sin(phi);
x = r .* cp;
y = r .* sp;

if keep_all
mask = true(size(x));
elseif keep_ge
mask = (x >= a);
else % keep_le
mask = (x <= a);
end

x = x(mask); y = y(mask);

% collect
X = [X; x(:)];
Y = [Y; y(:)];
Z = [Z; z.*ones(numel(x),1)];

% Add additional boundary points to the cutting surface (to enhance contour stability).
if abs(a) <= r
yy = sqrt(max(r^2 - a^2, 0));
X = [X; a; a];
Y = [Y; yy; -yy];
Z = [Z; z; z];
end
end

if numel(X) < 50
S_x = NaN; D_x = NaN; S_z = NaN; D_z = NaN; return;
end

u_tan = X.*n(1) + Z.*n(3); % Along the normal coordinate
v_tan = Y; % y

[S_x, D_x] = area_and_box(u_tan, v_tan);

u_norm = X.*t(1) + Z.*t(3); % Along the tangential coordinate
v_norm = Y;

[S_z, D_z] = area_and_box(u_norm, v_norm);
end

function [A, Dmax] = area_and_box(u, v)
good = isfinite(u) & isfinite(v);
u = u(good); v = v(good);
if numel(u) < 10
A = NaN; Dmax = NaN; return;
end
w = max(v) - min(v);
h = max(u) - min(u);
Dmax = max(w, h);

% Projected area
try
K = convhull(u, v);
A = polyarea(u(K), v(K));
catch
A = NaN;
end
end

function z_roots = find_roots_discrete(fun, zmin, zmax, N, tolRoot)
if nargin < 4 || isempty(N), N = 5000; end
if nargin < 5 || isempty(tolRoot), tolRoot = 1e-12; end
z = linspace(zmin, zmax, N);
f = arrayfun(fun, z);
good = isfinite(f);
z = z(good); f = f(good);
if numel(z) < 5, z_roots = []; return; end

roots_list = [];
absf = abs(f);
tolNear = max(1e-10, 1e-6 * max(1, max(absf)));

if abs(fun(z(1))) < tolNear, roots_list(end+1,1) = z(1); end
if abs(fun(z(end))) < tolNear, roots_list(end+1,1) = z(end); end

hit = find(absf < tolNear);
if ~isempty(hit), roots_list = [roots_list; z(hit(:))]; end

s = sign(f);
idx = find(s(1:end-1).*s(2:end) < 0);
for k = idx(:).'
a = z(k); b = z(k+1);
try
r = fzero(fun, [a, b]);
catch
r = a + (b-a) * abs(f(k)) / (abs(f(k)) + abs(f(k+1)) + eps);
end
roots_list(end+1,1) = r;
end

for k = 2:numel(z)-1
if absf(k) < absf(k-1) && absf(k) < absf(k+1) && absf(k) < tolNear
a = z(k-1); b = z(k+1);
try
r = fminbnd(@(zz) abs(fun(zz)), a, b);
if abs(fun(r)) < tolNear
roots_list(end+1,1) = r;
end
catch
end
end
end

if isempty(roots_list), z_roots = []; return; end
roots_list = sort(roots_list);
z_roots = roots_list(1);
for k = 2:numel(roots_list)
if abs(roots_list(k) - z_roots(end)) > 1e-8
z_roots(end+1,1) = roots_list(k);
end
end
z_roots = z_roots(isfinite(z_roots));
end

function xb = xbar_seg_safe(z, rfun, phi_fun)
r = rfun(z);
th = phi_fun(z);
denom = 3 .* (2 .* th - sin(2 .* th));
denom(abs(denom) < 1e-12) = 1e-12;
xb = (4 .* r .* (sin(th)).^3) ./ denom;
xb(~isfinite(xb)) = 0;
end

function [V, xc, zc] = centroid_shallow_trapz(z1, z2, Aseg, xbseg)
N = 8000;
z = linspace(z1, z2, N);
A = Aseg(z);
xb = xbseg(z);
good = isfinite(z) & isfinite(A) & isfinite(xb) & (A>=0);
z = z(good); A = A(good); xb = xb(good);
if numel(z) < 10, V=NaN; xc=NaN; zc=NaN; return; end
V = trapz(z, A);
if ~isfinite(V) || V<=0, V=NaN; xc=NaN; zc=NaN; return; end
xc = trapz(z, xb.*A) / V;
zc = trapz(z, z .*A) / V;
end

function [V, xc, zc] = centroid_deep_trapz(z0, zA, zc_mid, zB, Afull, Acomp, Aseg, xbcomp, xbseg)
N1=4000; N2=4000; N3=4000;
z1 = linspace(z0, zA, N1);
z2 = linspace(zA, zc_mid, N2);
z3 = linspace(zc_mid, zB, N3);

A1 = Afull(z1); A2 = Acomp(z2); A3 = Aseg(z3);
xb2 = xbcomp(z2); xb3 = xbseg(z3);

g1 = isfinite(A1) & (A1>=0); z1=z1(g1); A1=A1(g1);
g2 = isfinite(A2) & isfinite(xb2) & (A2>=0); z2=z2(g2); A2=A2(g2); xb2=xb2(g2);
g3 = isfinite(A3) & isfinite(xb3) & (A3>=0); z3=z3(g3); A3=A3(g3); xb3=xb3(g3);

if numel(z1)<10 || numel(z2)<10 || numel(z3)<10
V=NaN; xc=NaN; zc=NaN; return;
end

V1 = trapz(z1, A1); V2 = trapz(z2, A2); V3 = trapz(z3, A3);
V = V1+V2+V3;
if ~isfinite(V) || V<=0, V=NaN; xc=NaN; zc=NaN; return; end

Mx = trapz(z2, xb2.*A2) + trapz(z3, xb3.*A3);
Mz = trapz(z1, z1.*A1) + trapz(z2, z2.*A2) + trapz(z3, z3.*A3);

xc = Mx / V;
zc = Mz / V;
end

function L = contact_line_length_discrete(z1, z2, rfun, xplane_fun)
if ~isfinite(z1) || ~isfinite(z2) || z2<=z1, L=NaN; return; end
n = 4000;
epS_z = max(1e-12, 1e-6*(z2-z1));
za = z1+epS_z; zb = z2-epS_z;
if zb<=za, za=z1; zb=z2; end
z = linspace(za, zb, n);
r = rfun(z);
x = xplane_fun(z);
y2 = r.^2 - x.^2; y2(y2<0)=0;
y = sqrt(y2);
dx = diff(x); dy = diff(y); dz = diff(z);
ds = sqrt(dx.^2 + dy.^2 + dz.^2);
L = 2*sum(ds);
end

function val = trapz_integral(a, b, fun)
N = 8000;
z = linspace(a, b, N);
f = fun(z);
good = isfinite(z) & isfinite(f);
z = z(good); f = f(good);
if numel(z) < 10, val = NaN; return; end
val = trapz(z, f);
end

function out = ternary(cond, a, b)
if cond, out=a; else, out=b; end
end

Code for : Figure S5. The flow chart of “ determination”.
Please save the following code in a separate file main1.m in the same directory:

clc;
clear;
close all;

syms t r3;
syms xx real;

target_volume = 30e-9; % Target volume
tolerance = 1e-11; % Tolerance

g = 9.8;
phi = 15;

A_result = zeros(15, 10000);
tmp = 1;

% Plotting settings: Plot only when "E_solve is calculated after meeting the criteria".
DO_PLOT = true;
PLOT_SHOW = false;
PLOT_FOLDER = 'fig_out';

for a_x_change = 0:0.5:5
for a_z_change = 0:0.5:10
for beta1 = 0:0.1:4

best_arc = determine_initial_smax(beta1, a_x_change, a_z_change, phi);

% V_control returns: d_move, volume, ok, intersection points (z1, z2)

[d_move_result, volume, ok, z1_int, z2_int] = V_control(...
beta1, best_arc, a_x_change, a_z_change, target_volume, tolerance);

fprintf('[beta=%5.3f] ax=% .3g az=% .3g d=% .6f V=% .3e ok=%d\n', ...
beta1, a_x_change, a_z_change, d_move_result, volume, ok);

d_c = NaN; E_serf = NaN; E_g = NaN; E_total = NaN;
L_c = NaN; S_lv = NaN; S_ls = NaN;
S_x = NaN; D_x = NaN; S_z = NaN; D_z = NaN;

if ok && isfinite(volume) && abs(volume-target_volume)<=tolerance && ...
isfinite(z1_int) && isfinite(z2_int) && z2_int>z1_int

[d_c,E_serf,E_g,E_total,volume,L_c,S_lv,S_ls, ...
S_x,D_x,S_z,D_z] = ...
E_solve(beta1, best_arc, d_move_result, a_x_change, a_z_change, ...
DO_PLOT, PLOT_SHOW, PLOT_FOLDER, z1_int, z2_int);

end

A_result(1, tmp) = real(beta1);
A_result(2, tmp) = real(a_x_change);
A_result(3, tmp) = real(a_z_change);
A_result(4, tmp) = real(d_c);
A_result(5, tmp) = real(L_c);
A_result(6,tmp)=real(S_x);
A_result(7,tmp)=real(S_z);
A_result(8,tmp)=real(D_x);
A_result(9,tmp)=real(D_z);
A_result(10, tmp) = real(S_ls);
A_result(11, tmp) = real(S_lv);
A_result(12, tmp) = real(volume);

tmp = tmp + 1;
end
end
end

A_result = A_result(:, 1:tmp-1);
disp('Done.');
disp(['Valid cases: ', num2str(size(A_result,2))]);

%% ==
% Helper function: Estimate s_max
% ==
function s_max = determine_initial_smax(beta1, a_x, a_z, phi)
max_arc = 10;
g = 9.8;
Gm = 0.072;
dr = 1000 - 1.29;
initial_x = 1e-6;

b = sqrt(beta1*Gm) / ((sqrt(dr) * sqrt(sqrt((g*cos(phi*pi/180)+a_z)^2 + (g*sin(phi*pi/180)-a_x)^2))));

odefun = @(s, y) [
cos(y(3));
sin(y(3));
(2 + beta1*y(2)) - (sin(y(3))/y(1))
];

y0 = [initial_x; 0; 0];

for s_max = 0.45:1e-3:max_arc
options = odeset('RelTol',1e-8, 'AbsTol',1e-10);
[~, y] = ode45(odefun, [0, s_max], y0, options);

y(:,1) = b.*(y(:,1)-initial_x);
y(:,2) = b.*y(:,2);

if max(y(:,2)) ~= y(end,2)
break;
end
end

s_max = min(s_max, max_arc);
end

Code for : Figure S6. The flow chart of “The judgement of 'pinned' or 'rolls' mode”
Please save the following code in a separate file myPolynomial.m in the same directory:

function thirty_five_polynomial = myPolynomial(a)
%MYPOLYNOMIAL Calculate a specific polynomial about x, y, z, whose coefficients are provided by vector a.
% The function form is: a1*x + a2*y + a3*z + a4*z^2 + ... + a35*z^4
%
% input parameters:
% a - A row vector containing 35 coefficients[a1, a2, a3, ..., a35]
% x, y, z - independent variable
% output parameters:
% Polynomial formula
syms x,y,z
% Basic parameter verification
 if length(a) ~= 35
 error('The coefficient vector a must contain exactly 35 elements');
 End

thirty_five_polynomial =
a(1) * x.^0 .* y.^0 .* z.^0 + ...
a(2) * x.^1 .* y.^0 .* z.^0 + ...
a(3) * x.^0 .* y.^1 .* z.^0 + ...
a(4) * x.^0 .* y.^0 .* z.^1 + ...
a(5) * x.^2 .* y.^0 .* z.^0 + ...
a(6) * x.^1 .* y.^1 .* z.^0 + ...
a(7) * x.^1 .* y.^0 .* z.^1 + ...
a(8) * x.^0 .* y.^2 .* z.^0 + ...
a(9) * x.^0 .* y.^1 .* z.^1 + ...
a(10) * x.^0 .* y.^0 .* z.^2 + ...
a(11) * x.^3 .* y.^0 .* z.^0 + ...
a(12) * x.^2 .* y.^1 .* z.^0 + ...
a(13) * x.^2 .* y.^0 .* z.^1 + ...
a(14) * x.^1 .* y.^2 .* z.^0 + ...
a(15) * x.^1 .* y.^1 .* z.^1 + ...
a(16) * x.^1 .* y.^0 .* z.^2 + ...
a(17) * x.^0 .* y.^3 .* z.^0 + ...
a(18) * x.^0 .* y.^2 .* z.^1 + ...
a(19) * x.^0 .* y.^1 .* z.^2 + ...
a(20) * x.^0 .* y.^0 .* z.^3 + ...
a(21) * x.^4 .* y.^0 .* z.^0 + ...
a(22) * x.^3 .* y.^1 .* z.^0 + ...
a(23) * x.^3 .* y.^0 .* z.^1 + ...
a(24) * x.^2 .* y.^2 .* z.^0 + ...
a(25) * x.^2 .* y.^1 .* z.^1 + ...
a(26) * x.^2 .* y.^0 .* z.^2 + ...
a(27) * x.^1 .* y.^3 .* z.^0 + ...
a(28) * x.^1 .* y.^2 .* z.^1 + ...
a(29) * x.^1 .* y.^1 .* z.^2 + ...
a(30) * x.^1 .* y.^0 .* z.^3 + ...
a(31) * x.^0 .* y.^4 .* z.^0 + ...
a(32) * x.^0 .* y.^3 .* z.^1 + ...
a(33) * x.^0 .* y.^2 .* z.^2 + ...
a(34) * x.^0 .* y.^1 .* z.^3 + ...
a(35) * x.^0 .* y.^0 .* z.^4 ;
End

Please save the following code in a separate file solve_system1.m in the same directory:
function [Solution1] = solve_system1(V,Z0,a_z,X0,a_x,phi,a,b,c,d,e,f)

syms x y z D2Xt D2Zt;
S_x = double(subs(myPolynomial(a), [x, y, z], [Z0, a_x, a_z]));
S_z = double(subs(myPolynomial(b), [x, y, z], [Z0, a_x, a_z]));
D_x = double(subs(myPolynomial(c), [x, y, z], [Z0, a_x, a_z]));
D_z = double(subs(myPolynomial(d), [x, y, z], [Z0, a_x, a_z]));
Ee = myPolynomial(f)*0.0728+myPolynomial(g)*0.0063;
Ee_z = subs(diff(Ee, x, 1), [x, y, z], [Z0, D2Xt, D2Zt]);

g = 9.8*10^3;
rho=1000;
rho_a=1.225;
v=1.5e-5;
% Define Symbolic Variables

f1=rho*V*g*sin(phi*pi/180) - 0.5*rho_a*(4.5+24*v/(D_x*Vx*10^-3))*Vx*10^-3*abs(Vx)*S_x - rho*V*D2Xt;
y0=(-rho*V*g*cos(phi*pi/180)-Ee_z-0.5*rho_a*(4.5+24*v/(D_z*Vz*10^-3))*Vz*10^-3*abs(Vz)*S_z)- rho*V*D2Zt;
Solution1 = [D2Xt; D2Zt];

% Calculate Jacobian matrix
J = jacobian([f1; f2], [D2Xt, D2Zt]);

% Convert to function handle (directly retain symbolic parameters)
F = matlabFunction([f1; f2], 'Vars', [y, z, lambda_t], 'Outputs', {'F'});
J_func = matlabFunction(J, 'Vars', [y, z, lambda_t], 'Outputs', {'J'});

% Newton's iteration method
Solution1 = [1; 1; 1];
% initial guess(Selecting an appropriate guess value can improve the accuracy of the solution)

tol = 1e-20;
max_iter = 1000;

for k = 1:max_iter
F_val = F(Solution1(1), Solution1(2), Solution1(3));
J_val = J_func(Solution1(1), Solution1(2), Solution1(3));
dx = -J_val \ F_val;
Solution1 = Solution1 + dx;
if norm(dx) < tol
break;
end
End

Please save the following code in a separate file solve_system2.m in the same directory:

function [Solution2] = solve_system2(V,Z0,a_z,X0,a_x,lambda,phi,a,b,c,d,e,f)

syms x y z D2Xt D2Zt lambda_t;
S_x = double(subs(myPolynomial(a), [x, y, z], [Z0, a_x, a_z]));
S_z = double(subs(myPolynomial(b), [x, y, z], [Z0, a_x, a_z]));
D_x = double(subs(myPolynomial(c), [x, y, z], [Z0, a_x, a_z]));
D_z = double(subs(myPolynomial(d), [x, y, z], [Z0, a_x, a_z]));
Ee = myPolynomial(f)*0.0728+myPolynomial(g)*0.0063;
Ee_z = double(subs(diff(Ee, x, 1), [x, y, z], [Z0, D2Xt, D2Zt]));
L_c = myPolynomial(e);
L_c_z = double(subs(diff(L_c, x, 1), [x, y, z], [Z0, D2Xt, D2Zt]));

g = 9.8*10^3;
rho=1000;
rho_a=1.225;
v=1.5e-5;

f1=rho*V*g*sin(phi*pi/180)-0.5*rho_a*(4.5+24*v/(D_x*Vx*10^-3))*Vx*10^-3*abs(Vx)*S_x-rho*V*D2Xt-lambda*rho*V*D2Xt-lambda_t*rho*V*Vx;
f2=L_c_z*Vz*q*10^6-Ee_z*Vz-rho*V*g*Vz*cos(phi*pi/180)-(rho*V*Vx)*D2Xt-(rho*V*Vz)*D2Zt;
f3=-rho*V*g*cos(phi*pi/180)-Ee_z-0.5*rho_a*(4.5+24*v/(D_z*Vz*10^-3))*Vz*10^-3*abs(Vz)*S_z-rho*V*D2Zt-lambda*rho*V*D2Zt-lambda_t*rho*V*Vz;;
% Calculate Jacobian matrix
J = jacobian([f1; f2; f3], [D2Xt, D2Zt, lambda_t]);

% Convert to function handle (directly retain symbolic parameters)
F = matlabFunction([f1; f2; f3], 'Vars', [D2Xt, D2Zt, lambda_t], 'Outputs', {'F'});
J_func = matlabFunction(J, 'Vars', [D2Xt, D2Zt, lambda_t], 'Outputs', {'J'});

% Newton's iteration method
Solution2 = [1; 1; 1]; % initial guess
tol = 1e-20;
max_iter = 1000;

for k = 1:max_iter
F_val = F(Solution2(1), Solution2(2), Solution2(3));
J_val = J_func(Solution2(1), Solution2(2), Solution2(3));
dx = -J_val \ F_val;
Solution2 = Solution2 + dx;
if norm(dx) < tol
break;
end
End
[bookmark: _GoBack]

Please save the following code in a separate file main2.m in the same directory:

clc
clear
close all

a=[];%S_x:a1-a35
b=[];%S_z:b1-b35
c=[];%D_x:c1-c35
d=[];%D_z:d1-d35
e=[];%L_C:e1-e35
f=[];%S_ext:f1-f35
g=[];%S_base:g1-g35

V = 30.3e-9; %Volume(m^3)
phi = 10; %(°)

R=(V*0.75/pi)^(1/3)*10^3; %(mm)
Z0=R;
X0=0;

num_segments = 15000;
t_values = []; %
results_X = []; % Store calculation results
results_Z = [];
results_a_x = [];
results_a_z = [];

for i=1:num_segments
if (Z0<=R) && (Z0>0)
[s] = solve_system1(V,Z0,Vz,a_z,X0,Vx,a_x,phi,a,b,c,d,e,f);
else
disp('The loop is terminated prematurely due to exceeding the set value');
break;
End

syms t
X=X0+Vx*t+(1/factorial(2))*s(1)*t.^2;
Z=Z0+Vz*t+(1/factorial(2))*s(2)*t.^2;

DZt=diff(Z, t, 1);
DZ2t=diff(Z, t, 2);
DXt=diff(X, t, 1);
DX2t=diff(X, t, 2);

dt=0.00002;
t_value=dt;
Z_value=double(subs(Z, t, dt));
Z0=Z_value;
X_value=double(subs(X, t, dt));
X0=X_value;
Vx=double(subs(DXt, t, dt));
Vz=double(subs(DZt, t, dt));
a_x=double(subs(DX2t, t, dt));
a_z=double(subs(DZ2t, t, dt));

t_value=t_value+(i-1)*dt;
t_values= [t_values, t_value];
results_X = [results_X, X_value];
results_Z = [results_Z, Z_value];
results_a_x =[results_Vx, Vx_value];
results_a_z =[results_Vz, Vz_value];
End

results_Ee = double(subs(myPolynomial(f)*0.0728+myPolynomial(g)*0.0063, [x, y, z], [results_Z, results_a_x, results_a_z]));
min_Ez=min(results_Ee+r*V*g*results_Z*cos(phi*pi/180));

L_values = double(subs(myPolynomial(e), [x, y, z], [results_Z, results_a_x, results_a_z]));
q=5.66e-09; %(si(J/(m^2)))
c_values=L_values*q*10^6;

Ez_values=0.5*r*V*((results_Vz).^2+(results_Vx).^2)+r*V*g*results_Z*cos(phi*pi/180)+(results_Ee-min_Ez);

for i=1:1:length(Ez_values)
if Ez_values(i)<c_values(i)
disp('Do exist t_s');
Break
else
disp('Do not exist t_s:Rolls');
end
End

save('data1.mat','i','results_Z','results_X','t_values','results_Vx','results_Vz','min_Ez','phi','V','results_ax','results_az');
% save data into data1.mat

Please save the following code in a separate file main3.m in the same directory:
clc
clear
close all

load('data1.mat');

t1=t_values(i);
Z0=results_Z(i);
Vz=results_Vz(i);
X0=results_X(i);
Vx=results_Vx(i);
ax=results_ax(i);
az=results_az(i);
num_segments = 50000;
t2_values = [t_values(1:i)];
results2_X = [results_X(1:i)];
results2_Z = [results_Z(1:i)];
results2_Vx = [results_Vx(1:i)];
results2_Vz = [results_Vz(1:i)];
results_lambda = [0*ones(1,i)];
results2_ax=[results_ax(1:i)];
results2_az=[results_az(1:i)];
dt=0.000001;
lambda=0;
E0=results_E(i);
KG=1;
for k=1:num_segments
if KG==1
[s] = solve_system2(V,Z0,Vz,a_z,X0,Vx,a_x,lambda,phi,a,b,c,d,e,f);
Lambda_t=s1(3);
lambda_value=lambda+lambda_t*dt;
lambda=lambda_value;
else
[s] = solve_system1(V,Z0,Vz,a_z,X0,Vx,a_x,phi,a,b,c,d,e,f);
lambda=0;
end

syms t

X=X0+Vx*t+(1/factorial(2))*s(1)*t.^2;
Z=Z0+Vz*t+(1/factorial(2))*s(2)*t.^2;

DZt=diff(Z, t, 1);
DZ2t=diff(Z, t, 2);
DXt=diff(X, t, 1);
DX2t=diff(X, t, 2);

dt=0.00002;
t_value=dt;
Z_value=double(subs(Z, t, dt));
Z0=Z_value;
X_value=double(subs(X, t, dt));
X0=X_value;
Vx=double(subs(DXt, t, dt));
Vz=double(subs(DZt, t, dt));
a_x=double(subs(DX2t, t, dt));
a_z=double(subs(DZ2t, t, dt));

t2_value=t2_value+(i-1)*dt;
t2_values= [t2_values, t2_value];
Results2_X = [results_X, X_value];
Results2_Z = [results_Z, Z_value];
Results2_a_x =[results_Vx, Vx_value];
Results2_a_z =[results_Vz, Vz_value];

t2_value=t2_value+k*dt;
t2_values= [t2_values, t2_value+t1];
results2_X = [results2_X, X_value];
results2_Z = [results2_Z, Z_value];
results2_Vx =[results2_Vx, Vx_value];
results2_Vz =[results2_Vz, Vz_value];
results2_a_x=[results2_ax,s1(1)];
results2_a_z=[results2_az,s1(2)];
results2_Ee=[results2_Ee,Ee_value];

Ee_value = double(subs(myPolynomial(f)*0.0728+myPolynomial(g)*0.0063, [x, y, z], [results2_Z, results2_a_x, results2_a_z]));
L_c = double(subs(myPolynomial(e), [x, y, z], [results2_Z, results2_a_x, results2_a_z]));

rho = 1000;
g = 9.8*10^3;
T_L = 0.5*rho*V*(Vz.^2+Vx.^2);
dE=T_L-r*V*g*Z_value*cos(phi*pi/180)-Ee_value+min_Ez-L*q*10^6;

if dE>0
KG=1;
else
KG=0;
end

if T_L<1e-3
disp('It is t_s1:pinned');
break;
Else
disp('It is t_s2');
End

If k==num_segments
disp('Do not exist t_s1:Rolls');
end

oleObject1.bin

image1.wmf
a

V

oleObject2.bin

image2.wmf
(

)

111

,,

aijij

r

qj

oleObject3.bin

image3.wmf
m

W

