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Supplementary Table S1. Cluster assigned for each site, as well as a summary of the mean and standard deviation of mean annual temperature, total annual precipitation, and altitude across 50km, plus the biome classification and ecotones, expressed as the percentage of cells per biome within 50km.

	Assemblage
	Mean (and standard deviation) temperature (℃)
	
Mean (and standard deviation) precipitation (mm)
	Mean (and standard deviation) altitude (meters above sea level)
	Biome classification
	Ecotones  

	Goda Butchia_Complex2_DEF
	19 (2)
	742 (90)
	1478 (564)
	Temperate conifer forest
	Temperate conifer forest (65%), Tropical xerophytic shrubland (35%)

	Mumba_L_III_38
	16 (0)
	800 (25)
	1514 (353)
	Tropical xerophytic shrubland
	Temperate conifer forest (36%), Tropical xerophytic shrubland (64%)

	Mumba_L_V_81
	16 (0)
	797 (28)
	1514 (353)
	Tropical xerophytic shrubland
	Temperate conifer forest (36%), Tropical xerophytic shrubland (64%)

	Mumba_L_VI_38
	16 (0)
	797 (28)
	1514 (353)
	Tropical xerophytic shrubland
	Temperate conifer forest (36%), Tropical xerophytic shrubland (64%)

	Mumba_L_VI_A
	18 (0)
	782 (33)
	1514 (353)
	Tropical xerophytic shrubland
	Tropical xerophytic shrubland (100%)

	Mumba_MU_V_81
	16 (0)
	917 (33)
	1514 (353)
	Tropical xerophytic shrubland
	Temperate conifer forest (38%), Tropical xerophytic shrubland (62%)

	Mumba_U_V_38
	15 (0)
	949 (28)
	1514 (353)
	Tropical xerophytic shrubland
	Temperate conifer forest (38%), Tropical xerophytic shrubland (62%)

	Mumba_U_VI_A
	15 (0)
	804 (24)
	1514 (353)
	Tropical xerophytic shrubland
	Temperate conifer forest (38%), Tropical xerophytic shrubland (62%))

	Mumba_VI_B
	19 (0)
	864 (34)
	1514 (353)
	Tropical xerophytic shrubland
	Tropical xerophytic shrubland (100%)

	Panga_ya_Saidi_17
	24 (0)
	1152 (45)
	143 (84)
	Tropical savanna
	Tropical deciduous forest/woodland (28%), Tropical savanna (48%), Tropical xerophytic shrubland (24%)

	Panga_ya_Saidi_18
	24 (0)
	996 (42)
	143 (84)
	Tropical xerophytic shrubland
	Tropical xerophytic shrubland (100%)

	Panga_ya_Saidi_19
	24 (0)
	996 (42)
	143 (84)
	Tropical xerophytic shrubland
	Tropical xerophytic shrubland (100%)

	Enkapune_ya_Muto_RBL4
	13 (1)
	1118 (69)
	1960 (386)
	Warm mixed forest
	Temperate conifer forest (37%), Warm mixed forest (63%)

	Fincha Habera 8_10
	9 (1)
	1150 (21)
	2712 (613)
	Steppe tundra
	Steppe tundra (204), Temperate conifer forest (31), Temperate sclerophyll woodland (15), Warm mixed forest (120)

	Fincha Habera 8_11
	9.0 (1)
	1150 (21)
	2712 (613)
	Steppe tundra
	Steppe tundra (55%), Temperate conifer forest (9%), Temperate sclerophyll woodland (4%), Warm mixed forest (32%)

	Fincha Habera 8_8
	9.0 (0.8)
	1150 (21)
	2712 (613)
	Steppe tundra
	Steppe tundra (55%), Temperate conifer forest (9%), Temperate sclerophyll woodland (4%), Warm mixed forest (32%)

	Fincha Habera 8_9
	9.0 (0.8)
	1150 (21)
	2712 (613)
	Steppe tundra
	Steppe tundra (55%), Temperate conifer forest (9%), Temperate sclerophyll woodland (4%), Warm mixed forest (32%)

	Fincha Habera 9
	10 (1)
	1144 (21)
	2712 (613)
	Steppe tundra
	Steppe tundra (55%), Temperate conifer forest (9%), Temperate sclerophyll woodland (4%), Warm mixed forest (32%))

	Kiese II_18
	16 (0)
	865 (22)
	1397 (232)
	Tropical xerophytic shrubland
	Temperate conifer forest (2%), Tropical xerophytic shrubland (98%)

	Kiese II_19
	16 (0)
	865 (22)
	1397 (232)
	Tropical xerophytic shrubland
	Temperate conifer forest (2%), Tropical xerophytic shrubland (98%)

	Kiese II_20
	16 (0)
	928 (21)
	1397 (232)
	Tropical xerophytic shrubland
	Temperate conifer forest (2%), Tropical xerophytic shrubland (98%))

	Kiese II_21
	16 (0)
	911 (20)
	1397 (232)
	Tropical xerophytic shrubland
	Temperate conifer forest (2%), Tropical xerophytic shrubland (98%))

	LaasGeel_SU_711
	18 (1)
	396 (56)
	1113 (189)
	Tropical xerophytic shrubland
	Open conifer woodland (15%), Tropical xerophytic shrubland (85%)

	LukenyaHillGvJm22_F170_205
	14 (1) 
	934 (67)
	1547 (149)
	Temperate conifer forest
	Temperate conifer forest (332), Tropical xerophytic shrubland (34)

	Magubike_MSA
	16 (1)
	955 (86)
	1365 (394)
	Temperate conifer forest
	Temperate conifer forest (88%), Tropical xerophytic shrubland (12%)

	MochenaBorago_LowerT
	15 (0)
	1282 (19)
	1638 (345)
	Temperate conifer forest
	Temperate conifer forest (100%)

	MochenaBorago_RGroup
	14 (0)
	1297 (19)
	1638 (345)
	Temperate conifer forest
	Temperate conifer forest (98%), Warm mixed forest (2%)

	MochenaBorago_SGroup
	15 (0)
	1270 (19)
	1638 (345)
	Temperate conifer forest
	Temperate conifer forest (100%)

	MochenaBorago_UpperT
	15 (0)
	1274 (19)
	1638 (345)
	Temperate conifer forest
	Temperate conifer forest (100%)

	Nasera_12_17
	16 (0)
	778 (41)
	1710 (289)
	Temperate conifer forest
	Temperate conifer forest (71%), Tropical xerophytic shrubland (29%)

	Nasera_6_7
	16 (0)
	770 (41)
	1710 (289)
	Tropical xerophytic shrubland
	Temperate conifer forest (16%), Tropical xerophytic shrubland (86%)

	Nasera_8/9_11
	16 (0)
	770 (41)
	1710 (289)
	Tropical xerophytic shrubland
	Temperate conifer forest (16%), Tropical xerophytic shrubland (86%)

	Shurmai_MSA
	15 (2)
	1165 (109)
	1443 (374)
	Temperate conifer forest
	Steppe tundra (2%), Temperate conifer forest (55%), Tropical xerophytic shrubland (43%)

	Abdur_N_C_S
	25 (2)
	658 (99)
	773 (798)
	Tropical xerophytic shrubland
	Open conifer woodland (18%), Tropical xerophytic shrubland (82%)

	AdumaA1
	23 (1)
	620 (75)
	723 (166)
	Tropical xerophytic shrubland
	Tropical xerophytic shrubland (100%)

	AdumaA4C
	23 (1)
	620 (75)
	723 (166)
	Tropical xerophytic shrubland
	Tropical xerophytic shrubland (100%)

	AdumaA5Ex
	23 (1)
	620 (75)
	723 (166)
	Tropical xerophytic shrubland
	Tropical xerophytic shrubland (100%)

	AdumaA5ExSurf
	23 (1)
	620 (75)
	723 (166)
	Tropical xerophytic shrubland
	Tropical xerophytic shrubland (100%)

	AdumaA8
	23 (1)
	620 (75)
	723 (166)
	Tropical xerophytic shrubland
	Tropical xerophytic shrubland (100%)

	AdumaA8AC
	23 (1)
	620 (75)
	723 (166)
	Tropical xerophytic shrubland
	Tropical xerophytic shrubland (100%)

	AdumaA8AG
	23 (1)
	620 (75)
	723 (166)
	Tropical xerophytic shrubland
	Tropical xerophytic shrubland (100%)

	AdumaA8ASurf
	23 (1)
	620 (75)
	723 (166)
	Tropical xerophytic shrubland
	Tropical xerophytic shrubland (100%)

	AdumaA8B
	23 (1)
	620 (75)
	723 (166)
	Tropical xerophytic shrubland
	Tropical xerophytic shrubland (100%)

	EyasiShore_77_81
	19 (0)
	713 (19)
	1508 (356)
	Tropical xerophytic shrubland
	Tropical xerophytic shrubland (100%)

	EyasiShore_W_insitu
	19 (0)
	713 (19)
	1508 (356)
	Tropical xerophytic shrubland
	Tropical xerophytic shrubland (100%)

	Gademotta_ETH72_1
	13 (1)
	1368 (48)
	1898 (316)
	Warm mixed forest
	Temperate conifer forest (46%), Warm mixed forest (54%)

	Gademotta_ETH72_6
	13 (1)
	1368 (48)
	1898 (316)
	Warm mixed forest
	Temperate conifer forest (46%), Warm mixed forest (54%)

	KapForm_KoimilotGnJh74_1
	18 (1)
	977 (86)
	1428 (369)
	Temperate conifer forest
	Temperate conifer forest (61%), Warm mixed forest (39%)

	KapForm_KoimilotGnJh74_2
	18 (1)
	977 (86)
	1428 (369)
	Temperate conifer forest
	Temperate conifer forest (61%), Warm mixed forest (39%)

	KapForm_SSRS
	19 (1)
	947 (83)
	1319 (335)
	Tropical xerophytic shrubland
	Temperate conifer forest (42%), Tropical xerophytic shrubland (58%)

	Karungu_A3Ex
	18 (1)
	1385 (108)
	1254 (125)
	Tropical xerophytic shrubland
	Temperate conifer forest (17%), Tropical xerophytic shrubland (83%)

	LukenyaHill_GvJm46
	13 (1)
	1064 (63)
	1547 (149)
	Temperate conifer forest
	Temperate conifer forest (17%), Tropical xerophytic shrubland (83%)

	Marmonet Drift_H2
	10 (1)
	1103 (110)
	2215 (341)
	Temperate sclerophyll woodland
	Steppe tundra (28%), Temperate conifer forest (20%), Temperate sclerophyll woodland (43%), Warm mixed forest (9%)

	Marmonet Drift_H4
	14 (1)
	937 (114)
	2215 (341)
	Temperate conifer forest
	Temperate conifer forest (64%), Tropical xerophytic shrubland (18%), Warm mixed forest (18%)

	Marmonet Drift_H5
	13 (1)
	1173 (113)
	2215 (341)
	Temperate conifer forest
	Temperate conifer forest (68%), Tropical xerophytic shrubland (20%), Warm mixed forest (17%)

	Marmonet Drift_I_bottom
	12 (1)
	1368 (113)
	2215 (341)
	Warm mixed forest
	Temperate conifer forest (40%), Warm mixed forest (60%)

	Olorgesailie_BOK1E
	17 (2)
	770 (108)
	1360 (381)
	Tropical xerophytic shrubland
	Temperate conifer forest (16%), Tropical xerophytic shrubland (84%)

	Olorgesailie_BOK2
	17 (2)
	770 (108)
	1360 (381)
	Tropical xerophytic shrubland
	Temperate conifer forest (16%), Tropical xerophytic shrubland (84%)

	Olorgesailie_BOK3
	17 (2)
	770 (108)
	1360 (381)
	Tropical xerophytic shrubland
	Temperate conifer forest (16%), Tropical xerophytic shrubland (84%)

	Olorgesailie_BOK4
	17 (2)
	675 (112)
	1360 (381)
	Tropical xerophytic shrubland
	Temperate conifer forest (64%), Tropical xerophytic shrubland (36%)

	Omo_AHS1-5
	23 (0)
	582 (48)
	450 (118)
	Tropical xerophytic shrubland
	Tropical xerophytic shrubland (100%)

	Omo_AHS6_8
	23 (0)
	582 (48)
	450 (118)
	Tropical xerophytic shrubland
	Tropical xerophytic shrubland (100%)

	Omo_BNS_L3
	24 (0)
	534 (48)
	450 (118)
	Tropical xerophytic shrubland
	Desert (13%), Tropical xerophytic shrubland (87%)

	Omo_KHS2/3
	23 (0)
	582 (48)
	450 (118)
	Tropical xerophytic shrubland
	Tropical xerophytic shrubland (100%)

	VictoriaCabera_2
	17 (0)
	657 (25)
	1765 (349)
	Tropical xerophytic shrubland
	Tropical xerophytic shrubland (100%)

	VictoriaCabera_2a
	17 (0)
	657 (25)
	1765 (349)
	Tropical xerophytic shrubland
	Tropical xerophytic shrubland (100%)

	VictoriaCabera_3
	17 (0)
	657 (25)
	1765 (349)
	Tropical xerophytic shrubland
	Tropical xerophytic shrubland (100%)

	VictoriaCabera_4
	18 (0)
	613 (23)
	1765 (349)
	Tropical xerophytic shrubland
	Tropical xerophytic shrubland (100%)

	AdumaVP1/1
	23 (1)
	620 (75)
	723 (166)
	Tropical xerophytic shrubland
	Tropical xerophytic shrubland (100%)

	AdumaVP1/3
	23 (1)
	620 (75)
	723 (166)
	Tropical xerophytic shrubland
	Tropical xerophytic shrubland (100%)

	EyasiShore_N_surface
	19 (0)
	713 (19)
	1508 (356)
	Tropical xerophytic shrubland
	Tropical xerophytic shrubland (100%)

	EyasiShore_W_surf
	19 (0)
	713 (19)
	1508 (356)
	Tropical xerophytic shrubland
	Tropical xerophytic shrubland (100%)

	


KapedoTuffs
	23 (1)
	751 (91)
	1106 (267)
	Tropical xerophytic shrubland
	Temperate conifer forest (2%), Tropical deciduous forest/woodland (15%), Tropical xerophytic shrubland (83%)

	Karungu_Kisaaka_Main
	16 (1)
	1499 (93)
	1231 (116)
	Temperate conifer forest
	Temperate conifer forest (70%), Tropical xerophytic shrubland (30%)

	Karungu_Kisaaka_ZTG
	18 (1)
	1374 (97)
	1230 (116)
	Tropical xerophytic shrubland
	Temperate conifer forest (12%), Tropical xerophytic shrubland (88%)

	MalewaGorge
	15 (1)
	991 (182)
	2240 (388)
	Temperate conifer forest
	Temperate conifer forest (74%), Tropical xerophytic shrubland (26%)

	Ndutu_14
	17 (0)
	1089 (37)
	1527 (209)
	Tropical xerophytic shrubland
	Tropical xerophytic shrubland (100%)

	Ndutu_72
	17 (0)
	1089 (37)
	1527 (209)
	Tropical xerophytic shrubland
	Tropical xerophytic shrubland (100%)

	Omo_AHSsurface
	23 (0)
	582 (48)
	450 (118)
	Tropical xerophytic shrubland
	Tropical xerophytic shrubland (100%)

	Omo_BNS<50m
	24 (0)
	534 (48)
	450 (118)
	Tropical xerophytic shrubland
	Desert (13%), Tropical xerophytic shrubland (87%)

	Omo_KHSNgully
	23 (0)
	582 (48)
	450 (118)
	Tropical xerophytic shrubland
	Tropical xerophytic shrubland (100%)

	Omo_KHSNMKenya
	23 (0)
	582 (48)
	450 (118)
	Tropical xerophytic shrubland
	Tropical xerophytic shrubland (100%)

	Omo_KHSSgully
	23 (0)
	582 (48)
	450 (118)
	Tropical xerophytic shrubland
	Tropical xerophytic shrubland (100%)

	Rusinga_Nyamita
	16 (1)
	1593 (134)
	1226 (114)
	Temperate conifer forest
	Temperate conifer forest (100%)
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Supplementary Figure S1. The k-means (n = 10) clusters plotted against mean annual temperature (℃) and total annual precipitation (mm). The average silhouette method identified that ten was the optimal division of the data, and this value was used to cut the resulting dendrogram of the sites.

Supplementary Methods: 

S1. Calculation of distance matrices
Following Blinkhorn and Grove [1], we produced a series of distance matrices to explore effects of age, distance in space, and geographic and environmental characteristics of the landscapes surrounding them on toolkit composition and raw material use. Here, we provide a basic description of each variable include in the matrix correlations, however further description and the data can be found in Blinkhorn and Grove [1]. 

Toolkit composition is representative by the presence/absence of 16 artefact categories within the assemblage. These are backed pieces/microliths, bipolar technology, blade technology, borers, burins, centripetal technology, core tools, denticulates, Levallois blade technology, Levallois flake technology, Levallois point technology, notched pieces, platform cores, point technology, retouched bifacial tools and scrapers. Raw material use was recorded as the presence/absences of 8 categories: cherts, quartz, obsidians, basalts, metamorphics, crypto-crystalline silica (CCS), other igneous and other sedimentary. Site types involved the designation between open-air sites or rock shelters and caves. Method of site investigation was recorded as either excavation or survey. We used the mid-age of each assemblage as a simple estimation of the date of each assemblage. Maximum and minimum dates were ascertained from the literature based on the errors of the dating, and the median was taken to represent the mid-age. 

Cost path: 
To represent the physical distance between sites, we calculated the cost path as this is a more representative measure than the Euclidean or geodesic distance. Cost of movement over heterogeneous landscapes was determined to predict the fastest routes between the eastern African sites. Cost path analyses calculate which route across a rough topographic landscape joins two points (sites) with the lowest accumulated cost. In this sense, whilst the shortest distance between two sites is a straight line (the Euclidean distance), it may be much faster, and therefore less costly, to walk around a mountain even if the distance is further. 

We applied Tobler’s Hiking Function which is often used cost-analyses to estimate the maximum hiking speed () given the slope of the terrain () [2]. It is preferred over just the slope as it accounts for anisotropy (the direction of movement has an impact on the cost) and nonlinear cost estimation (the cost of travel can change far more rapidly than the linear change from one input to the next). The maximum speed of off-path hiking (in km/h) is calculated as:

	

Tobler’s Hiking function is not symmetric around 0, and this is because humans tend to walk fastest on gently downward slopes (), where they can walk faster than on flat terrain (). To compute a transition layer using the Hiking Function, we calculated the slope  of the terrain from the altitude  and the distance between cell centres  of each DEM for each pair of cells  and . This was performed using the gdistance package in R [3], with major water bodies masked from the analysis.

	

The slope () was then used to calculate the travel time  in hours of moving between cells of the DEM using the reciprocal of Tobler Hiking Function:

	

Finally, a correction procedure was employed to consider the distance between cell centres, as when travelling with the same speed, a diagonal connection between cells takes longer to cross than a straight connection.

Altitude and roughness at 50km: 
We sampled from the slope () rasters at a 50km radius around each site to ascertain the mean and standard deviation of altitude of the logistical landscape each assemblage was situated in. ﻿We then transformed the slope ) raster into values of energy expenditure (Joules per metre per second for an average 60kg person) following Minetti et al. [4]. This formula accounts for the fact that there are different energetic costs () associated with moving on flat ground vs 10° slopes compared to 10° and 20° slopes, despite the difference in slope being the same. 

	

We sampled from the resulting roughness rasters at a 50km radius around each assemblage and took the mean and standard deviation.

S2. Logistic regressions of individual technologies on significant predictors
Following the multiple matrix regressions, we conducted further analyses on significant predictors of differences in toolkit composition (site type, energy, precipitation, and raw material) to determine which individual technologies were significantly influenced by those predictors. We conducted 16 independent logistic binary regressions (one for each technology); each regression controlled for the effects of all other variables except cost path, which due its derivation was only available as a distance matrix. To control for the effects of raw material distance, we included the presence or absence of each raw material in each assemblage as a set of 8 independent variables (one for each raw material). Traditional logistic regression failed to converge, due to perfect (or quasi-) separation of multiple independent variables and the relatively small size of the dataset. To ensure convergence, we employed penalized maximum likelihood using the Jeffreys invariant prior using the R package brglm [5]. All results are summarised in Supplementary Table S2.

Supplementary Table S2. Each column represents a binary logistic regression of one technology on the full set of independent variables shown as rows in the table across all 84 assemblages. The table shows positive (+) and negative (-) effects of independent variables significant at p < 0.05 (*) or p < 0.01 (**). Blanks indicate non-significant relationships. Min Sample Size is the smaller of the total number of assemblages in which the technology is present or the total number of assemblages in which the technology is absent.
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S3. Palaeoreconstructions of shorelines
We used a global bathymetry model [6] with sea-level reconstructions from Spratt and Lisiecki [7] to predict the coastline for each thousand years. First, we cropped the bathymetry model to the extent of eastern Africa. To predict the palaeocoastline  at any time , expressed relative to the present coastline , the equation outlined by Lambeck et al.  [8] was employed:

	

where  is the sea level difference at  compared with the present. We mapped the coastline for each time slice onto the bathymetry model to produce a series of digital elevation models, stored in raster format in a raster stack. 

S4. Downscaling approaches 
To capture climatic variation across the logistical landscape of each site, we decided to increase the climate model beyond its native 0.5° resolution. We tested two methods of downscaling – delta downscaling [9], the bias-correction method found by Beyer et al. [10] to perform best at minimising the difference between empirical data and the temperature and precipitation simulations [11], and simple bilinear interpolation. Delta downscaling calculates the differences between models present and past climates and applies them to modern observed datasets to correct biases in the simulated data [10]. In this way, the delta method assumes that present day local variation remains constant through time. Using the delta-method, we downscaled the data to 2.5’ resolution (cells representing 4.625km) based on that of the modern data used, WorldClim version 2.1 (https://www.worldclim.org/data/worldclim21.html), and followed methods set out by Beyer et al. [10]. Alternatively, bilinear interpolation is a resampling method that disaggregates the climate model through distance weighted averaging of the four nearest cell values in order to estimate the value of a new cell. Whilst this method has been found to produce spatial artefacts [12], bilinear interpolation is commonly used in paleoclimate modelling to remap data due to its simplicity and lack of assumptions about the data. We disaggregated the model using bilinear interpolation at a factor of 12 to obtain cells representative of 4.625km resolution, matching that of the delta-downscaled data.

To test the effects of downscaling on our results, we ran the simple Mantel tests and the multiple matrix regressions on the bilinear interpolated and delta downscaled data, with sea-level estimates cropping both versions of the model according to the palaeocoastline, as well as the original climatic model at its raw resolution. As shown by Supplementary Table S3-4, the simple Mantel tests return statistically significant results for the effects of both temperature and precipitation on toolkit composition and raw material use for all versions of the climate data, except for delta-downscaled precipitation on raw material. 

We then performed multiple matrix regressions to understand the independent effects of the variables on toolkit composition and raw material use (Supplementary Tables S5-6). For toolkit composition, we found that all datasets returned significant correlations between raw material, site type, roughness and precipitation (bar delta-downscaled). For raw material, toolkit composition, simple age, cost path and roughness are consistently significant, and precipitation significant for the raw data and close to significant for the bilinear interpolated data. Overall, this suggests that the delta downscaling approach is the most conservative approach, whilst using the raw data is the least conservative. In light of these results, we have opted to employ the bilinear interpolation approach to downscaling that offers increased resolution than the raw dataset but requires fewer processing steps or assumptions about how representative modern day spatial variability in local climatic variation may be for the past. 




Supplementary Table S3. Simple mantel tests of the effects of precipitation on toolkit composition, raw material use and the other variables. Statistical significance highlighted at p < 0.05 (*) or p < 0.01 (**). The Benjamini-Hochberg procedure was used to adjust p values.

	
	Raw
	Bilinear
	Delta

	
	coefficient
	p
	adj. p
	coefficient
	p
	adj. p
	coefficient
	p
	adj. p

	Toolkit composition
	0.1956
	0.001**
	0.003**
	0.1972
	0.001**
	0.003
	0.155
	0.001**
	0.004**

	Raw material
	0.1632
	0.001**
	0.003**
	0.1587
	0.001**
	0.003
	0.0635
	0.064
	0.073

	Method
	0.0742
	0.059
	0.067
	0.0957
	0.041*
	0.047*
	0.0887
	0.051
	0.068

	Site
	0.113
	0.002**
	0.004**
	0.0906
	0.005**
	0.01**
	0.0835
	0.007**
	0.013*

	Simple age
	0.0419
	0.163
	0.163
	0.0311
	0.207
	0.207
	-0.0342
	0.717
	0.717

	Cost path
	0.121
	0.003**
	0.005**
	0.1127
	0.006**
	0.001**
	0.2491
	0.001**
	0.004**

	Altitude
	0.2128
	0.001**
	0.003**
	0.2071
	0.001**
	0.003**
	0.1352
	0.008**
	0.013*

	Energy
	0.1138
	0.009**
	0.012*
	0.1087
	0.027*
	0.036*
	0.1560
	0.004**
	0.011*




Supplementary Table S4. Simple mantel tests of the effects of temperature on toolkit composition, raw material use and the other variables. Statistical significance highlighted at p < 0.05 (*) or p < 0.01 (**). The Benjamini-Hochberg procedure was used to adjust p values.
	
	Raw
	Bilinear
	Delta

	
	coefficient
	p
	adj. p
	coefficient
	p
	adj. p
	coefficient
	p
	adj. p

	Toolkit composition
	0.2365
	0.001**
	0.001**
	0.2144
	0.001**
	0.001**
	0.1998
	0.001**
	0.001**

	Raw material
	0.1452
	0.001**
	0.001**
	0.1532
	0.001**
	0.001**
	0.171
	0.001**
	0.001**

	Method
	-0.0089
	0.532
	0.532
	0.0077
	0.433
	0.433
	0.041
	0.219
	0.219

	Site
	0.1757
	0.001**
	0.001**
	0.1568
	0.001**
	0.001**
	0.1376
	0.001**
	0.001**

	Simple age
	0.0519
	0.12
	0.137
	0.0465
	0.152
	0.174
	0.0734
	0.092
	0.105

	Cost path
	0.2658
	0.001**
	0.001**
	0.2637
	0.001**
	0.001**
	0.1932
	0.001**
	0.001**

	Altitude
	0.8094
	0.001**
	0.001**
	0.8041
	0.001**
	0.001**
	0.839
	0.001**
	0.001**

	Energy
	0.5037
	0.001**
	0.001**
	0.4687
	0.001**
	0.001**
	0.4633
	0.001**
	0.001**


[bookmark: OLE_LINK1][bookmark: OLE_LINK2]
Supplementary Table S5. Multiple matrix regression results for toolkit composition. Statistical significance highlighted at p < 0.05 (*) or p < 0.01 (**).
	
	Raw
	Bilinear interpolation
	Delta-downscaling

	
	coefficient
	p
	coefficient
	p-value
	Coefficient
	p-value

	Raw material
	0.149
	0.001**
	0.1483
	0.001**
	0.155
	0.001**

	Method
	0.0114
	0.629
	0.009
	0.698
	0.0083
	0.716

	Site type
	0.0296
	0.016*
	0.0328
	0.018*
	0.034
	0.014*

	Simple Age
	0.0157
	0.702
	0.0184
	0.668
	0.019
	0.68

	Cost path
	0.0068
	0.88
	0.0172
	0.669
	0.0102
	0.806

	Altitude
	-0.1476
	0.219
	-0.0896
	0.473
	-0.0886
	0.48

	Roughness
	0.2652
	0.003**
	0.2645
	0.004**
	0.2543
	0.004**

	Temperature
	0.1335
	0.082
	0.0672
	0.298
	0.0862
	0.276

	Precipitation
	0.0909
	0.031*
	0.111
	0.02*
	0.0855
	0.066



Supplementary Table S6. Multiple matrix regression results for raw material. Statistical significance highlighted at p < 0.05 (*) or p < 0.01 (**).

	
	Raw
	Bilinear interpolation
	Delta-downscaling

	
	coefficient
	p
	coefficient
	p
	coefficient
	p

	Toolkit composition
	0.3139
	0.001**
	0.3119
	0.001**
	0.3242
	0.001**

	Method
	0.0353
	0.1722
	0.0351
	0.192
	0.0379
	0.164

	Site type
	-0.0056
	0.727
	-0.006
	0.7
	-0.0075
	0.6426

	Simple Age
	0.1495
	0.005**
	0.149
	0.007**
	0.1404
	0.01**

	Cost path
	0.2055
	0.002**
	0.1991
	0.001**
	0.19
	0.001**

	Altitude
	0.2646
	0.064
	0.2206
	0.106
	0.0439
	0.767

	Roughness
	-0.2319
	0.012*
	-0.2286
	0.017*
	-0.2
	0.027*

	Temperature
	-0.0575
	0.533
	-0.0108
	0.896
	0.1605
	0.091

	Precipitation
	0.1211
	0.015*
	0.1124
	0.053
	-0.0192366
	0.737
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