1 Supplementary Notes: Cross-Domain PDE Bench-
marks

1.1 Overview

This supplementary material provides a self-contained description of the
three partial differential equation (PDE) benchmark families employed for
cross-domain evaluation. The objective of these benchmarks is to assess
whether physics-informed learning frameworks can acquire transferable, phys-
ically consistent representations that generalize across heterogeneous prob-
lem instances while strictly respecting the underlying governing equations.

Each benchmark family isolates a distinct and practically relevant source
of distribution shift commonly encountered in scientific computing: (i) geo-
metric variability of the computational domain, (ii) parametric heterogene-
ity in material properties and source terms, and (iii) structural variability
of source configurations. Within each family, the mathematical form of the
governing PDE is held fixed, and only the designated source of variability is
modified across tasks.

Together, these benchmarks define a unified protocol for cross-domain
generalization, enabling systematic evaluation beyond single-instance re-
gression. All reference solutions are generated using high-fidelity numeri-
cal solvers with consistent discretization strategies to ensure fairness and
comparability.

1.2 Supplementary Note S1: Geometry-Driven Linear Elas-
ticity

This benchmark considers two-dimensional static linear elasticity under the
small-deformation assumption and evaluates generalization across heteroge-
neous geometries. The primary goal is to examine whether learned represen-
tations preserve mechanical equilibrium and constitutive consistency when
transferred across domains with distinct shapes and topologies.

Let ©; C R? denote the bounded Lipschitz domain associated with the
i-th task. The displacement field u(z,y) = (ug, uy) satisfies the static equi-

librium equations
VJ+F:07 (xay)egza (1)

where o is the Cauchy stress tensor and F denotes a prescribed body force.
The constitutive relation follows isotropic linear elasticity,

o = Atr(e)I +2ue, e(u) =3 (Vu + VuT> , (2)



where A and p are the Lamé parameters, which are fixed across all tasks.

Boundary conditions, material properties, and external forces are iden-
tical for all task instances. Task heterogeneity is introduced exclusively
through variations in the domain geometry €2;, defining a geometry-driven
cross-domain setting.
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Figure S1: Representative domain geometries and correspond-
ing displacement field distributions for the geometry-driven lin-
ear elasticity benchmark. All tasks share identical material parameters,
boundary conditions, and loading, and differ only in domain geometry.

All reference solutions are computed using the finite element method
implemented in FEniCS with sufficiently refined meshes to ensure numerical
accuracy.

1.3 Supplementary Note S2: Parameter-Driven Steady-State
Heat Conduction

This benchmark investigates steady-state heat conduction on a fixed spatial
domain and evaluates generalization across strong parametric variations in
material properties and internal heat sources.

Let Q C R? denote a fixed bounded domain. The temperature field
T (z,y) satisfies the steady-state heat equation

-V (kz(xvy)VT(xay)) = Qi(xvy)v (CC,y) €, (3)



where k;(z, y) denotes the spatially varying thermal conductivity and Q;(z, y)
represents the internal heat source associated with the i-th task.

The computational domain and boundary conditions are held fixed across
all tasks. Task variability arises solely from different realizations of the con-
ductivity field k;(z,y) and the source term Q;(x,y), defining a parameter-
driven cross-domain setting.
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Figure S2: Characterization of parameter-driven steady-state heat
conduction tasks. Rows illustrate Task 1 (a—c) and Task 2 (d-f) on a
fixed domain. a, d, Heterogeneous thermal conductivity fields k(x). b,
e, Internal heat sources Q(x) configured with localized Gaussian peaks.
c, f, Corresponding steady-state temperature fields 7'(x). The benchmark
evaluates the model’s ability to capture physical coherence across diverse
material and source configurations.

All reference solutions are obtained using a consistent finite element dis-
cretization to ensure comparability across parameter realizations.

1.4 Supplementary Note S3: Source-Driven Steady-State Heat
Conduction

This benchmark evaluates generalization across structurally diverse source
configurations in steady-state heat conduction, isolating the spatial organi-
zation of heat sources as the sole source of task heterogeneity.



Let ©Q C R? denote a fixed cubic domain. The steady-state temperature
field T'(x) satisfies

~V- (kVT(x)) = QY(x), x€, (4)
where k is a constant thermal conductivity shared across all tasks.

Task variability is introduced exclusively through the source term Q9 (x),
which consists of multiple localized heat sources:

N;
=Y exp (—ainlx = xinl?), (5)
n=1

where NNV; denotes the number of sources, and x;, and a;, represent their
spatial locations and characteristic scales, respectively.
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Figure S3: Representative source-driven heat conduction tasks
with heterogeneous source configurations. Rows illustrate Case 1 (a—
b) and Case 2 (¢c-d). a, ¢, Input source configurations Q) (x) showing the
spatial layout of heat sources. b, d, Corresponding steady-state temperature
fields T'(x). Distinct source structures give rise to markedly different solution
manifolds, despite identical geometry and material properties.

All reference solutions are generated using high-resolution numerical
solvers to accurately capture the resulting solution manifolds.



2 Supplementary Note: Hyperparameter Specifi-
cation

2.1 Overview

This section details the network architectures, training protocols, and hy-
perparameter configurations employed to reproduce the results presented
in the main text. Hyperparameter choices are guided by the principle of
spectral-physical alignment, ensuring that the inductive biases of the neural
network are consistent with the intrinsic structure of the PDE solution man-
ifold. The selected configurations balance sufficient expressivity for operator
approximation with regularization for stable transfer across heterogeneous
geometric domains.

2.2 Data Preprocessing: Hessian Preconditioning

Proper conditioning of input and output spaces is critical for Physics-Informed
Neural Networks (PINNs). Without normalization, multiscale physical quan-
tities yield ill-conditioned Hessians, resulting in stiff optimization dynamics
and convergence difficulties.

o Domain Nondimensionalization (Spectral Alignment): Neu-
ral networks exhibit a spectral bias, converging more rapidly on low-
frequency components. To match this bias with the physical domain,
spatial coordinates x € ) are normalized by a characteristic length
scale Lyes (e.g., hydraulic diameter):

X — Xmin

x"=2-
Lref

—1e[-1,1]% (6)
This mapping centers the domain within the active region of the tanh
activation, maximizing gradient flow in early training stages.

o Field Standardization (Isotropic Curvature): Physical variables
often span orders of magnitude (e.g., p ~ 10° Pa vs. u ~ 107! m/s).
Z-score standardization is applied using prototype task statistics:

§= Yy — Hproto' (7)
Oproto

This ensures approximately isotropic curvature in the loss landscape,

preventing optimization from being dominated by high-magnitude quan-

tities at the expense of transport features.



2.3 Architecture: Structural Disentanglement

The GD-PINNSs framework explicitly separates invariant physical laws from
variant geometric realizations using a split Multi-Layer Perceptron (MLP)
backbone.

o Universal Operator Encoder (Invariant Block): Four hidden
layers with 96-128 neurons each extract features corresponding to the
differential operator £, which is task-invariant. This depth provides
sufficient capacity to approximate nonlinear operators while preserving
transferability across tasks.

o Geometric Manifold Adapter (Variant Block): Three hidden
layers with 96-128 neurons each map invariant features to geometry-
specific boundary conditions. Limiting capacity prevents overfitting
to local geometric variations and encourages reliance on the robust
encoder features.

o Graph Neural Network (Curvature Smoothing): A 2-layer Graph
Attention Network (GAT) with 4 heads is employed. Depth allows in-
formation propagation from two-hop neighborhoods to smooth local
manifold curvature. LeakyReLU activations (o = 0.2) mitigate van-
ishing gradients during message passing on sparse graphs.

2.4 Spectral-Physical Embedding: Manifold Coordinates

Task embedding vectors z; serve as coordinates for the solution manifold.
Total dimension d = 150 satisfies the Kolmogorov n-width criterion, ensur-
ing bounded approximation error.

o« POD Modes (dpop = 10): Capture the energetic core via singular
value decomposition (SVD) of solution snapshots. Top 10 modes retain
> 95% cumulative energy:

o2

k 2
Kpop = min {k : % > 0.95} : (8)
J=1%j

o PSD Frequencies (dpsp = 60): Characterize geometric topology by
retaining the top 20 dominant spatial frequencies per axis, effectively
low-pass filtering high-frequency meshing artifacts.

o FFT Components (dppr = 80): Sample the fast Fourier transform
of the solution fields to resolve multiscale dynamics up to the inertial
sub-range, facilitating accurate transfer across flow regimes.



2.5 Graph Topology and Prototype Selection

The task graph G defines the pathways for knowledge diffusion. Prototype
selection is determined by a composite centrality metric:

Ceenter (1) = a0 Ceig (i) + (1 — o) Cgeg (7). 9)

The coefficient « is constrained to the interval a € [0, 1] to ensure a
convex combination of the two topological metrics. This constraint is theo-
retically justified by the following considerations:

o Interpolation versus extrapolation: Constraining « to [0,1] ensures
that the composite score remains strictly within the convex hull of the
component metrics. Values outside this range would correspond to
affine extrapolation, where one metric receives a negative weight (for
instance, if @ > 1, then 1 — a < 0).

e Stability: A negative weight would imply penalizing a favorable topo-
logical feature, such as high local density or global connectivity, which
is inconsistent with the goal of identifying influential nodes. This could
lead to unstable prototype selection and increased sensitivity to out-
liers.

o Pareto optimality: The range [0,1] represents the valid Pareto fron-
tier between two competing objectives—maximizing global informa-
tion flow (Ceig) and maximizing local neighborhood coverage (Cqeg)-

Parameter specification and rationale:

e a = 0.65 for SWRO industrial cases: This value favors eigenvector
centrality (Ceig) because the industrial design space is fragmented and
high-dimensional. A higher weight on global connectivity ensures that
the prototype acts as a bridge capable of reaching distant geometric
clusters that might otherwise remain isolated within the graph.

e «a = 0.50 for canonical benchmarks: This choice provides equal weight-
ing between the two metrics. Benchmark tasks, such as elasticity and
heat problems, are generated through uniform sampling of continuous
parameters, forming a regular and convex manifold geometry. In such
uniform settings, a balanced reference reflecting both local and global
influence serves as an effective prototype.



2.6 Transfer Mechanism: Entropy-Controlled Diffusion

Knowledge propagation is implemented as anisotropic diffusion with tem-
perature scaling:
wj—i < exp((h, h;) /7). (10)

o Temperature Annealing (7 : 2.0 — 0.1): Early-stage high 7 pro-
motes uniform averaging (global exploration), while late-stage low 7
enforces projection onto local tangent spaces for precise geometric
adaptation, analogous to simulated annealing on the solution mani-
fold.

2.7 Optimization: Boundary-Driven Uniqueness

Total loss is weighted as:
L= )\f»CPDE + M LBC. (11)

« Boundary Weighting: )\, = 50 (3D), Ay = 1. The uniqueness
of each task solution is entirely determined by boundary conditions;
therefore, boundary adherence is prioritized.

o Hybrid Optimization Protocol: Adam optimizer (10,000 epochs)
for stochastic exploration, followed by L-BFGS-B for precise conver-
gence (gtol = 107°), ensuring scientific accuracy.

2.8 Hyperparameter Summary

Table S1 summarizes the configurations used in this study, ensuring repro-
ducibility while maintaining spectral—-physical consistency.

3 Supplementary Note: Theoretical Derivation of
Manifold-Restricted Optimization

In this section, we provide a rigorous derivation of the initialization error
bound presented in Eq. (23) of the main text. We show that the Graph-
Guided Knowledge Diffusion in GD-PINNs acts as a locally valid tangent
space interpolation, and that its error is fundamentally constrained by the
curvature of the solution manifold and the spectral sampling density.



Table S1: Hyperparameter specifications for GD-PINNs. Config-
urations balance operator expressivity with geometric adaptability and en-
force thermodynamic consistency in diffusion.

Category Parameter Value / Specification
Architecture Encoder Structure (Invariant) 4 Layers x 96-128 Neurons
Adapter Structure (Variant) 3 Layers x 96-128 Neurons
Activation Function tanh (C*° smooth)
GNN Architecture 2 Layers, 4 Attention Heads
Embedding Dimension Breakdown dpop = 10, dpsp = 60, drppT = 80

Total Dimension

150 (Kolmogorov n-width satisfied)

Graph Topology

Centrality Weight («)
Neighborhood Size (k)

0.65 (SWRO) / 0.50 (Benchmark)
5 (Nearest Neighbors)

Transfer Diffusion Temp. (1) Annealed: 2.0 — 0.1
Pre-training Spectral-Graph Hard Transfer
Training Optimizer Schedule Adam (1le=3) — L-BFGS (le~?)

Loss Weights
Collocation Points (Ny)
Random Seed

Ap = 1.0, \y = 50 (3D) / 20 (2D)
20,000 (3D) / 5,000 (2D)
42 (Fixed for reproducibility)




3.1 Geometric Setup and Assumptions

Let the parameter space of the neural network be © = R”. We assume the
existence of a smooth, low-dimensional submanifold Mg C © formed by the
optimal parameters {6*(u) : u € P} corresponding to the PDE family.

Assumption 1 (Manifold Regularity): The submanifold Mg is a compact
Riemannian manifold with bounded sectional curvature. Let x denote the
upper bound of the second fundamental form (extrinsic curvature) of Mg
embedded in RP.

Assumption 2 (Spectral Isometry): The spectral-physical embedding
¥ : Mppg — R? (constructed via PSD, FFT, POD) is approximately iso-
metric in local neighborhoods. Consequently, the Euclidean distance in the
embedding space approximates the geodesic distance on the parameter man-
ifold:

Iz — 2lls ~ du(6,6)). (12)

3.2 Graph Diffusion as Tangent Space Approximation

In GD-PINNS, the initialization 69 for a target task T; is computed via
attention-weighted aggregation:

JEN(3)

where N (i) denotes the set of spectral neighbors. Geometrically, this opera-
tion represents a convex combination of points lying on the curved manifold
Meg. The resulting 69 typically lies on the secant plane connecting the
neighbors rather than on the manifold itself.

We aim to bound the approximation error E = [|69 — 67]|.

3.3 Derivation of the Error Bound

Consider the local geometry around the optimal parameter 6 for the target
task. Since Mg is smooth, for any neighbor 67 we can perform a Taylor
expansion along the geodesic 7;;(t) connecting §; and 0.

Let v;; € Tpr Me denote the tangent vector corresponding to this geodesic,
with ||v;|| = dm(67,07). In the ambient Euclidean space, the expansion is:

* * 1
07 = 07 + vij + S Hor (vig, vig) + O(lIvi|1*), (14)

where Hy+ is the second fundamental form representing extrinsic curvature.
1

10



Substituting this into the aggregation formula:

1
0] = ay (9? +vij + 5 Ho: (vig, Vi) + - ) (15)
j

1
= 9? + Z Q;;Vij + B} Z Olz'jHGj (Vij, Vij) + ... (16)
J J

Analysis of the terms:

1. Tangent Bias (First Order): The term } a;;V;; represents the weighted
mean of tangent vectors. The diffusion temperature 7 in GD-PINNSs is an-
nealed to prioritize nearest neighbors symmetrically. Under dense, symmet-
ric sampling or with appropriately centered attention weights, this term is
minimized or approaches zero.

2. Curvature Error (Second Order): This term arises from the manifold
geometry and cannot be eliminated by linear averaging. By the bound on
the second fundamental form:

H"?"lej("z’ja"z’j)H2 < kllvijll3- (17)

Let 6 = max;cp(;) ||vij| denote the fill distance determined by the spectral
graph connectivity. Then |v;;|| < 0.
Hence, the error is bounded by:

109 = ;12 < || cugvig

Neglecting higher-order terms and assuming the tangent bias is negligible
due to attention centering, we obtain the simplified bound:

1
+ 52%]%52 +O(53) (18)

1
HH? — 672 < 5&(52 = C(Fa)O(dz). (19)

3.4 Connection to GD-PINNs Stages

This bound provides a theoretical justification for the dual-stage design of
GD-PINNs:

Stage I (Universal Operator Encoder) reduces C(x): By fixing the en-
coder parameters 0., across tasks, the manifold is effectively flattened along
the invariant operator dimensions. The variation of 6* is then restricted to
a lower-curvature submanifold defined by the geometric adapter Ogqqpt, re-
ducing the curvature constant x.

Stage II (Manifold Interpolation) reduces §: The spectral embedding z
ensures that the graph selects neighbors that are physically close. Adaptive
attention weights a;; further reduce the effective fill distance J, keeping the
approximation within the quadratic region O(6?).
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