Supplementary Materials —

Materials and Methods

1.Model equations. Low-frequency microturbulence in weakly collisional magnetised plasmas is appro-

priately described within the gyrokinetic framework (13). The GYSELA code (16) solves the governing

coupled gyrokinetic:
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equations for the guiding-center distribution function F, of ion species s, evolved with no separation
between equilibrium and perturbation in five dimensional guiding-centre space (xa,vg|, #t) and time.

In Eq.(A-2), = [ JyJx - dv|dudfdep, with Jy and Jx being the velocity and space Jacobians. The

charge density of guiding-centers p is computed as:

pxt) = — 32, / dud,. [ / Jy dvgy (Fu(%,V,1) — Faga(r,6,v¢))) (A-5)
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with J,. the gyro-average operator. Notations are those of Ref.(14). The computational domain
extends from inner core (r/a = 0) to the material boundaries (r/a = 1.3). Flux- or gradient-driven
dynamics may be considered. For flux-driven evolution, 7% = 0 and the distribution function evolves
according to volumetric sources S (31) and penalised heat and momentum sinks M™(r, §), MSOL(r)
and M"Y#!(r) that can mimic from poloidally-uniform boundary conditions (Case-2) to the more
complex limiter and wall geometries (Case-1). The latter case allows description of the closed to
open field lines transition in the Scrape-Off Layer (SOL). Gradient-driven-like dynamics may also be
considered whilst imposing & = M™(r, ) = M™3ll(r) = 0. In Case-3, the target distribution function
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Fig. A-1. The various masks used for penalisation in the gyrokinetic—Poisson system.

Fr.p is chosen as the statistical distribution at equilibrium from flux-driven Case-2 and the relaxation
rate Y8 = 5.43107° ~ 743,/10 is an order of magnitude smaller than the local linear turbulence growth
rate v, at r/a = 0.7. Imposing M5O (r) as in Case-2 or cancelling this mask does not alter the
dynamics which is dominated by the BGK operator [last term of Eq.(A-2)], specifically described in
Ref.(32) and built such as to prevent overdamping zonal modes (33).

Penalisation (34) modifies the equations through introduction of a series of masks M™*(r, @),
MSOL (1) and MWall(r), combinations of hyperbolic tangents, adjustable in location, shape (for
M™% (r 0)) and stiffness. They are illustrated in Fig.A-1. Electrons have a Boltzmann response
modified by penalisation such that the electric potential ¢ in the quasi-neutrality equation is relaxed
towards its expected presheath condition AT, /e in the SOL. Additionally, ¢ may be biased to ¢Pis
in the limiter (¢” = 0 in the current study) and is freely evolving elsewhere. T is the cold elec-
tron temperature within limiter and wall, chosen as the minimum 7, value within the computational
domain, A = log(y/m;/m.) and coefficient A (set to unity in the present study) may be used to

alter the inertia of the zonal potential. In the gyrokinetic equation, infinite penalisation (35) relaxes



F, to a target cold Maxwellian distribution function Geglq = nuy (27T ) ~3/2 exp[—(vé” + uB)/2Ty],
characterised by low wall thermal energy Ty, and target density ny. The former is constrained by
velocity-space resolution; we typically choose it an order of magnitude lower that temperature at mid

radius whilst the target density n, is chosen so as to ensure particle conservation.

2.Physical parameters and robustness. The reference Tore Supra shot 45511 had 2MW of Ton Cy-

clotron Resonance Heating on top of IMW of Ohmic heating injected in a deuterium plasma of
normalised size p, = p;/a = 1/500 at mid radius and aspect ratio a/Ry = 1/3.3, a and Ry being
respectively the minor and major radius. The plasma current is I, = 0.8MA, the magnetic field on
axis is By = 2.8T and the density and temperature at mid-radius respectively read: n = 410*m=3
and T = 0.8keV. In GYSELA, a 3MW volumetric heat source comparable in shape to that in the
experiment is injected in the central 40% of a deuterium torus of same aspect ratio. Initial den-
sity, electron and ion temperature profiles are the same as in the experiment up to the separatrix.
In the core T./T; > 1 whilst this ratio reverses in the edge and SOL. To slightly offset the nu-
merical cost of the computations, run on Tier-0 Joliot-Curie at GENCIQCEA and MareNostrum at
Barcelona Supercomputing Center, we assume a reduced magnetic field on axis: By = 1.7T, which
amounts to computing a plasma column of slightly smaller size p, = 1/300 on a 1/4 wedge torus with
(7,0, 0,0, 1) = (512,1024,64, 128, 64) grid.

Extensive tests have been performed to assess the robustness of the reported main results: observed
gradient anisotropy and magnitudes in the limited configuration are robust whilst varying distribution
function initialisation (local or canonical Maxwellians), presheath values in the SOL through A scans
(from 0 to 5, its nominal value for Deuterium being A ~ 4.1), target penalised temperature T, in
the limiter and wall, limiter shape (large and flat, narrow, rounded) and poloidal location (bottom,
top). Further scans have also been performed in a flux-driven poloidally symmetric setting akin to
Case-2, varying the T./T; ratio, changing the safety factor ¢ and magnetic shear s and altering the
experimental density gradient. The latter two are illustrated in Fig.A-2. Of course, details of edge
transport vary with the various parameters scanned. Precise discussion of sensitivity is not within the
scope of the current manuscript; the bottomline conclusion is that the reported dynamics of Case-1
(modified outer edge linear stability, nonlinear destabilisation and ensuing transport barrier onset)

requires the combined possibility for plasma-boundary interplay and turbulence spreading. Absence
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Fig. A-2. Series of flux-driven computations at p, = 1/316, akin to Case-2 but for the outer boundary conditions.
In lieu of the penalised poloidally symmetric SOL of Case-2, an outer diffusive buffer region between 1 < r/a <
1.3 swrrounds the confined plasmas through application of the diffusion operator D in Eq.(A-2), detailed as
Eq.(50) in (14). The goal is twofold: assess sensitivity (beyond experimental uncertainties) of edge transport
dynamics to variations or uncertainties in input profiles and evaluate incidence of surrounding artificial diffusion
for edge transport. Density gradients have a stabilising effect on the dominant Ion temperature Gradient (ITG)
instability. Subplots (a) and (b) display incremental relaxation of density gradients past r/a > 0.6 and their
incidence on fluctuation levels. Similarly, lower magnetic shear and safety factor values past r/a > 0.6 modestly
increase fluctuations there. In all cases, edge fluctuation levels are lower than in comparable Case-2. In the
absence of outer edge turbulent activity, core to edge spreading appears subdominant. Technically, the choice
of an outer diffusive boundary region, though efficient numerically is thus not innocuous (and probably quite

poor) on physical grounds.



of one or both prevents as in Cases-2 and 3 transport barrier onset and leads to transport shortfalls

in NMsL of varying severity.
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Fig. A-3. Data from flux-driven poloidally-symmetric Case-2, at equilibrium (¢Q.; = 200,000). (a) Poloidal
cross-section snapshot of the fluctuating electric potential. Specific locations are marked, combination of three
radial locations: {ri,re,r3}/a = {0.90 (circles), 0.96 (stars),1.02 (squares)} and four poloidal locations 6y =
{9° (magenta), 126° (cyan),—118° (red), —61° (yellow)}. Properties at these locations are shown in subplots
(b): E x B shear, (c): parallel velocity shear and (d) through (f): maximul linear instability growth rate at

vanishing E x B shear, keeping the same symbol-color combination.

3.Linear stability analysis of the poloidally-symmetric and limited GYSELA profiles is performed

using the initial value framework of the Gyrokinetic Workshop (GKwW) code (17), based on the gradient-
driven and local (flux-tube) approximations. Unless stated otherwise (see Strategy III below) Boltz-
mann electrons have been assumed, as in GYSELA. Growth rates for the most unstable poloidal
wavenumbers kgp; = 0.6 in the poloidally-symmetric (Fig.A-3) and limited (Fig.A-4) configurations

are estimated by the following procedure.
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Fig. A-4. Same layout as in Fig.A-3. Data is from flux-driven Case-1 with limiter at two different times: subplots
(a) through (f) are early in the nonlinear development of turbulence (¢£2.; = 30,000); subplots (g) through (1)
at thermal equilibrium (¢€2.; = 250,000). An additional location near the limiter at (r/a = 0.96,6 = —75°),

marked by the large white triangle is shown and corresponds to the region of maximum linear instability growth.



(1)

(iii)

at a given radial location ry, compute the set ¥, = {q,s,vs,T;/Te,U',vg,R/Ly,R/Ly,} of
local values of the GYSELA plasma parameters, ¢ being the safety factor, s = (r/q)dq/dr the
magnetic shear, v, is the collisionality, U’ the parallel flow shear, vz denotes the E x B shear,
R the tokamak major radius and Ly' = —d(LogX)/dr with X = {T,n} the local logarithmic

gradients of respectively ion temperature and density;

within GKW, the local approximation requires mean gradients to be constant over the compu-
tational domain, the numerical representation of a flux tube. Coarse-graining of the flux-driven
GYSELA values is thus performed over a typical radial turbulence length scale Ar = 10p; and in
time over the observed linear growth At Q. = 2510° of turbulent fluctuations. Furthermore, as
the computational domain of GKW winds around the torus parsing both poloidal and toroidal
angles, the background state is assumed to be uniform. This implies poloidal homogeneity
along the flux tube and requires further averaging the GYSELA values on a flux-surface (6, p):
((((Xrg)At)Ar)o) s Where ()¢ denotes the average over (. Physically, it amounts to estimating

the instability drive as if located at its ballooning angle, effectively maximising it;

for a chosen radial location r;, knowing (({(X;)At)ar)e), allows to compute with GKw 2-
dimensional maps of instability growth rates -y, as a function of the logarithmic gradients
[subplots Fig.A-3-(d) to (f) and Fig.A-4-(d) to (f) and (j) to (1)], each map tailored to the precise
background local values in GYSELA for T;/T,, etc. Importantly, these maps are estimated at

vanishing E x B shear;

we now estimate local values of the GYSELA local growth rates v, at 13 different radial-poloidal
(rj,0k) locations (shown in Fig.1 as well), combination of three radial locations near the sep-
aratrix: {ry,r2,r3}/a = {0.90 (circles),0.96 (stars),1.02 (squares)} and five poloidal locations
0 = {9°,126°, —118°, —75°, —61°}, spanning the full poloidal cross-section;

in order to assess actual stability, one can estimate an effective linear growth rate correcting for
the E x B shear: v°f = vy, —v& [strategy I] or run GKW nonlinearly, including vz from GYSELA
[strategy II]. This latter strategy is significantly more demanding numerically and only a few

cases have been investigated. Furthermore, 2 additional runs with GKw have been performed



at (r/a =0.84,0 = 9°) and (r/a = 0.96,0 = 9°) with a fully kinetic electron response to assess

the impact of the Boltzmann electron approximation [strategy III].

For all Cases, the dominant instabilities inside r/a < 0.84 are found to be of interchange character.
With a Boltzmann electron response, the ion temperature gradient (ITG) is dominant. With a kinetic
electron response the instability inside r/a < 0.84 is a combination of ITG and Trapped electron

modes (TEM).

e In poloidally-symmetric Cases-2 and 3, GKW finds the edge to be marginally stable at vanishing
E x B shear: vy, ~ 0 [Fig.A-3-(d) to (f)]. When including E x B shear, strategy I predicts the
edge to be nonlinearly unconditionally stable past r/a > 0.9, with v°f < 0 for all radial-poloidal
combinations considered. Strategies II and III confirm that location (r/a = 0.96,0 = 9°) is
indeed stable. Contributions of perpendicular and parallel shear flow (parallel velocity gradient,

PVG) instability (36) are weak [Fig.A-3-(c)] and insufficient to destabilise NMsL.

e In Case-1 with limiter the situation dramatically changes: destabilisation of the outer edge
starts about the limiter, just inside the separatrix. Fig.A-4-(e) shows estimated ITG growth
rates at 7/a = 0.96 that are larger than in Cases-2 and 3 whilst all locations at r/a = 0.9 remain
stable [Fig.A-4-(a) and (d)]. Effective growth rates are large in the vicinity of the limiter at
locations 8 = —75° and —61°. Instability growth is also predicted at the plasma top 6 = 126°.
Interestingly, as the limiter remains a cold sink throughout nonlinear regime, the near-limiter
drive endures [Fig.A-4-(k)] and as turbulence spreads, formerly stable regions are destabilised
[Fig.A-4-(g) and (j)]. Both E x B shear [Figs.A-4-(b) and (h)] and parallel velocity gradient
[Figs.A-4-(c) and (i)] are significantly increased with respect to poloidally-symmetric Cases-2
and 3. The significant velocity shear near the separatrix is found to contribute a modest albeit
positive fraction of the global instability with v*VE = [M] ||L;‘ ‘1| —|L; 1| ~ 0, when averaged on
a flux surface. Here M) is the parallel Mach number. Local values however of parallel velocity
shear about the limiter may locally reach up 3 to 5 times the mean with 4*VS > 0, which does

not rule out the possibility for localised yet significant free energy sources from parallel shear

flow instability.

It is important to note that even though this procedure provides information on the nature of



instabilities at play, two major and oft-made approximations in local approaches should be relaxed
to accurately interpret flux-driven dynamics near the separatrix. Indeed, the local E x B shearing
rates obtained from limited GYSELA with respect to poloidally-symmetric cases [respectively compar-
ing Figs.A-4-(b) and (h) to Fig.A-3-(b)] are large enough to significantly decrease linear growth, as
currently estimated through GKw. Strategy I balancing maximum growth with E x B shear only
provides partial insight into the nature of active instabilities. Secondly, postulating poloidal (parallel)
homogeneity as flux tubes wind around the torus is reasonably accurate in the core but clearly less
justifiable to describe the near-separatrix in flux-driven limited configurations. Much of the nonlinear
destabilisation of linearly stable edge is consequence of the onset of such poloidal inhomogeneities.
Furthermore, additional stabilisation mechanisms are possible, such as profile coupling or poloidal
shift of the envelope mode. This linear analysis thus likely provides an upper-bound estimate of
the actual flux-driven instability growth. It has the merits however to confirm that the edge under
poloidally-symmetric boundary conditions is linearly stable and that it gets destabilised locally in the
vicinity of the cold sink, emphasising the central role of turbulence spreading in understanding global

equilibration of the turbulence dynamics.

4.Causal inference. Causality detection in information theory is actively debated (25). The “Trans-

fer Entropy” (T'E) method is a simple nonlinear extension of the Granger causality (28), introduced by
Schreiber (26) and investigated in magnetised plasmas by Van Milligen et al. (27). The idea behind
TE is simple: let’s consider a time series (z;) of realisations of observable X, with 0 < i < n. If
one can better predict its next realisation z,1; using additional data from another time series (y;) of
observable Y with 0 < j < n, then “Y transfers information (i.e. causes) X”, or more accurately as
“Y forecasts X”, which constitutes the definition of causality here. This idea is quantified measuring
deviation of transition probabilities from independence, i.e. from a stationary Markov process. In
its simplest expression, if processes X and Y are independent, then the following generalised Markov
property holds for all 0 < k < n: p(xpt1|Tn—ks Yn—k) = P(Tnt1|Tn—k). The standard notation for
conditional probabilities is used here: p(a|b) is the probability of @ knowing b. If now processes X and
Y are not independent, the ratio of these two transition probabilities provides a measure of how much
information they may share. In other words, how much knowing values within Y in addition to past

values in X may help to better evaluate next-step x,+1. This idea leads to the following definition of
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the Transfer Entropy (T'E) from process Y to process X:

p($n+1 ‘xn—ka yn—k)
TEy_,x (k) = 1y Tk Ynk) | A
vox (k) Zp(z 10 Tk Yn—k) Og( P(Tpy1|Tn_k) ) o

where k is thus a time lag and represents the k-past of times series X and Y. The summation process
is detailed below, in Eq.(A-8). TE can equivalently be recast as a conditional mutual information
and represents the additional amount of information that must be added to adequately represent the
studied process p(Tn+1|Tn—k, Yn—k) With respect to its reference Markov process p(x,41|Tn—x). In the
absence of information flow from Y to X, the logarithm vanishes as state Y has no influence on the
transition probabilities of X. It also follows that T'E is directional, i.e. TEy_,x # TEx_y, effectively
allowing to infer causality between processes X and Y. TFE displays interesting properties: it is
independent of the relative magnitudes of signals X and Y’; it may apply to either linear and nonlinear
regimes; it is easy to evaluate directly in real space rather than in Fourier space and is typically less
demanding in terms of statistics than bispectral techniques. Practically, T'E is evaluated expressing the
conditional probabilities as joint probabilities p(Zy+1|Tn—k, Yn—k) = P(Tn+1, Tt Yn—k)/P(Tn—k, Yn—k)

and computing the 4 multidimensional probability density functions (pdfs):

P(Tni1, Ty Yn—k) P(Tn—k)
TE k:Epam s Ty ks Yn— loo‘< A-T
Y—>X7Oé( ) ( L En=he Un k) s p(xn—i-lyxnfk:)p(xnfk;ynfk) ( )

as a function of time delay k& and normalised such that 0 < TE < 1. The 4 pdfs in Eq.(A-7) result

from a binning process of times series X and Y, such that Eq.(A-7) is estimated in practice as:

TEyx.a(k) = Z - 3 [pgd(i,j,l)rloga <p3d(i,j,l)p1d.(j)> s

B B
=1 1=1 pgzg(lvj)p%(gi/(%l)

i=1j
where p3?, p22, pi‘; and p'? are the discretised versions of respectively p(Zn1, Zn—k, Yn—k)s P(Trt1, Tnt),
p(Tn—k, Yn—k) and p(z,—x). In order to have sufficient statistics, a bin size 5 = 2 or § = 3 is typically
chosen, depending on the available length of the time series (the longer the times series, the larger [
can be). We introduced here the additional exponent o > 1, which effectively represents a nonlinear
threshold: low probabilities will be further reduced and higher ones amplified. In a complex setting,
information may flow both ways, from Y to X and inversely. It is thus especially useful to define the
net transfer entropy Axy(TE)[k] = TEy_,x[k] — TEx_yk], which provides the net flow of infor-

mation between processes X and Y, at timelag k. In the manuscript, pdfs in Eq.(A-7) are discretised
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using 3¢ = 2% bins, with d the dimensionality of the pdf. The nonlinear threshold exponent « is set to
unity and X and Y are discretised at the same rate and enter the T'F calculation with zero temporal
mean. Further details may be found in (24).

We systematically apply the TE algorithm to actual time series from the flux-driven Case-1 com-
putation with limiter boundary conditions in the last 5% inside the separatrix, where the spontaneous
onset of a persistent transport barrier is observed. The following vorticity equation can be inferred
from the primitive gyrokinetic equations including E x B drift and finite Larmor radius at leading

order:
1 1
O () + ;arr (VEr) + (Vi) — <v*9T89ET>} =r.h.s (A-9)

1 1 1 1 1
r.h.s &= =0 (Qy) — ;8@ ((vpg + v40)9) — 8T§(99 <U%9> + %893,« <7«2v]25r> — ;89 <’U*7«T(99’UE9>

(A-10)
O =0, (rdpd) [r & Qp=0p/r? (A-11)
Vg = — g1 &  vpg=0yd=—E, (A-12)
Vsr = —OppL [T & vy =0mpL (A-13)

where (-) denotes an average over toroidal angle ¢. The TE algorithm is applied to many of the

possible permutations of quantities in Eq.(A-9) and especially here to the following set:

(6 ¥) € {1900) 0mr0) (00 (vt 0n )| (A-14)



