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1. [bookmark: _Toc221024867]Preparation and Synthesis of Absorbents
The commercially obtained activated carbon F400d and zeolite ZSM-5 were ground into a fine powder prior to further experimental procedures. MFM-300(Fe)1, PCN-250(Fe₂Co)2, MIL-125-Zn3, HKUST-14, BUT-555, and were synthesized following the reported procedures. ZJU-702 was synthesized with slight modifications to a previously established protocol6, while ZJU-703 was prepared under similar synthetic conditions to those of ZJU-702.
2. [bookmark: _Toc221024868]Structural Characterization of MOFs
The structure of ZJU-701 was successfully determined through single-crystal X-ray diffraction analysis7,8. Crystallographic data reveal that ZJU-701 crystallizes in the P61 space group, with unit cell parameters of a = 48.53 Å, b = 48.53 Å, c = 27.46 Å (α = β = 90°, γ = 120°). Detailed crystallographic data for ZJU-701 are provided in Supplementary Table 1.
The structures of ZJU-702 and ZJU-703 were determined by Rietveld refinement9,10. Detailed data are provided in Supplementary Table 2 and 3. Additionally, the pore sizes of ZJU-701, ZJU-702, and ZJU-703 are similar, suggesting that these materials are isostructural, with the only differences stemming from the substitution of molecular fans in the ligands.


3. [bookmark: _Toc221024869]Gas and Vapor Adsorption
(1) Nitrogen adsorption-desorption isotherm
The specific surface areas were calculated using the Brunauer–Emmett–Teller (BET) method11,12 (S1–S4) based on N₂ adsorption-desorption isotherms collected at 77 K. Pore-size distributions (S5) were determined using the Non-Local Density Functional Theory (NLDFT) method13.




where  is the y-axis of the BET equation;  is the saturated vapor pressure of the adsorbate at the adsorption temperature;  is the single-layer saturated adsorption capacity of the adsorbent on the adsorbate, cm3·g⁻¹;  is a constant related to the adsorption performance of the adsorbent;  is the BET specific surface area, m2·g⁻¹;  is the cross-sectional area of adsorbate molecules, m2;  is the volume occupied by 1 mol of gas under standard conditions, cm3;  is the relative pressure;  is the pressure after adsorption equilibrium, bar;  is the adsorption capacity of the adsorbent on the adsorbate at the adsorption equilibrium pressure P, cm3·g⁻¹;  is the slope of the fitted line;  is the intercept of the fitted line;  is Avogadro's constant, 6.02×1023.

where  is pore size of adsorbent, nm;  is the pore volume function corresponding to the aperture w;  is the number of adsorbed moles of adsorbate at a relative pressure of P;  is the molar density of the adsorbate at pore size w and relative pressure P.
(2) Benzene vapor adsorption isotherm
Prior to adsorption measurements, the adsorbents were degassed under vacuum at 423 K for 6 h to remove solvent molecules from the pores. This same degassing procedure was applied to the benzene-saturated ZJU-701 during the subsequent regeneration experiments.
(3) Adsorption kinetics test
After measuring the benzene adsorption kinetic curves for each adsorbent, the pseudo-first-order rate constant (k1) was calculated using the following equation14-16:

where  is the saturation benzene adsorption;  is the pseudo-first-order rate constant k1.
The diffusion coefficient was calculated using the following equation, where  serves as the metric for evaluating diffusion rates17,18:

where  is the saturation benzene adsorption;  is the benzene adsorption at t second (s);  is the benzene adsorption at initial time, s;  is the diffusion coefficient, m2 s–1;  is the ball model radius.
For the convenience of calculation, the above equation can be approximated as:

plot as y and as x, perform linear fitting to obtain the slope k，k =.
Kinetic measurements were similarly conducted for ZJU-701, ZJU-702, ZJU-703 and MFM-300(Fe) using toluene (300 ppm)19,20, m-xylene (300 ppm)21, NH3 (300 ppm)22, SO2 (2000 ppm)23, and SF6 (100,000 ppm)24 as target gases at 298 K.
(4) Breakthrough experiment
Breakthrough curves were obtained by recording the concentration versus time profiles, from which the benzene breakthrough adsorption capacities at different flow rates were determined.

where  is the breakthrough adsorption capacity, mmol·g⁻1;  is the benzene volumetric feed flow rate, cm3·min⁻1;  is the mass of the adsorbent, g;  is the adsorption time, min;  is the feed benzene concentration, mmol·cm⁻3.
4. [bookmark: _Toc221024870]Theoretical Simulation
To investigate the adsorption behavior of benzene in the adsorbents, Grand Canonical Monte Carlo (GCMC) simulations were performed using the Raspa software, with adsorption sites visualized25. The simulation parameters were set as follows: a constant adsorption temperature of 298 K and benzene partial pressures of 0.0126 kPa, 0.126 kPa, 1.26 kPa, and 12.6 kPa. During the simulations, the atomic positions within the adsorbent framework were held fixed. The atomic potential parameters were described using the Universal Force Field26, and partial atomic charges were calculated using the Qeq method27. Long-range electrostatic interactions were handled using the Ewald and group summation techniques. Benzene molecules were allowed to undergo translation, rotation, insertion, and deletion operations within the framework, with a cutoff radius of 14 Å. Each simulation included 1×10⁶ equilibration cycles, followed by 1×10⁷ production cycles.
Density functional theory (DFT) calculations were performed using the CP2K program to carry out geometric optimization and energy computations for the benzene molecule adsorbed on the adsorbents. The Goedecker-Teter-Hutter (GTH) pseudopotential28,29 and DZVP-MOLOPT-SR basis30 set were employed in the calculations. The Perdew-Burke-Ernzerhof (PBE) functional was used to evaluate the nonlocal exchange-correlation energy31, with the DFT-D3 dispersion correction scheme applied32. The energy cutoff was set to 400 Rydberg (Ry), with a relative cutoff of 50 Ry. The binding energies were calculated using the following formula:

where  is the total energy of the optimized MOF & benzene structure; , and  are the total energy of the optimized ZJU-701, ZJU-702 and ZJU-703 and benzene molecules, respectively.


5. [bookmark: _Toc221024871]Adsorption Heat Calculation
To investigate the correlation between the isosteric heat of adsorption (Qₛₜ) and the amount of benzene adsorbed, adsorption data of benzene vapor at different temperatures were fitted. The Virial equation was used to describe the relationship between the amount adsorbed (n) and the equilibrium adsorption pressure (p):

where  is the equilibrium pressure;  is the amount adsorbed;  is the absolute temperature, K; and ,  are the Virial coefficients.
According to the thermodynamic derivation based on the Clausius–Clapeyron equation, the isosteric heat of adsorption can be calculated using the following expression27:

where  is the universal gas constant.
By substituting the Virial equation, the relationship between  and the amount adsorbed n can be obtained as:



6. [bookmark: _Toc221024872]In Situ Spectra
(1) In situ low-frequency Raman spectra
ZJU-701, ZJU-702, and ZJU-703 (30 mg) were individually weighed and loaded into the sample chamber at 298 K. The nitrogen flow rate was gradually increased from 0 to 100 mL·min⁻¹. At each flow rate, the system was equilibrated for 5 minutes before recording the corresponding low-frequency spectrum. The excitation wavelength used was 532 nm33,34.
(2) In situ infrared spectra
ZJU-701, ZJU-702, and ZJU-703 (30 mg) were individually weighed and loaded into the sample chamber at 298 K. The nitrogen flow rate was gradually increased from 0 to 30·mL min⁻¹. At each flow rate, the system was equilibrated for 5 minutes before recording the corresponding infrared spectrum.



7. [bookmark: _Toc221024873]Additional Figures and Tables
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Figure S1. SEM images of ZJU-701.
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Figure S2. PXRD patterns of ZJU-701.
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Figure S3. (a) N₂ adsorption-desorption isotherms of ZJU-701 at 77 K; (b) pore size distribution profile of ZJU-701.
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Figure S4. N2 adsorption-desorption isotherms after (a) treatments with aqueous solution at pH 2~12 for 7 days; (b) 10 benzene vapor adsorption cycles, and (c) breakthrough experiment for ZJU-701.
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Figure S5. PXRD patterns after (a) treatments with aqueous solution at pH 2~12 for 7 days, (b) N2 adsorption, (c) 10 benzene vapor adsorption cycles, and (d) breakthrough experiment for ZJU-701.
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Figure S6. TGA curve of ZJU-701.
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Figure S7. SEM images of ZJU-702.
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Figure S8. SEM images of ZJU-703.
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Figure S9. Rietveld refinement of PXRD data for (a) ZJU-702 and (b) ZJU-703.
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Figure S10. (a) N₂ adsorption-desorption isotherms of ZJU-702 and ZJU-703 at 77 K; pore size distribution profiles of (b) ZJU-702 and (c) ZJU-703.


[image: ]
Figure S11. TGA curves of (a) ZJU-702 and (b) ZJU-703.
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Figure S12. (a) Brunauer-Emmett-Teller (BET) Rouquerol plot and (b) linear plot of ZJU-701.
[image: ]
Figure S13. (a) Brunauer-Emmett-Teller (BET) Rouquerol plot and (b) linear plot of ZJU-702.
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Figure S14. (a) Brunauer-Emmett-Teller (BET) Rouquerol plot and (b) linear plot of ZJU-703.
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Figure S15. (a) N2 adsorption-desorption isotherm, (b) pore size distribution profile, (c) Brunauer-Emmett-Teller (BET) Rouquerol plot, and (d) linear plot of MFM-300(Fe).


[image: ]
Figure S16. (a) Benzene adsorption kinetics curve, instantaneous uptake, (b) pseudo-first-order kinetics fitting curve, and (c) diffusion coefficient fitting curve of ZJU-701.
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Figure S17. (a) Benzene adsorption kinetics curve, instantaneous uptake, (b) pseudo-first-order kinetics fitting curve, and (c) diffusion coefficient fitting curve of ZJU-702.
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Figure S18. (a) Benzene adsorption kinetics curve, instantaneous uptake, (b) pseudo-first-order kinetics fitting curve, and (c) diffusion coefficient fitting curve of ZJU-703.
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Figure S19. (a) Benzene adsorption kinetics curve, instantaneous uptake, (b) pseudo-first-order kinetics fitting curve, and (c) diffusion coefficient fitting curve of MFM-300(Fe).
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Figure S20. PXRD patterns of (a) MFM-300(Fe), (b) PCN-250(Fe2Co), (c) MIL-125-Zn, (d) HKUST-1, and (e) BUT-55.
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Figure S21. (a) N2 adsorption-desorption isotherm, (b) pore size distribution profile, (c) Brunauer-Emmett-Teller (BET) Rouquerol plot, and (d) linear plot of PCN-250(Fe2Co).
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Figure S22. (a) N2 adsorption-desorption isotherm, (b) pore size distribution profile, (c) Brunauer-Emmett-Teller (BET) Rouquerol plot, and (d) linear plot of MIL-125-Zn.
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Figure S23. (a) N2 adsorption-desorption isotherm, (b) pore size distribution profile, (c) Brunauer-Emmett-Teller (BET) Rouquerol plot, and (d) linear plot of HKUST-1.
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Figure S24. (a) N2 adsorption-desorption isotherm, (b) pore size distribution profile, (c) Brunauer-Emmett-Teller (BET) Rouquerol plot, and (d) linear plot of BUT-55.
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Figure S25. (a) N2 adsorption-desorption isotherm, (b) pore size distribution profile, (c) Brunauer-Emmett-Teller (BET) Rouquerol plot, and (d) linear plot of AC.
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Figure S26. (a) N2 adsorption-desorption isotherm, (b) pore size distribution profile, (c) Brunauer-Emmett-Teller (BET) Rouquerol plot, and (d) linear plot of ZSM-5.
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Figure S27. (a) Benzene adsorption kinetics curve, instantaneous uptake, (b) pseudo-first-order kinetics fitting curve, and (c) diffusion coefficient fitting curve of PCN-250(Fe2Co).
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Figure S28. (a) Benzene adsorption kinetics curve, instantaneous uptake, (b) pseudo-first-order kinetics fitting curve, and (c) diffusion coefficient fitting curve of MIL-125-Zn.


[image: ]
Figure S29. (a) Benzene adsorption kinetics curve, instantaneous uptake, (b) pseudo-first-order kinetics fitting curve, and (c) diffusion coefficient fitting curve of HKUST-1.
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Figure S30. (a) Benzene adsorption kinetics curve, instantaneous uptake, (b) pseudo-first-order kinetics fitting curve, and (c) diffusion coefficient fitting curve of BUT-55.
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Figure S31. (a) Benzene adsorption kinetics curve, instantaneous uptake, (b) pseudo-first-order kinetics fitting curve, and (c) diffusion coefficient fitting curve of AC.
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Figure S32. (a) Benzene adsorption kinetics curve, instantaneous uptake, (b) pseudo-first-order kinetics fitting curve, and (c) diffusion coefficient fitting curve of ZSM-5.
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Figure S33. Benzene adsorption kinetics curves (0-500 min) at P/P₀ = 0.001 and 298 K.
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Figure S34. Linear relationship between the diffusion coefficient and the pseudo-first-order rate constant k1 for the benzene uptake.
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Figure S35. Benzene breakthrough curves at different flow rates for (a) ZJU-701, (b)ZJU-702, (c) ZJU-703, and (d) MFM-300(Fe).
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Figure S36. Benzene breakthrough curves at different flow rates for (a) PCN-250(Fe2Co), (b)MIL-125-Zn, (c) HKUST-1, and (d) BUT-55.
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Figure S37. Benzene breakthrough curves at different flow rates for (a) AC and (b) ZSM-5.
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Figure S38. Benzene breakthrough curves under dry, 30% relative humidity (RH) and 60% RH conditions at a flow rate of 0.03 m·s⁻¹ for ZJU-701.
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Figure S39. Views of benzene binding (a) site I, (b) site II, and (c) site Ⅲ in ZJU-702. Color code: H, white; C, grey; O, red; Fe, green; benzene, blue.
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Figure S40. Views of benzene binding (a) site I, (b) site II, and (c) site Ⅲ in ZJU-703. Color code: H, white; C, grey; O, red; Fe, green; benzene, blue.
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Figure S41. Adsorption energy of benzene molecules in ZJU‑701, ZJU‑702, and ZJU‑703.


[image: ]
Figure S42. Benzene adsorption isotherms of (a) ZJU-701, (b) ZJU-702 , and (c) ZJU-703 at different temperatures.
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Figure S43. Isosteric heat of adsorption curves of (a) ZJU-701, (b) ZJU-702, and (c) ZJU-703.
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Figure S44. Slices through the calculated benzene adsorption sites in ZJU-701 at (a) P/P0 = 0.001, (b) 0.01, (c) 0.10, and (d) 1.00, respectively. Color code: H, white; C, grey; O, red; Fe, green; benzene, blue.


[image: ]
Figure S45. Slices through the calculated benzene adsorption sites in ZJU-702 at (a) P/P0 = 0.001, (b) 0.01, (c) 0.10, and (d) 1.00, respectively. Color code: H, white; C, grey; O, red; Fe, green; benzene, blue.
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Figure S46. Slices through the calculated benzene adsorption sites in ZJU-703 at (a) P/P0 = 0.001, (b) 0.01, (c) 0.10, and (d) 1.00, respectively. Color code: H, white; C, grey; O, red; Fe, green; benzene, blue.
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Figure S47. Comparison of adsorption capacity and pseudo-first-order rate constant k1 of (a) benzene (500 min, P/P0 = 0.001), (b) toluene (600 min, P/P0 = 0.008), (c) m-xylene (500 min, P/P0 = 0.0285), (d) NH3 (200 min, P/P0 = 3.55 × 10-5), (e) SO2 (60 min, P/P0 = 6.25 × 10-4), and (f) SF6 (7 min, P/P0 = 0.00476) by ZJU-701, ZJU-702, ZJU-703, and MFM-300(Fe), respectively.
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Figure S48. Toluene adsorption kinetics curves and instantaneous uptake for (a) ZJU-701, (b) ZJU-702, (c) ZJU-703, and (d) MFM-300(Fe).
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Figure S49. Pseudo-first-order kinetics fitting curves of toluene uptake for (a) ZJU-701, (b) ZJU-702, (c) ZJU-703, and (d) MFM-300(Fe).
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Figure S50. Diffusion coefficient fitting curves of toluene uptake for (a) ZJU-701, (b) ZJU-702, (c) ZJU-703, and (d) MFM-300(Fe).
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Figure S51. m-Xylene adsorption kinetics curves and instantaneous uptake for (a) ZJU-701, (b) ZJU-702, (c) ZJU-703, and (d) MFM-300(Fe).
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Figure S52. Pseudo-first-order kinetics fitting curves of m-Xylene uptake for (a) ZJU-701, (b) ZJU-702, (c) ZJU-703, and (d) MFM-300(Fe).
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Figure S53. Diffusion coefficient fitting curves of m-Xylene uptake for (a) ZJU-701, (b) ZJU-702, (c) ZJU-703, and (d) MFM-300(Fe).
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Figure S54. NH3 adsorption kinetics curves and instantaneous uptake for (a) ZJU-701, (b) ZJU-702, (c) ZJU-703, and (d) MFM-300(Fe).
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Figure S55. Pseudo-first-order kinetics fitting curves of NH3 uptake for (a) ZJU-701, (b) ZJU-702, (c) ZJU-703, and (d) MFM-300(Fe).
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Figure S56. Diffusion coefficient fitting curves of NH3 uptake for (a) ZJU-701, (b) ZJU-702, (c) ZJU-703, and (d) MFM-300(Fe).
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Figure S57. SO2 adsorption kinetics curves and instantaneous uptake for (a) ZJU-701, (b) ZJU-702, (c) ZJU-703, and (d) MFM-300(Fe).
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Figure S58. Pseudo-first-order kinetics fitting curves of SO2 uptake for (a) ZJU-701, (b) ZJU-702, (c) ZJU-703, and (d) MFM-300(Fe).
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Figure S59. Diffusion coefficient fitting curves of SO2 uptake for (a) ZJU-701, (b) ZJU-702, (c) ZJU-703, and (d) MFM-300(Fe).
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Figure S60. SF6 adsorption kinetics curves and instantaneous uptake for (a) ZJU-701, (b) ZJU-702, (c) ZJU-703, and (d) MFM-300(Fe).
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Figure S61. Pseudo-first-order kinetics fitting curves of SF6 uptake for (a) ZJU-701, (b) ZJU-702, (c) ZJU-703, and (d) MFM-300(Fe).
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Figure S62. Diffusion coefficient fitting curves of SF6 uptake for (a) ZJU-701, (b) ZJU-702, (c) ZJU-703, and (d) MFM-300(Fe).


[bookmark: OLE_LINK3]Table S1. Crystallographic data of ZJU-701 determined by SCXRD.
	[bookmark: _Hlk209716807]Parameter
	ZJU-701

	Empirical formula
	C167H122Fe15O82

	Formula weight
	4278.39

	Temperature/K
	170.00

	Crystal system
	hexagonal

	Space group
	P61

	a/Å
	46.5328(18)

	b/Å
	46.5328(18)

	c/Å
	27.4628(15)

	α/°
	90

	β/°
	90

	γ/°
	120

	Volume/Å3
	51498(5)

	Z
	6

	ρcalc/g/cm3
	0.821

	μ/mm⁻1
	3.696

	F(000)
	12804.0

	Crystal size/mm3
	0.12 × 0.05 × 0.04

	Radiation
	GaKα (λ = 1.34139)

	2θ range for data collection/°
	3.388 to 108.116

	Index ranges
	-56 ≤ h ≤ 56, -56 ≤ k ≤ 56, -33 ≤ l ≤ 33

	Reflections collected
	706623

	Independent reflections
	62663 [Rint = 0.0932, Rsigma = 0.0619]

	Data/restraints/parameters
	62663/1217/2225

	Goodness-of-fit on F2
	1.101

	Final R indexes [I>=2σ (I)]
	R1 = 0.0665, wR2 = 0.1786

	Final R indexes [all data]
	R1 = 0.0734, wR2 = 0.1841

	Largest diff. peak/hole / e Å⁻3
	0.89/－0.88

	Flack parameter
	0.367(4)





Table S2. Crystallographic data and Rietveld refinement results of ZJU-702.
	Parameter
	ZJU-702

	Empirical formula
	C144H110Fe15O82

	Formula weight
	3990.07

	Crystal system
	hexagonal

	Space group
	P61

	a/Å
	46.301(6)

	b/Å
	46.568(7)

	c/Å
	27.264(5)

	α/°
	90.430(16)

	β/°
	90.173(11)

	γ/°
	119.819(6)

	Volume/Å3
	50998(14)

	2θ/°
	1.705-69.989

	Rp
	9.13%

	Rwp
	13.98%

	Rexp
	5.13%





Table S3. Crystallographic data and Rietveld refinement results of ZJU-703.
	Parameter
	ZJU-703

	Empirical formula
	C192H134Fe15O82

	Formula weight
	4590.74

	Crystal system
	hexagonal

	Space group
	P61

	a/Å
	46.189(3)

	b/Å
	46.186(3)

	c/Å
	27.298(3)

	[bookmark: _Hlk209718086]α/°
	89.736(7)

	β/°
	89.682(7)

	γ/°
	119.969(6)

	Volume/Å3
	50447(9)

	2θ/°
	2.994-69.989

	Rp
	9.88%

	Rwp
	12.80%

	Rexp
	4.38%





Table S4. Benzene uptake for ZJU-701 over ten cycles at P/P0 = 0.001 and 1.
	Cycle Number
	1
	2
	3
	4
	5

	Benzene Uptake at P/P0 = 0.001 and 1 (mmol·g⁻1)
	2.03 & 10.92
	1.99 & 11.03
	2.03 &10.97
	2.03 & 10.92
	2.05 & 11.06

	Cycle Number
	6
	7
	8
	9
	10

	Benzene Uptake at P/P0 = 0.001 and 1 (mmol·g⁻1)
	2.01 & 10.92
	2.00 & 10.93
	2.02 & 10.93
	2.02 & 10.91
	1.98 & 11.05





Table S5. BET specific surface area and micropore volume of adsorbents.
	Adsorbents
	SBET (m2·g⁻1)
	Micropore volume (cm3·g⁻1)

	ZJU-701
	1497
	0.5346

	ZJU-702
	1641
	0.5713

	ZJU-703
	1170
	0.4199

	MFM-300(Fe)
	1437
	0.4025

	PCN-250(Fe2Co)
	1437
	0.4493

	MIL-125-Zn
	1130
	0.4648

	HKUST-1
	2046
	0.6377

	BUT-55
	891
	0.2415

	AC
	1064
	0.3380

	ZSM-5
	711
	0.1811





Table S6. Benzene adsorption capacities when ZJU-701 reached adsorption equilibrium, pseudo-first-order rate constant and diffusion coefficient of each adsorbent.
	Adsorbents
	Benzene uptake (mmol·g⁻1)
	Pseudo-first-order kinetic constant k1 (10⁻3 min⁻1)
	Diffusion coefficient (10⁻6 s⁻1)

	ZJU-701
	2.0450
	6.00
	5.416

	ZJU-702
	0.8505
	3.21
	3.285

	ZJU-703
	0.8696
	2.03
	1.828

	MFM-300(Fe)
	0.9323
	1.25
	1.396

	PCN-250(Fe2Co)
	1.6637
	2.91
	2.050

	MIL-125-Zn
	1.1321
	2.97
	2.305

	HKUST-1
	1.5111
	1.58
	1.754

	BUT-55
	0.8497
	2.03
	1.931

	AC
	0.5123
	3.46
	3.354

	ZSM-5
	0.1885
	1.49
	0.713





Table S7. Benzene breakthrough uptake at different flow rates of each absorbent.
	Adsorbents
	Benzene uptake at different gas flow rate (m·s⁻1)

	
	0.03
	0.05
	0.06
	0.08
	0.10
	0.12

	ZJU-701
	3.99774
	3.87271
	3.83542
	3.80334
	3.67936
	3.66941

	ZJU-702
	1.17306
	1.13293
	0.79356
	0.69462
	0.66698
	0.59204

	ZJU-703
	0.59302
	0.39691
	0.3239
	0.23374
	0.17429
	0.11110

	MFM-300(Fe)
	1.14974
	0.40123
	0.33173
	0.27021
	0.23342
	0.19494

	PCN-250(Fe2Co)
	1.86808
	1.78291
	1.71455
	1.6197
	1.53587
	1.43293

	MIL-125-Zn
	2.64722
	2.50255
	2.31197
	2.25743
	2.06516
	1.49305

	HKUST-1
	2.61469
	2.331
	1.84359
	1.51963
	1.40421
	1.30217

	BUT-55
	0.78419
	0.69232
	0.59179
	0.48177
	0.37462
	0.29388

	AC
	1.69109
	1.44664
	1.39238
	1.31064
	1.25746
	1.18068

	ZSM-5
	0.05596
	0.04705
	0.03502
	0.02712
	0.01901
	0.01287





Table S8. Adsorption capacities of absorbents when ZJU-701 reached adsorption equilibrium.
	Adsorbents
	Gas uptake (mg·g⁻1)

	
	Toluene
	m-Xylene
	NH3
	SO2
	SF6

	ZJU-701
	253.62
	243.57
	41.04
	48.60
	131.74

	ZJU-702
	187.49
	170.06
	19.97
	28.00
	112.86

	ZJU-703
	53.21
	57.13
	15.25
	27.34
	57.43

	MFM-300(Fe)
	129.14
	50.42
	10.03
	37.35
	19.09




Table S9. The pseudo-first-order rate constant k1 of five gases.
	Adsorbents
	Pseudo-first-order rate constant k1 (min⁻1)

	
	Toluene
	m-Xylene
	NH3
	SO2
	SF6

	ZJU-701
	5.60E-3
	6.00E-3
	1.31E-2
	6.68E-2
	8.07E-1

	ZJU-702
	4.77E-3
	5.84E-3
	8.20E-3
	4.88E-2
	4.91E-1

	ZJU-703
	3.68E-3
	5.71E-3
	5.30E-3
	3.32E-2
	3.70E-2

	MFM-300(Fe)
	2.20E-3
	1.27E-3
	6.10E-3
	3.89E-2
	1.16E-2





Table S10. The diffusion coefficients of five gases.
	Adsorbents
	Diffusion coefficient (s⁻1)

	
	Toluene
	m-Xylene
	NH3
	SO2
	SF6

	ZJU-701
	4.61E-6
	5.22E-6
	1.01E-5
	7.20E-5
	1.19E-4

	ZJU-702
	4.07E-6
	4.92E-6
	7.75E-6
	5.26E-5
	6.84E-5

	ZJU-703
	3.13E-6
	4.85E-6
	4.08E-6
	3.87E-5
	5.28E-5

	MFM-300(Fe)
	2.25E-6
	1.38E-6
	5.79E-6
	4.61E-5
	2.18E-5
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