

1 **Supplementary Materials**

2 **Structural and functional insights into the p160 Rho-associated coiled-coil-containing**
3 **protein kinase ROCK***

4 Badri Nath Dubey^{1,2,8,@}, Soheila Rezaei Adariani^{1,8,#}, Lothar Gremer^{1,4,5}, Radovan Dvorsky¹,
5 Yan, Nie^{6,#}, Ehsan Amin¹, Jens M. Moll¹, Sicai Zhang^{1,#}, Sander H.J. Smits⁷, Melissa A.
6 Graewert⁸, Dieter Willbold^{4,5}, Georg Groth⁹, Luitgard Nagel⁴, Sabrina Pospich⁶, and
7 Mohammad R. Ahmadian^{1@}

8 ¹ Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital
9 Düsseldorf, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany.

10 ² Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad,
11 Dharwad 580011, Karnataka, India.

12 ³ Department of Cancer Biology & Molecular Medicine, Beckman Research Institute of City of
13 Hope, Duarte, CA, USA

14 ⁴ Institute of Physical Biology, Heinrich Heine University, Universitätsstraße 1, 40225
15 Düsseldorf, Germany

16 ⁵ Institute of Biological Information Processing, Structural Biochemistry (IBI-7), Research
17 Centre Jülich, Leo-Brandt-Str. 5, 52425 Jülich, Germany.

18 ⁶ Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto
19 Hahnstraße 11, 44227 Dortmund, Germany.

20 ⁷ Institute of Biochemistry and Center for Structural Studies, Heinrich Heine University,
21 Universitätsstraße 1, 40225 Düsseldorf, Germany.

22 ⁸ European Molecular Biology Laboratory, Notkestraße 85, 22607 Hamburg, Germany.

23 ⁹ Department of Biochemical Plant Physiology, Heinrich Heine University, Universitätsstraße
24 1, 40225 Düsseldorf, Germany.

25 ⁸ Authors contributed equally.

26 [@] Correspondence: badrinathdubey@iitdh.ac.in; reza.ahmadian@hhu.de

27 ^{*} *Running title:* New structural framework for RHO kinase

28 [#] Current address: Soheila Rezaei Adariani, Department of Neurosurgery, City of Hope
29 Beckman Research Institute and Medical Center, Duarte, CA, USA; Sicai Zhang, Shanghai
30 Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210
31 Shanghai, China; Yang Nie, Institute of Future Agriculture, Northwest Agriculture and
32 Forestry University, Yangling, Shaanxi 712100, China.

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

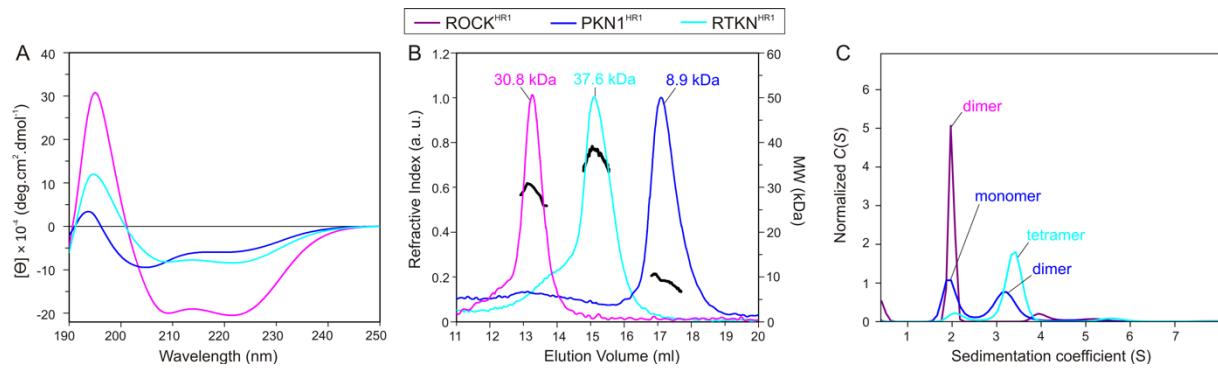
50

51

52

53

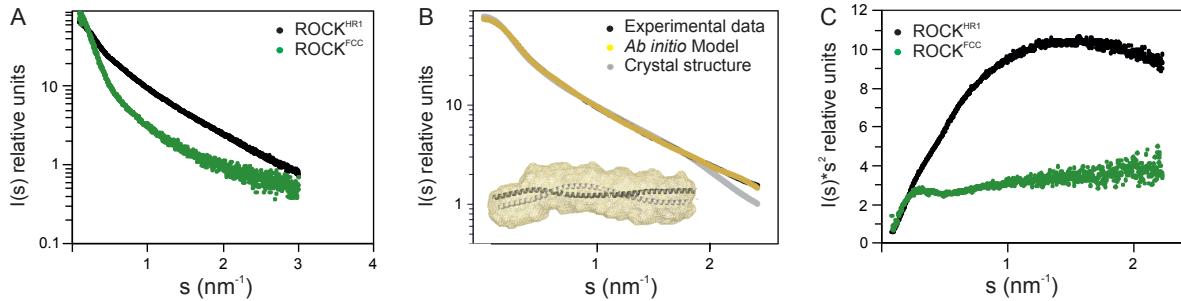
54


55

56

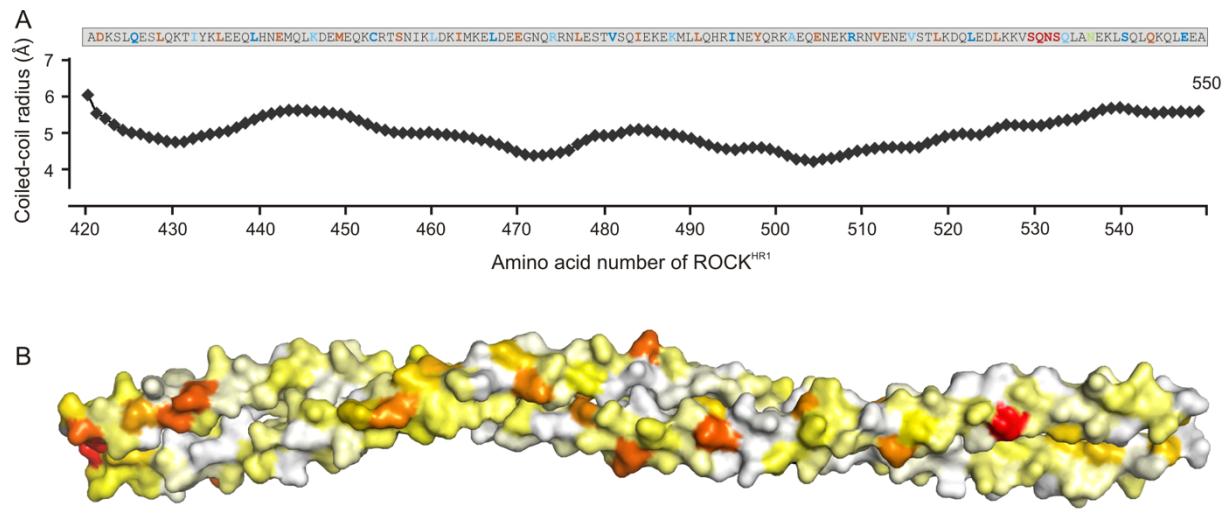
Table S1. X-ray data collection and refinement statistics of ROCK^{HR1(Se-Met)}

Data collection	
Wavelength (Å)	0.979240
Resolution (Å)	37.0-2.2
Number of observed reflections	116242
Number of unique reflections	30449
Completeness (%)	99.4 (98.6)
Redundancy	3.82 (3.78)
R _{merge} (%)	8.3 (55.2)
I/σ(I)	11.57 (2.83)
Space group	C2221
Unit cell	48.26, 87.07, 148.22 90.00° 90.00° 90.00°
Phasing	
Selenium-atom sites	5 (final model 8)
Figure of merit (acentric/centric)	0.69/0.64
Resolution range (Å)	19.92-2.50
Refinement	
Resolution	37.0-2.2
R _{work} /R _{free} (%)	21.8/28.9
Number of reflections in test set	1106
Average B-factor (Å ²)	39.0
Deviations from ideal geometry	
Bond lengths (Å)	0.010
Bond angles (°)	1.14
Ramachandran plot (%)	99.6

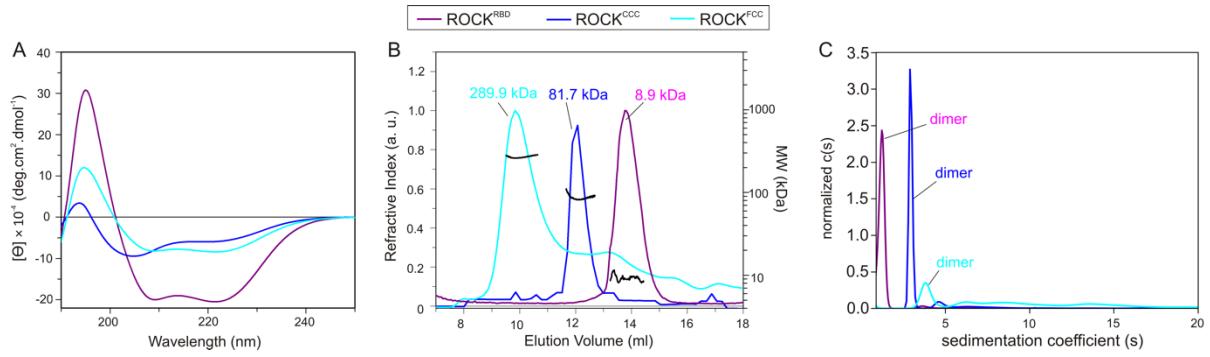

Values in parentheses are for the highest resolution shell (2.3-2.2); R_{free} calculated with 5 % of the data that were not used for refinement.

61
62

63 **Figure S1. Biophysical properties of the HR1 domains of ROCK, PKN1, and RTKN. (A)**
 64 Far-ultraviolet circular dichroism (Far-UV CD) spectra. The CD data were adjusted for molar
 65 ellipticity (Θ), taking into account the concentration and molar mass of the protein samples.
 66 Each spectrum is the average of ten replicate scans. The spectra exhibit typical α -helical
 67 profiles, displaying a minimum at 208 nm and 222 nm, except for PKN1^{HR1}, which exhibits a
 68 minimum at 204 nm instead of 208 nm. (B) Size exclusion chromatography-multiangle light
 69 scattering (SEC-MALS) analysis. The protein elution profile by refractive index (RI). The
 70 horizontal black line indicates the molar mass of the respective proteins. (C) Sedimentation
 71 velocity (SV) analysis. This is a comparison plot of the diffusion-corrected integral
 72 sedimentation coefficient distributions obtained from van Holde-Weischet analyses. PKN1^{HR1}
 73 is shown in blue, ROCK^{HR1} in magenta, and RTKN^{HR1} in cyan. All data are summarized in [Table 1](#).
 74

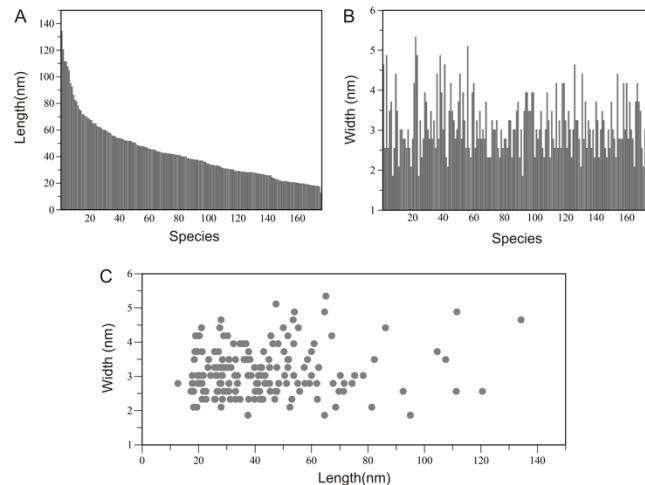

75
76

77
78


79 **Figure S2. Structural properties of ROCK^{HR1} in solution obtained by small-angle X-ray**
80 **scattering (SAXS).** (A The forward scattering intensities were recorded for ROCK^{HR1} (in black)
81 **and ROCK^{FCC} (in green). The experimental data are shown as dots. The scattering from *ab***
82 ***initio* models computed by DAMMIF, and the fit from the crystal structure are shown as**
83 **continuous white lines. The inset shows the ROCK^{HR1} crystal structure superimposed on the**
84 **averaged ROCK^{HR1} bead model (in orange), which was calculated using DAMMIF. (B) This**
85 **shows the experimental scattering data, a theoretical scattering pattern calculated from the**
86 **crystal structure of ROCK^{HR1} using CRYSTAL, and a ROCK^{HR1} *ab initio* model calculated from**
87 **20 independent DAMMIF runs. The inset shows the SAXS-derived ROCK^{HR1} *ab initio* model**
88 **superimposed with the ROCK^{HR1} crystal structure. (C) Kratky plots of ROCK^{HR1} and ROCK^{FCC} .**
89 **All data are summarized in Table 1.**

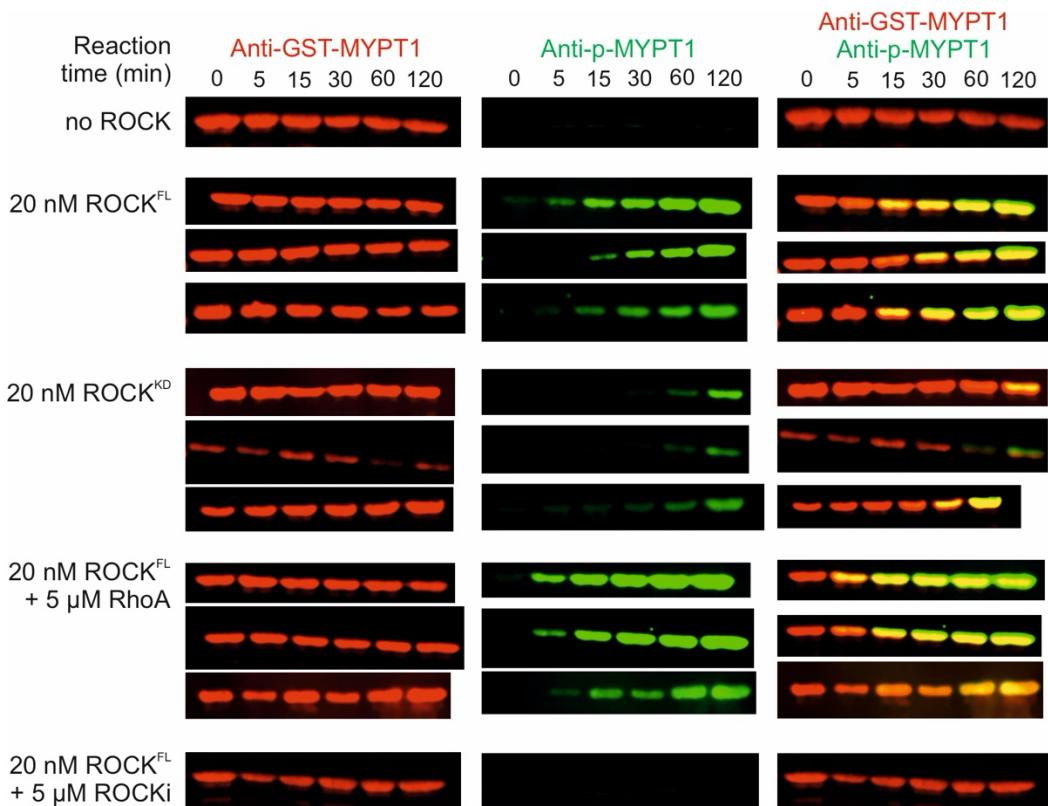
90

91
92


93 **Figure S3.** Structural characteristics of ROCK^{HR1} coiled-coil dimer. (A) The radius of the coiled-
94 coil is plotted as a function of amino acid number. The amino acid sequence, including the
95 heptad repeats, is shown above. (B) The conservation of residues of ROCK^{HR1} is mapped onto
96 the overall surface of the coiled-coil. The color gradient, ranging from white through yellow,
97 orange to red correlates with residue variability, from conserved to most variable.
98

99
100

101 **Figure S4. Biophysical properties of ROCK^{RBD}, ROCK^{ccc}, and ROCK^{FCC}.** Far-UV CD
102 spectra (A), SEC-MALS (B), and SV analyses (C). Comparison plot of the diffusion-corrected
103 elution volume (ml) and molecular weight (kDa).
104 ROCK^{RBD} is shown in magenta, ROCK^{ccc} in blue, and ROCK^{FCC} in cyan. Analyses were
105 conducted for various fragments of the central amphipathic region of ROCK. All data are
106 summarized in Table 1.


107

108
109

110 **Figure S5. Length and width variations of ROCK^{FCC} molecules.** A quantitative analysis of
111 negatively stained ROCK^{FCC} molecules reveals an average length of 42.6 ± 21.7 nm (A) and
112 an average width of 3.1 ± 0.7 nm (B). The lengths of the rods are ordered from longest to
113 shortest. (C) Length-width relationship for all particles.

114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

151 **Figure S6. The phosphorylation of MYPT1 by ROCK^{FL} in both the absence and presence**
 152 **of GppNHP-bound RHOA was examined at various time intervals and at a temperature**
 153 **of 25°C.** Proteins were purified from the insect cells and *E. coli*. The samples were analyzed
 154 by Western blotting using antibodies against GST-MYPT1 and p-MYPT1. As controls, the
 155 experiments were performed in the absence of ROCK^{FL}, and with ROCK^{KD}, and in the presence
 156 of the ROCK inhibitor Y-27632, all under the same conditions.

