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SUPPLEMENTARY MATERIALS

Tables and Graphs

TABLE I. EPR g-tensor of the E-center (PV0) in silicon as a function of supercell size, using Γ-point sampling. Results
from linear response methods (QE-GIPAW and CASTEP) are compared with those from the converse method, using both
the covariant derivative and the single-point formula. Columns “|dev%exp|” indicate the absolute relative deviation of each
principal g component from the experimental values reported in the last row.

Method Supercell g1 g2 g3 |dev%exp|g1 |dev%exp| g2 |dev%exp| g3

QE-GIPAW 215-atom 1.9887 1.9959 1.9933 0.590 0.761 0.811
511-atom 1.9937 1.9977 1.9979 0.340 0.671 0.582
999-atom - - - - - -

CASTEP 215-atom 1.9888 1.9961 1.9947 0.585 0.751 0.741
511-atom 1.9937 1.9977 1.9986 0.340 0.671 0.547
999-atom - - - - - -

QE-CONVERSE (covariant) 215-atom 1.9971 2.0075 2.0052 0.170 0.184 0.219
511-atom 1.9993 2.0084 2.0083 0.060 0.139 0.065
999-atom 1.9998 2.0107 2.0086 0.035 0.025 0.050

QE-CONVERSE (single point) 215-atom 2.0025 2.0113 2.0078 0.100 0.005 0.090
511-atom 2.0013 2.0110 2.0066 0.040 0.010 0.149
999-atom 2.0005 2.0118 2.0077 0.000 0.030 0.095

Exp. [1] - 2.0005 2.0112 2.0096 - - -

TABLE II. EPR g-tensor of the substitutional nitrogen defect in silicon (NSi) as a function of supercell size, using Γ-point
sampling. Results from linear response methods (QE-GIPAW and CASTEP) are compared with those from the converse
method, using both the covariant derivative and the single-point formula. Columns “|dev%exp|” indicate the absolute relative
deviation of each principal g component from the experimental values reported in the last row.

Method Supercell g∥ g⊥ |dev%exp| g∥ |dev%exp| g⊥
QE-GIPAW 216-atom 2.02125 2.03755 0.952 1.448

512-atom 2.00972 2.02115 0.376 0.631
1000-atom - - - -

CASTEP 216-atom 2.02492 2.04361 1.135 1.740
512-atom 2.01123 2.02404 0.452 0.775
1000-atom - - - -

QE-CONVERSE (covariant) 216-atom 1.99913 2.00914 0.153 0.033
512-atom 2.00150 2.01016 0.034 0.084
1000-atom 2.00180 2.01013 0.019 0.083

QE-CONVERSE (single point) 216-atom 2.00223 2.00862 0.002 0.007
512-atom 2.00218 2.00904 0.0005 0.028
1000-atom 2.00217 2.00905 0.001 0.029

Exp. [2] - 2.00219 2.00847 —
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TABLE III. EPR g-tensor of the V + defect in silicon as a function of supercell size, using Γ-point sampling. Results from linear
response methods (QE-GIPAW and CASTEP) are compared with those from the converse method, using both the covariant
derivative and the single-point formula. Columns “|dev%exp|” indicate the absolute relative deviation of each principal g
component from the experimental values reported in the last row.

Method Supercell g∥ g⊥ |dev%exp| g∥ |dev%exp| g⊥
QE-GIPAW 215-atom 1.9983 1.9867 0.518 0.610

511-atom 2.0009 1.9866 0.388 0.615
999-atom – – – –

CASTEP 215-atom 1.9969 1.9869 0.587 0.600
511-atom 2.0012 1.9855 0.373 0.670
999-atom – – – –

QE-CONVERSE (covariant) 215-atom 2.0056 2.0026 0.154 0.185
511-atom 2.0260 1.9926 0.861 0.313
999-atom 2.0413 1.9530 1.623 2.296

QE-CONVERSE (single point) 215-atom 1.9830 1.9793 1.279 0.980
511-atom 2.0008 1.9995 0.393 0.030
999-atom 2.0076 1.9991 0.055 0.010

Exp. [3] – 2.0087 1.9989 —

TABLE IV. EPR g-tensor of the V − defect in silicon as a function of supercell size, using Γ-point sampling. Results from linear
response methods (QE-GIPAW and CASTEP) are compared with those from the converse method, using both the covariant
derivative and the single-point formula. Columns “|dev%exp|” indicate the absolute relative deviation of each principal g
component from the experimental values reported in the last row.

Method Supercell g1 g2 g3 |dev%exp|g1 |dev%exp| g2 |dev%exp| g3

QE-GIPAW 215-atom 1.9988 1.9962 1.9999 0.255 0.330 0.759
511-atom 1.9972 1.9892 2.0001 0.334 0.679 0.744
999-atom – – – – – –

CASTEP 215-atom 1.9987 1.9973 1.9993 0.260 0.275 0.784
511-atom 1.9972 1.9882 2.0000 0.334 0.729 0.750
999-atom – – – – – –

QE-CONVERSE (covariant) 215-atom 2.0017 2.0013 2.0036 0.110 0.075 0.571
511-atom 2.0037 2.0029 2.0139 0.010 0.005 0.059
999-atom 2.0033 2.0029 2.0156 0.030 0.005 0.025

QE-CONVERSE (single point) 215-atom 2.0065 1.9820 2.0158 0.130 1.039 0.035
511-atom 2.0042 1.9972 2.0162 0.015 0.279 0.055
999-atom 2.0034 1.9992 2.0161 0.025 0.180 0.050

Exp. [4] – 2.0039 2.0028 2.0151 —

TABLE V. EPR g-tensor of the SiV0 / KUL1 defect in diamond as a function of supercell size, using Γ-point sampling. Results
from linear response methods (QE-GIPAW and CASTEP) are compared with those from the converse method, using both
the covariant derivative and the single-point formula. Columns “|dev%exp|” indicate the absolute relative deviation of each
principal g component from the experimental values reported in the last row.

Method Supercell g∥ g⊥ |dev%exp| g∥ |dev%exp| g⊥
QE-GIPAW 215-atom 2.0234 2.0195 0.963 0.799

511-atom 2.0200 2.0146 0.793 0.554
999-atom 2.0158 2.0113 0.584 0.390

CASTEP 215-atom 2.0231 2.0201 0.948 0.827
511-atom 2.0203 2.0148 0.808 0.564
999-atom 2.0160 2.0115 0.594 0.400

QE-CONVERSE (covariant) 215-atom 2.0127 2.0103 0.429 0.339
511-atom 2.0105 2.0080 0.319 0.225
999-atom 2.0083 2.0063 0.209 0.140

QE-CONVERSE (single point) 215-atom 2.0002 2.0015 0.195 0.100
511-atom 2.0020 2.0026 0.105 0.045
999-atom 2.0033 2.0034 0.040 0.005

Exp. [5] – 2.0041 2.0035 —
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TABLE VI. Calculation of the g-tensor for the E′
1 center in α-quartz silica as a function of supercell size, using Γ-point sampling.

Results from linear response methods (QE-GIPAW and CASTEP) are compared with those from the converse method, using
both the covariant derivative and the single-point formula. Columns “|dev%exp|” indicate the absolute relative deviation of
each principal g component from the experimental values reported in the last row.

Method Supercell g1 g2 g3 |dev%exp|g1 |dev%exp| g2 |dev%exp| g3

QE-GIPAW 71-atom 2.00251 2.00109 2.00089 0.039 0.029 0.031
161-atom 2.00191 2.00056 2.00048 0.009 0.002 0.011
242-atom 2.00167 2.00046 2.00026 0.002 0.002 0.0005
575-atom 2.00158 2.00035 2.00018 0.007 0.008 0.005
1123-atom – – – – – –

CASTEP 71-atom 2.00274 2.00145 2.00122 0.051 0.047 0.047
161-atom 2.00200 2.00075 2.00065 0.014 0.012 0.019
242-atom 2.00173 2.00064 2.00042 0.0005 0.006 0.007
575-atom 2.00163 2.00042 2.00023 0.004 0.004 0.002
1123-atom – – – – – –

QE-CONVERSE (covariant) 71-atom 2.00176 2.00000 1.99959 0.002 0.025 0.034
161-atom 2.00162 2.00015 2.00007 0.005 0.018 0.010
242-atom 2.00161 2.00019 2.00009 0.005 0.016 0.009
575-atom 2.00160 2.00028 2.00013 0.006 0.011 0.007
1123-atom 2.00158 2.00027 2.00014 0.007 0.012 0.006

QE-CONVERSE (single point) 71-atom 2.00205 2.00024 1.99986 0.016 0.013 0.020
161-atom 2.00190 2.00039 2.00034 0.009 0.006 0.003
242-atom 2.00189 2.00043 2.00036 0.008 0.004 0.005
575-atom 2.00188 2.00052 2.00039 0.008 0.0005 0.006
1123-atom 2.00187 2.00051 2.00041 0.007 0.000 0.007

Exp. [6] – 2.00172 2.00051 2.00027 —
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FIG. 1. Computed g-tensor components for the E-center (PV0) in silicon as a function of supercell size, using only the Γ-
point. Results from QE-CONVERSE with the covariant approach (blue squares) and the single-point formula (red circles) are
compared with QE-GIPAW (green triangles) and CASTEP (yellow stars).

FIG. 2. Computed g-tensor components for the substitutional nitrogen defect (NSi) in silicon in its off-center configuration,
using Γ-point sampling and increasing supercell size. QE-CONVERSE results obtained via the covariant method (blue squares)
and the single-point formula (red circles) are shown alongside linear response results from QE-GIPAW (green triangles) and
CASTEP (yellow stars).
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FIG. 3. Computed g-tensor components for the positively charged (V+) in silicon as a function of supercell size, using only the
Γ-point. Results from QE-CONVERSE with the covariant approach (blue squares) and the single-point formula (red circles)
are compared with QE-GIPAW (green triangles) and CASTEP (yellow stars).

FIG. 4. Computed g-tensor components for the negative monovacancy (V−) in silicon as a function of supercell size, using
only the Γ-point. Results from QE-CONVERSE with the covariant approach (blue squares) and the single-point formula (red
circles) are compared with QE-GIPAW (green triangles) and CASTEP (yellow stars).
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FIG. 5. Computed g-tensor components for the SiV0 defect in diamond as a function of supercell size, using only the Γ-
point. Results from QE-CONVERSE with the covariant approach (blue squares) and the single-point formula (red circles) are
compared with QE-GIPAW (green triangles) and CASTEP (yellow stars).

FIG. 6. Computed g-tensor components for the E′
1 center in α-quartz, as representative of E′ centers in silica, as a function

of supercell size, using only the Γ-point. Results from QE-CONVERSE with the covariant approach (blue squares) and the
single-point formula (red circles) are compared with QE-GIPAW (green triangles) and CASTEP (yellow stars).
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Hyperfine parameters of the V + and V − defects in silicon

Hyperfine Site A1 (MHz) A2 (MHz) A3 (MHz) Aiso Aaniso α2 β2 η2

Si (x4) 127.1 84.5 86.5 99.4 14.8 0.14 0.86 17.2%

Si (x4) Exp.[3] 131.6 89.3 89.3 103.4 14.1 0.15 0.85 16.5%

TABLE VII. Calculated and experimental hyperfine parameters for the four equivalent silicon atoms surrounding the V +

defect in silicon. Listed are the principal values of the hyperfine tensor (A1, A2, A3), the isotropic and anisotropic contributions
(Aiso, Aaniso), and the spin–population coefficients (α2, β2, η2).

Hyperfine Site A1 (MHz) A2 (MHz) A3 (MHz) Aiso Aaniso α2 β2 η2

Si (x2) 391.7 332.7 329.3 351.2 20.2 0.30 0.70 25.6%

Si (x2) Exp.[4] 400.4 332.3 334.8 355.8 22.3 0.28 0.72 27.7%

TABLE VIII. Calculated and experimental hyperfine parameters for the two equivalent silicon atoms surrounding the V −

defect in silicon. Listed are the principal values of the hyperfine tensor (A1, A2, A3), the isotropic and anisotropic contributions
(Aiso, Aaniso), and the spin–population coefficients (α2, β2, η2).

The hyperfine interactions of the silicon monovacancy in its two charge states, V + and V −, provide direct insight
into the spatial distribution and orbital character of the unpaired electron associated with each defect configuration.

For the positively charged vacancy V +, the unpaired spin is distributed over the four silicon atoms surrounding
the monovacancy. As reported in Table VII, the calculated hyperfine tensor components (A1, A2, A3) show excellent
agreement with experiment. From the isotropic and anisotropic contributions, the extracted spin–population coef-
ficients reveal that each silicon atom carries approximately 17.2% of the total spin density, in close correspondence
with the experimental value of 16.5%. The wavefunction exhibits a predominantly p-like character, with β2 = 0.86.

In the negatively charged vacancy V −, the defect undergoes a rebonding distortion along the ⟨011⟩ direction, result-
ing in two equivalent silicon atoms that dominate the hyperfine response. The values listed in Table VIII demonstrate
excellent agreement between the calculated and experimental hyperfine tensors. The spin–population analysis indi-
cates that each of the two silicon atoms hosts about 25.6% of the total unpaired electron density (experimental value
27.7%). The spin density again shows a mixed sp-like character, with a dominant p-component (β2 = 0.70).

HYPERFINE PARAMETERS: DEFINITIONS AND ANALYTICAL EXPRESSIONS

The hyperfine interaction between the unpaired electron and the surrounding 29Si nuclear spins was analyzed by
decomposing the hyperfine tensor of each inequivalent silicon site i into its isotropic (Fermi contact) and anisotropic
(dipolar) components:

Ai = Aiso,i +Aaniso,i.

The analytical expressions used follow the standard Watkins–Corbett treatment for point defects in silicon, where
the unpaired-electron wavefunction at each site is expressed in terms of its s- and p-like components, with spin
population coefficients α2

i and β2
i . The quantity η2i denotes the total spin population localized on site i.

Isotropic (Fermi Contact) Contribution

The Fermi-contact interaction arises from the s-like part of the wavefunction and is expressed as:

Aiso,i =
8π

3
geµB

µIi

Ii
|ψs,i(0)|2 α2

i η
2
i , (1)

Here:



8

• ge is the free-electron g-factor (ge = 2.002319),

• µB is the Bohr magneton,

• µIi is the nuclear magnetic moment of the i-th nucleus,

• Ii is the nuclear spin quantum number of that nucleus (I = 1/2 for 29Si),

• |ψs,i(0)|2 is the electron contact density at the nucleus for an s-type orbital.

paramagnetic resonance studies

Anisotropic (Dipolar) Contribution

The anisotropic hyperfine term originates from the p-like component of the spin density and is given by:

Aaniso,i =
2

5
geµB

µIi

Ii
⟨r−3

p,i ⟩β
2
i η

2
i , (2)

where ⟨r−3
p,i ⟩ is the radial expectation value associated with the dipolar field generated by a p-type orbital.

Atomic Parameters

The quantities |ψ(0)|2 and ⟨r−3⟩ are atomic parameters for silicon obtained from **Hartree–Fock calculations of
the 3s and 3p valence orbitals**. These values were originally tabulated by Watkins and Corbett in Ref. [1]) and
remain the standard reference for extracting hyperfine population coefficients in Si-based point defects. Table .

Atom |ψ(0)|2 ⟨r−3⟩
(1024 cm−3) (1024 cm−3)

Si (3s, 3p HF) 31.5 16.1

GEOMETRICAL ORIGIN OF ORBITAL MAGNETIZATION AND THE LARGE-SUPERCELL LIMIT

Berry phase as a geometric phase

In crystalline solids with periodic boundary conditions, the electronic states can be written in Bloch form,

ψnk(r) = eik·r unk(r),

where unk(r) has the periodicity of the lattice and n labels the band index. The central object of Berry-phase theory
is the Berry connection [7] of band n,

An(k) = i
〈
unk

∣∣∇kunk
〉
,

which plays the role of a gauge field in reciprocal space.
Given a closed loop C in the Brillouin zone (BZ), the associated Berry phase [8] of band n is defined as

γn[C] =
∮
C
An(k) · dk.

This phase is geometric in the sense of Berry: it depends only on the path traced by the projector onto the occupied
manifold along C, and not on the dynamical phase or on the parametrization of the loop. Under smooth gauge
transformations unk → eiϕn(k)unk, the Berry connection changes by a gradient, An → An +∇kϕn, so that the Berry
phase γn[C] is well defined modulo 2π, i.e. modulo a “quantum” of phase.
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Berry connection, Brillouin-zone topology, and orbital magnetization

In periodic boundary conditions, the Brillouin zone is a compact manifold where opposite faces are identified;
topologically it is a three-dimensional torus, BZ ∼ T 3. A loop C defined by integrating k along one reciprocal-lattice
direction therefore closes on itself by construction: k and k+G represent the same physical state.

The Berry connection and its curl, the Berry curvature [9]

Ωn(k) = ∇k ×An(k),

enter directly the modern theory of polarization and orbital magnetization [10].

Orbital magnetization in the modern theory: local and itinerant contributions

In the modern theory of orbital magnetization, the total orbital magnetization is decomposed into two distinct
geometric contributions [10–13]:

Morb =MLC +MIC.

(i) Local circulation (LC). MLC describes the internal self-rotation of the electronic wave packet within a unit
cell. Physically, it corresponds to the “local circulation” of Wannier functions: the electron behaves as a small current
loop centered around the lattice site. Mathematically, it is expressed as a geometric quantity involving a generalized
curvature weighted by the Hamiltonian,

MLC ∝ Im

occ∑
n

∫
BZ

d3k

(2π)3
〈
∂kunk

∣∣H(k)− εnk
∣∣∂kunk〉,

In semiclassical language, this term is directly related to the semiclassical formula for the magnetizatioin of a
wavepacket in the n-th band [14].

(ii) Itinerant circulation (IC). MIC accounts for the motion of the center of mass of electronic wave packets as
they propagate through the crystal. This contribution reflects the geometric deflection (anomalous velocity) induced
by the Berry curvature, and is responsible for surface currents in finite samples. It is given by

MIC ∝
occ∑
n

∫
BZ

d3k

(2π)3
(εnk − µ) Ωn(k).

making explicit that the Berry curvature enters the orbital magnetization through the itinerant circulation term.
Since these contributions are constructed entirely from gauge-invariant geometric quantities-such as the Berry curva-
ture and the projectors onto the occupied manifold—the total orbital magnetization is a geometric observable.

Discretization of the Berry connection and the L→∞ limit

Following Resta [15], we start from the Berry connection of the n-th occupied band,

Ax(k) = i⟨unk | ∂kx
unk⟩.

Because the periodic parts unk obtained from numerical diagonalization carry an arbitrary k–dependent phase, the
derivative cannot be evaluated directly. One therefore introduces the overlap matrix

Sjj′(k,k
′) = ⟨ujk | uj′k′⟩,

which is gauge covariant but becomes gauge invariant when used inside traces or determinants. The Berry connection
is then rewritten as

Ax(k) = i
∂

∂k′x
trS(k,k′)

∣∣∣∣
k′=k

= i
d

dq
trS(k,k+ qex)

∣∣∣∣
q=0

,

and using the identity tr(S−1∂kS) = ∂k ln detS,

Ax(k) = − d

dq
Im ln detS

(
k,k+ qex

)∣∣∣∣
q=0

.
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Discretized connection. On a regular mesh km = 2πm/(Ma), the derivative is approximated as a finite difference:

Ax(km) ≃ −Ma

2π
Im ln detS(km, km+1), kM ≡ k0.

Discretized Berry phase. The Berry phase over the loop 0→2π/a is then

γx =

∫ 2π/a

0

dkxAx(kx) ≃
M−1∑
m=0

Im ln detS(km, km+1).

Single-point limit. In a supercell of length L = Ma, the Brillouin zone shrinks to the interval [0, 2π/L], and the
k-point spacing is

∆k =
2π

L
.

In the limit L→ ∞, i.e. ∆k → 0, the Brillouin-zone loop contracts to a single point. The discretized phase associated
with a step k → k +∆k is

Im ln detS(k, k +∆k),

and its small–∆k behaviour follows from

S(k, k +∆k) = ⟨uk|uk+∆k⟩ ≃ 1 + i Ax(k)∆k,

where Ax(k) is the Berry connection. Using ln(1 + z) ≃ z for |z| ≪ 1,

ln detS(k, k +∆k) ≃ i Ax(k)∆k,

so that

Im ln detS(k, k +∆k) ≃ Ax(k)∆k.

The discretized phase therefore vanishes linearly with ∆k.
In Berry-phase observables (such as the electronic polarization [10]), this phase always appears in the combination

Px ∝ 1

∆k
Im ln detS(k, k +∆k)[15].

Substituting the above expansion gives

Px ∝ 1

∆k

[
Ax(k)∆k

]
= Ax(k),

which remains finite and well defined in the limit ∆k → 0.
Thus, although the loop in k-space shrinks to zero length in the thermodynamic limit, the geometric phase retains

a well-defined physical meaning.
Since the Berry phase remains well defined in the L → ∞ limit, its k-space derivatives—the Berry connection

and Berry curvature—also retain their physical meaning. The modern theory of orbital magnetization is constructed
entirely from such geometric quantities (Berry curvature, orbital moments, and projectors). Consequently, Morb

admits a discretized formulation that remains valid as the k-mesh is coarsened. In a large supercell where ∆k → 0,
all geometric ingredients entering Morb remain well defined even when evaluated at a single k-point. This provides
a rigorous foundation for evaluating the converse g-tensor at Γ in sufficiently large supercells, in direct analogy with
the single-point Berry phase approach for polarization.
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