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Online Resource 1 – ODMAP protocol – Calophyllum
Table S1.
 Overview, Data, Model, Assessment and Prediction (ODMAP) protocol for Calophyllum SDM ensemble modelling workflow.
	Section
	Subsection
	Element
	Value

	Overview
	Authorship
	Study title
	Climate change facilitates fungal pathogen expansion while driving endemic host range contractions in a tropical biodiversity hotspot

	Overview
	Authorship
	Author names
	Underwood, EL., Brown, KA., Mulligan, M., Walford, N., Allgayer, R.

	Overview
	Authorship
	Contact 
	

	Overview
	Authorship
	Study link
	https://github.com/anon-017/anon-fungal-host-sdm 

	Overview
	Model objective
	Model objective
	forecast

	Overview
	Model objective
	Target output
	Suitable vs. unsuitable habitat

	Overview
	Focal Taxon
	Focal Taxon
	Calophyllum paniculatum

	Overview
	Location
	Location
	Madagascar

	Overview
	Scale of Analysis
	Spatial extent
	43.10, 50.61, -25.62, -11.94

	Overview
	Scale of Analysis
	Spatial resolution
	1km

	Overview
	Scale of Analysis
	Temporal extent
	Current (2010) - 2100

	Overview
	Scale of Analysis
	Temporal resolution
	30 years

	Overview
	Scale of Analysis
	Boundary
	natural

	Overview
	Biodiversity data
	Observation type
	citizen science; field survey

	Overview
	Biodiversity data
	Response data type
	presence-only

	Overview
	Predictors
	Predictor types
	climatic; habitat; topographic

	Overview
	Hypotheses
	Hypotheses
	H1: The future distribution of C. paniculatum will be more limited than the wilt pathogen distribution.

	Overview
	Assumptions
	Model assumptions
	H2: Future climate change will lead to southward latitudinal range shifts, and upslope altitudinal shifts in both C. paniculatum and pathogen distributions. 

	Overview
	Algorithms
	Modelling techniques
	climate in equilibrium

	Overview
	Algorithms
	Model complexity
	Maxent, Boosted Regression Trees, Random Forest

	Overview
	Algorithms
	Model averaging
	Initial models were computed with 4 and 5 algorithms but ensembles with 3 algorithms performed best

	Overview
	Workflow
	Model workflow
	Ensemble (weighted mean)

	Overview
	Software
	Software
	Model fitting using sdm package using n=10 replicates (bootstrapping) and a weighting of equal presence to background points. 5-fold cross validation using an 80:20 training/testing split ratio. Top performing trained model built using Malagasy occurrence data used for predictions (forecasting) to future climates in Madagascar.

	Overview
	Software
	Code availability
	R version 4.3.2 (R Core TEAM, 2023): rgbif version 3.8.0 (Chamberlain S, 2017, Chamberlain and Boettiger, 2017), terra version 1.8-21 (Hijmans, 2025), readr version 2.1.4 (Wickham H, 2023), doParallel version 1.0.17 (Weston, 2022b), foreach version 1.5.2 (Weston, 2022a), gdalUtilities version 1.2.5 (O'brien, 2023), future.apply (Bengtsson, 2020), data.table version 1.15.4 (Barrett et al., 2024), corrplot version 0.92 (Wei and Simko, 2021b), sdm (Naimi and Araújo, 2016), dplyr version 1.1.4 (Wickham et al., 2023), ggplot2 version 3.3.3 (Wickham, 2016), viridis version 0.6.5 (Garnier et al., 2021), ggtext version 0.1.2 (Wilke, 2022), patchwork version 1.3.0 (Pedersen, 2024), scales version 1.3.0 (Pedersen, 2023), gridExtra version 2.3 (Auguie, 2017), and plotly (Sievert, 2020).

	Overview
	Software
	Data availability
	All data used in this study are derived from publicly available repositories and referenced in the manuscript accordingly:
1. Global portals: GBIF, CHELSA, ForestAtRisk 
2. Publicly available survey data from published peer-reviewed articles:
a. Ramananjato, V., Razafindratsima, Onja. 2021. Data from: Structure of microhabitats used by Microcebus rufus across a heterogeneous landscape [Dataset]. https://doi.org/10.5061/dryad.2280gb5rs
b. Armstrong, A. H., Shugart, H. H. & Fatoyinbo, T. E. 2011. Characterization of Community Composition and Forest Structure in a Madagascar Lowland Rainforest. Tropical Conservation Science, 4, 428-444. https://doi.org/10.1177/194008291100400406
c. Wright, P. C., Otero Jimenez, B., Rakotonirina, P., Andriananoely, D. H., Shea, A., Ratalata, B. & Razafimahaimodison, J. C. 2020. The Progressive Spread of the Vascular Wilt Like Pathogen of Calophyllum Detected in Ranomafana National Park, Madagascar. Frontiers in Forests and Global Change. https://doi.org/10.3389/ffgc.2020.00091. 

	Data
	Biodiversity data
	Taxon names
	N/A

	Data
	Biodiversity data
	Taxonomic reference system
	Calophyllum paniculatum P.F. Stevens

	Data
	Biodiversity data
	Ecological level
	Species

	Data
	Biodiversity data
	Data sources
	species

	Data
	Biodiversity data
	Sampling design
	GBIF citation add here

	Data
	Biodiversity data
	Sample size
	GBIF download (mix of multiple samples) plus field sampling method:

	Data
	Biodiversity data
	Clipping
	62

	Data
	Biodiversity data
	Scaling
	Madagascar (mainland)

	Data
	Biodiversity data
	Cleaning
	Removal of duplicates within same 1km cell

	Data
	Biodiversity data
	Absence data
	Removal of records without spatial location, coordinate cleaner to spot outliers or incorrect lat-lon positions (i.e., the wrong way around)

	Data
	Biodiversity data
	Background data
	n/a

	Data
	Biodiversity data
	Errors and biases
	Spatial extent: Madagascar mainland, single temporal extent, whole area buffer minus presence locations. Method was tested against target group sampling using ecoregions of presence points and using the whole area performed better.

	Data
	Data partitioning
	Training data
	Sampling bias could be present due to field survey data input, but removal of duplicates goes some way to counteract that. Spatial thinning was not applied due to such small number of occurrences.

	Data
	Data partitioning
	Validation data
	SDM package: 80:20 partition (80% used for training)

	Data
	Data partitioning
	Test data
	5-fold cross validation (80:20 partition)

	Data
	Predictor variables
	Predictor variables
	SDM package: 80:20 partition (20% used for test)

	Data
	Predictor variables
	Data sources
	Annual Temperature Range, Precipitation of the Coldest Quarter, Temperature Seasonality, Forest Cover, Precipitation of the Wettest Month, Mean Temperature of the Driest Quarter

	Data
	Predictor variables
	Spatial extent
	CHELSA v2.1 (bioclimatic variables); Forestatrisk (forest cover)

	Data
	Predictor variables
	Spatial resolution
	Madagsacar mainland

	Data
	Predictor variables
	Coordinate reference system
	1km

	Data
	Predictor variables
	Temporal extent
	WGS 1984 Albers for Africa Equal Area Conic coordinate projection system (ESRI:102022)

	Data
	Predictor variables
	Temporal resolution
	1980-2010

	Data
	Predictor variables
	Data processing
	30 years

	Data
	Predictor variables
	Errors and biases
	Projecting from WGS84 to ESRI:102022 (terra::project); cropping to study extent (terra::crop), resampling to exact cell position (terra::resample using method='bilinear')

	Data
	Predictor variables
	Dimension reduction
	Bias corrected using a trend-preserving bias correction following (Lange 2019) LANGE, S. 2019. Trend-preserving bias adjustment and statistical downscaling with ISIMIP3BASD (v1.0). Geosci. Model Dev., 3055–3070.

	Data
	Transfer data
	Data sources
	Downscaling to 1km

	Data
	Transfer data
	Spatial extent
	CHELSA v2.1 (bioclimatic variables); Forestatrisk (forest cover)

	Data
	Transfer data
	Spatial resolution
	Madagascar (mainland)

	Data
	Transfer data
	Temporal extent
	1km

	Data
	Transfer data
	Temporal resolution
	2011-2100

	Data
	Transfer data
	Models and scenarios
	30 years

	Data
	Transfer data
	Data processing
	GFDL-ESM4 model with SSP126, SSP370, SSP585 scenarios (CMIP6)

	Data
	Transfer data
	Quantification of Novelty
	Projecting from WGS84 to ESRI:102022 (terra::project); cropping to study extent (terra::crop), resampling to exact cell position (terra::resample using method='bilinear')

	Model
	Variable pre-selection
	Variable pre-selection
	MESS analysis

	Model
	Multicollinearity
	Multicollinearity
	N/A

	Model
	Model settings
	Model settings (fitting)
	Correlation matrix assessing for highly collinear pairs above 0.7, then a variable importance factor ranking the remaining predictors to reduce variables down to the correct ratio to occurrence points (i.e., 6 predictors for 62 occurrences)

	Model
	Model settings
	Model settings (extrapolation)
	sdm R package: created an ‘sdmData’ object that specified how presences and background points were equally weighted; used ‘sdm’ function to compute an ensemble fit using three machine learning algorithms with 10 replicates (bootstrapping)

	Model
	Model estimates
	Coefficients
	sdm package: sdm::ensemble() to produce projections and predictions using weighted mean maximising the AUC statistic, and optimised for maximum sum of sensitivity and specificity

	Model
	Model estimates
	Parameter uncertainty
	Mean: Residual deviance = 0.280, Area Under ROC Curve (AUC) = 0.982, True Skill Statistic (TSS) = 0.933, Point-biserial correlation (COR) = 0.776, Matthews Correlation Coefficient = 0.782, F1 Score = 0.781

	Model
	Model estimates
	Variable importance
	Mean Explained deviance = 0.999, Standard Deviation of AUC (SD_AUC) = 0.016, Standard Deviation of TSS (SD_TSS) = 0.041

	Model
	Model selection - model averaging - ensembles
	Model selection
	Ranked in most important in descending order: Annual Temperature Range, Precipitation of the Coldest Quarter, Temperature Seasonality, Forest Cover, Precipitation of the Wettest Month, Mean Temperature of the Driest Quarter

	Model
	Model selection - model averaging - ensembles
	Model averaging
	Models selected to compute ensemble if their overall scores were AUC > 0.7 & TSS > 0.5

	Model
	Model selection - model averaging - ensembles
	Model ensembles
	Weighted average ensemble to maximise AUC, optimised using maximum sum of sensitivity and specificity (max(se+sp))

	Model
	Analysis and Correction of non-independence
	Spatial autocorrelation
	Same as previous

	Model
	Analysis and Correction of non-independence
	Temporal autocorrelation
	Spatial duplicate removal and spatial thinning of occurrence data (< 1km)

	Model
	Analysis and Correction of non-independence
	Nested data
	N/A

	Model
	Threshold selection
	Threshold selection
	N/A

	Assessment
	Performance statistics
	Performance on training data
	sdm package: sdm::threshold() with optimisation method 2 to maximise ensemble performance metrics using max(se+sp) and repeated binary results with 12 (10th Percentile Training Presence - P10) to compare outputs

	Assessment
	Performance statistics
	Performance on validation data
	Threshold independent: Prevalence, AUC, COR, Deviance, Calibration; Threshold dependent: TSS, MCC, F1 (maximised for max(se+sp)

	Assessment
	Performance statistics
	Performance on test data
	N/A

	Assessment
	Plausibility check
	Response shapes
	Threshold independent: Prevalence, AUC, COR, Deviance, Calibration; Threshold dependent: TSS, MCC, F1 (maximised for max(se+sp))

	Assessment
	Plausibility check
	Expert judgement
	All response curves have wide confidence bands showing uncertainty across most of the responses: Annual temperature range has a strong negative relationship with occurrence probability declining from ~0.5 at lower ranges (~8°C) to ~0.2 above 18°C. Precipitation of coldest quarter exhibits a bimodal pattern with modest peaks at ~150mm and ~800mm. Temperature seasonality has a U-shaped response with higher probabilities at both low (~100) and high (~250+) values, reflecting the species' ecological versatility across both consistent temperature regimes (humid rainforests on elevational gradients) and more variable regions (dry-deciduous forests at lower elevations). Forest cover shows a gradual positive relationship, confirming the species' affinity for forested habitats.

	Prediction
	Prediction output
	Prediction unit
	Calophyllum predicted suitability under current climatic conditions match that of recorded observations.

	Prediction
	Prediction output
	Post-processing
	Binary threshold 0-1 (0=absence, 1=presence)

	Prediction
	Uncertainty quantification
	Algorithmic uncertainty
	Threshold selection

	Prediction
	Uncertainty quantification
	Input data uncertainty
	Null, residual and explained deviance calculated for each model ID and algorithm per ensemble

	Prediction
	Uncertainty quantification
	Parameter uncertainty
	Model based uncertainty/inconsistency, coefficient of variation of probabilities generated from multiple models (CV), standard deviation of probabilities from multiple models (SD), confidence interval length 95% or marginal error (CI)

	Prediction
	Uncertainty quantification
	Scenario uncertainty
	Sensitivity analysis to assess impact of input parameters (background method, highly collinear threshold value, and prediction threshold value

	Prediction
	Uncertainty quantification
	Novel environments
	Comparison of the two threshold outputs, comparison of SSPs (126, 370, 585)


Online Resource 2 – ODMAP protocol – Leptographium
Table S2. 
 Overview, Data, Model, Assessment and Prediction (ODMAP) protocol for Leptographium SDM ensemble modelling workflow.
	Section
	Subsection
	Element
	Value

	Overview
	Authorship
	Study title
	Climate change facilitates fungal pathogen expansion while driving endemic host range contractions in a tropical biodiversity hotspot

	Overview
	Authorship
	Author names
	Underwood, EL., Brown, KA., Mulligan, M., Walford, N., Allgayer, R.

	Overview
	Authorship
	Contact 
	

	Overview
	Authorship
	Study link
	https://github.com/anon-017/anon-fungal-host-sdm 

	Overview
	Model objective
	Model objective
	forecast and transfer

	Overview
	Model objective
	Target output
	Suitable vs. unsuitable habitat

	Overview
	Focal Taxon
	Focal Taxon
	Verticillium; Leptographium (genera)

	Overview
	Location
	Location
	Madagascar (mainland)

	Overview
	Scale of Analysis
	Spatial extent
	Madagascar (mainland)

	Overview
	Scale of Analysis
	Spatial resolution
	1km

	Overview
	Scale of Analysis
	Temporal extent
	Current (2010) - 2100

	Overview
	Scale of Analysis
	Temporal resolution
	30 years

	Overview
	Scale of Analysis
	Boundary
	natural

	Overview
	Biodiversity data
	Observation type
	citizen science; field survey

	Overview
	Biodiversity data
	Response data type
	presence-only

	Overview
	Predictors
	Predictor types
	climatic; habitat; topographic

	Overview
	Hypotheses
	Hypotheses
	Wilt will have a larger predicted suitable habitat than its host tree (Calophyllum). H1: The future distribution of C. paniculatum will be more limited than the wilt pathogen distribution.

	Overview
	Assumptions
	Model assumptions
	H2: Future climate change will lead to southward latitudinal range shifts, and upslope altitudinal shifts in both C. paniculatum and pathogen distributions.

	Overview
	Algorithms
	Modelling techniques
	climate in equilibrium

	Overview
	Algorithms
	Model complexity
	Maxent, Boosted Regression Trees, Random Forest

	Overview
	Algorithms
	Model averaging
	Initial models were computed with 4 and 5 algorithms but ensembles with 3 algorithms performed best

	Overview
	Workflow
	Model workflow
	Ensemble (weighted mean)

	Overview
	Software
	Software
	Model fitting using sdm package using n=10 replicates (bootstrapping) and a weighting of equal presence to background points. 5-fold cross validation using an 80:20 training/testing split ratio. Top performing trained model built using African occurrence data used for predictions (model transfer) to Madagascar.

	Overview
	Software
	Code availability
	R version 4.3.2 (R Core TEAM, 2023): rgbif version 3.8.0 (Chamberlain S, 2017, Chamberlain and Boettiger, 2017), terra version 1.8-21 (Hijmans, 2025), readr version 2.1.4 (Wickham H, 2023), doParallel version 1.0.17 (Weston, 2022b), foreach version 1.5.2 (Weston, 2022a), gdalUtilities version 1.2.5 (O'brien, 2023), future.apply (Bengtsson, 2020), data.table version 1.15.4 (Barrett et al., 2024), corrplot version 0.92 (Wei and Simko, 2021b), sdm (Naimi and Araújo, 2016), dplyr version 1.1.4 (Wickham et al., 2023), ggplot2 (Wickham, 2016), viridis version 0.6.5 (Garnier et al., 2021), ggtext version 0.1.2 (Wilke, 2022), patchwork version 1.3.0 (Pedersen, 2024), scales version 1.3.0 (Pedersen, 2023), gridExtra version 2.3 (Auguie, 2017), and plotly (Sievert, 2020).

	Overview
	Software
	Data availability
	"All data used in this study are derived from publicly available repositories and referenced in the manuscript accordingly:

	Data
	Biodiversity data
	Taxon names
	1.

	Data
	Biodiversity data
	Taxonomic reference system
	2.

	Data
	Biodiversity data
	Ecological level
	a.

	Data
	Biodiversity data
	Data sources
	b.

	Data
	Biodiversity data
	Sampling design
	c.

	Data
	Biodiversity data
	Sample size
	N/A

	Data
	Biodiversity data
	Clipping
	Verticillium; Leptographium

	Data
	Biodiversity data
	Scaling
	Genus

	Data
	Biodiversity data
	Cleaning
	Genus

	Data
	Biodiversity data
	Absence data
	GBIF

	Data
	Biodiversity data
	Background data
	n/a

	Data
	Biodiversity data
	Errors and biases
	34

	Data
	Data partitioning
	Training data
	African Continent minus Madagascar

	Data
	Data partitioning
	Validation data
	Removal of duplicates within same 1km cell

	Data
	Data partitioning
	Test data
	Removal of records without spatial location, coordinate cleaner to spot outliers or incorrect lat-lon positions (i.e. the wrong way around)

	Data
	Predictor variables
	Predictor variables
	N/A

	Data
	Predictor variables
	Data sources
	Spatial extent: African mainland, single temporal extent, 2degrees far buffer away from presence points. Method was tested against target group sampling using ecoregions of presence points and using the 2degrees far (pseudoabsence method) performed better.

	Data
	Predictor variables
	Spatial extent
	Sampling bias could be present due to GBIF data input, but removal of duplicates goes some way to counteract that. Spatial thinning was not applied due to such small number of occurrences.

	Data
	Predictor variables
	Spatial resolution
	SDM package: 80:20 partition (80% used for training)

	Data
	Predictor variables
	Coordinate reference system
	5-fold cross validation (80:20 partition)

	Data
	Predictor variables
	Temporal extent
	SDM package: 80:20 partition (20% used for test)

	Data
	Predictor variables
	Temporal resolution
	Mean Precipitation of the Driest Month, Precipitation Seasonality, Mean Temperature of the Coldest Quarter, Mean Precipitation of the Coldest Quarter

	Data
	Predictor variables
	Data processing
	CHELSA v2.1 (bioclimatic variables)

	Data
	Predictor variables
	Errors and biases
	43.10, 50.61, -25.62, -11.94

	Data
	Predictor variables
	Dimension reduction
	1km

	Data
	Transfer data
	Data sources
	WGS 1984 Albers for Africa Equal Area Conic coordinate projection system (ESRI:102022)

	Data
	Transfer data
	Spatial extent
	1980-2010

	Data
	Transfer data
	Spatial resolution
	30 years

	Data
	Transfer data
	Temporal extent
	Projecting from WGS84 to ESRI:102022 (terra::project); cropping to study extent (terra::crop), resampling to exact cell position (terra::resample using method='bilinear')

	Data
	Transfer data
	Temporal resolution
	Bias corrected using a trend-preserving bias correction following (Lange 2019) LANGE, S. 2019. Trend-preserving bias adjustment and statistical downscaling with ISIMIP3BASD (v1.0). Geosci. Model Dev., 3055–3070.

	Data
	Transfer data
	Models and scenarios
	Downscaling to 1km

	Data
	Transfer data
	Data processing
	CHELSA v2.1 (bioclimatic variables); Forestatrisk (forest cover)

	Data
	Transfer data
	Quantification of Novelty
	43.10, 50.61, -25.62, -11.94 (xmin, xmax, ymin, ymax)

	Model
	Variable pre-selection
	Variable pre-selection
	1km

	Model
	Multicollinearity
	Multicollinearity
	2011-2100

	Model
	Model settings
	Model settings (fitting)
	30 years

	Model
	Model settings
	Model settings (extrapolation)
	GFDL-ESM4 model with SSP126, SSP370, SSP585 scenarios (CMIP6)

	Model
	Model estimates
	Coefficients
	Projecting from WGS84 to ESRI:102022 (terra::project); cropping to study extent (terra::crop), resampling to exact cell position (terra::resample using method='bilinear')

	Model
	Model estimates
	Parameter uncertainty
	MESS analysis

	Model
	Model estimates
	Variable importance
	N/A

	Model
	Model selection - model averaging - ensembles
	Model selection
	Correlation matrix assessing for highly collinear pairs above 0.7, then a variable importance factor ranking the remaining predictors to reduce variables down to the correct ratio to occurrence points (i.e., 6 predictors for 62 occurrences)

	Model
	Model selection - model averaging - ensembles
	Model averaging
	sdm package: created sdm::sdmData() object that specified how presences and background points were equally weighted; used sdm::sdm to compute an ensemble fit using 3 machine  learning algorithms with 10 replicates (bootstrapping)

	Model
	Model selection - model averaging - ensembles
	Model ensembles
	sdm package: sdm::ensemble() to produce projections and predictions using weighted mean based on the Matthews Correlation Coefficient (MCC) of ensemble performance, and optimised using the minimum distance to ROC curve (minROCdist"; opt=4)

	Model
	Analysis and Correction of non-independence
	Spatial autocorrelation
	Mean: Residual deviance = 0.355, Area Under ROC Curve (AUC) = 0.950, True Skill Statistic (TSS) = 0.864, Point-biserial correlation (COR) = 0.643, Matthews Correlation Coefficient = 0.662, F1 Score = 0.657

	Model
	Analysis and Correction of non-independence
	Temporal autocorrelation
	Mean Explained deviance = 0.998, Standard Deviation of AUC (SD_AUC) = 0.035, Standard Deviation of TSS (SD_TSS) = 0.080

	Model
	Analysis and Correction of non-independence
	Nested data
	Ranked in most important in descending order: Mean Precipitation of the Driest Month, Mean Temperature of the Coldest Quarter, Mean Precipitation of the Coldest Quarter, Precipitation Seasonality

	Model
	Threshold selection
	Threshold selection
	Models selected to compute ensemble if their overall scores were AUC > 0.7 & TSS > 0.5

	Assessment
	Performance statistics
	Performance on training data
	Weighting chosen to optimise Matthews Correlation Coefficient (MCC) performance

	Assessment
	Performance statistics
	Performance on validation data
	Same as previous

	Assessment
	Performance statistics
	Performance on test data
	Spatial duplicate removal and spatial thinning of occurrence data (< 1km)

	Assessment
	Plausibility check
	Response shapes
	N/A

	Assessment
	Plausibility check
	Expert judgement
	N/A

	Prediction
	Prediction output
	Prediction unit
	sdm package: sdm::threshold() with optimisation method 4 to maximise ensemble performance metrics using minimum distance to ROC curve (minROCdist) and repeated binary results with 12 (10th Percentile Training Presence - P10) to compare outputs

	Prediction
	Prediction output
	Post-processing
	Threshold independent: Prevalence, AUC, COR, Deviance, Calibration; Threshold dependent: TSS, MCC, F1 (maximised for max(se+sp)

	Prediction
	Uncertainty quantification
	Algorithmic uncertainty
	N/A

	Prediction
	Uncertainty quantification
	Input data uncertainty
	Threshold independent: Prevalence, AUC, COR, Deviance, Calibration; Threshold dependent: TSS, MCC, F1 (maximised for max(se+sp)

	Prediction
	Uncertainty quantification
	Parameter uncertainty
	All response curves have wide confidence bands showing uncertainty across most of the responses: Precipitation of driest month shows an initial increase in species response up to around response 0.6-0.7 units and 20mm of rainfall, then plateaus and slightly declines after 80mm. Precipitation of coldest quarter has a similar but more gradual pattern to precipitation of the driest month but maintains a stable response. Mean temperature of coldest quarter with a hump-shaped response that peaks around 10-15 degrees Celsius, then notably declines above 20 degrees, suggesting thermal tolerance limits. Precipitation seasonality demonstrates a brief spike in response around 50-70 units followed by a steady decline, suggesting a preference of some variation, but not extreme fluctuation.

	Prediction
	Uncertainty quantification
	Scenario uncertainty
	The wilt when first projected (transferred) to Madagascar shows strong suitability along the north-south humid/sub-humid zone, which also includes the location of Ranomafana National Park where the wilt has been observed.

	Prediction
	Uncertainty quantification
	Novel environments
	Binary threshold 0-1 (0=absence, 1=presence)



Online Resource 3- Supplementary Methods
Pathogen pseudo-absences - '2° far' approach
For the fungal wilt pathogen, we used a '2° far' approach to construct pseudo-absences (Barbet-Massin et al., 2012, Li et al., 2024), defining them as locations at least two degrees from any known presence within mainland Africa (Figure 1, extent A). All Leptographium and Verticillium occurrences served as proxy for L. calophylli. Since the bark beetle vector Cryphalus trypanus likely mediates pathogen spread (Wainhouse et al., 1998, Webber et al., 1999), we incorporated Cryphalus genera occurrences within the training extent (n = 25) from GBIF into the pseudo-absence design. Known presence locations were buffered by 2° (~ 222 km) using Haversine formula (Equation 1). After removing spatial duplicates within 1 km cells, 340 pseudo-absence points were retained from areas outside the buffer zone (Figure 1).
( 1 )
Where R equates to the radius of the Earth in metres (R = 6,371,000 m).
Host background points – ‘whole-area’ approach
For C. paniculatum, we randomly generated 620 background points using the 'whole area' approach within Madagascar (Figure 1, extent B), maintaining a 1:10 ratio of presences to background points after masking known presence locations (n = 62).
Environmental data
Climatologies at high resolution for the earth’s land surface areas (CHELSA) bioclimatic data (Karger et al., 2017, Karger et al., 2021) were provided as a global GeoTiff in WGS 1984 map projection (ESPG:4326), which were cropped to our two spatial extents (Figure 1, Africa training extent A and Madagascar projection extent B) and reprojected all layers to the WGS 1984 Albers for Africa Equal Area Conic system (ESRI: 102022) to align with other model inputs and allow area-preserving range calculations. ForestAtRisk data (Vieilledent et al., 2018, Vieilledent et al., 2023) were reclassified to binary data then aggregated from 30 m to 1 km resolution using bilinear interpolation, producing proportional forest cover values (0-1).
Model projection feasibility
Top-performing models were selected through plausibility assessment against known occurrences in Ranomafana National Park following surveys undertaken by Wright et al. (2020). The host ensemble used weighted mean by AUC values, optimised for TSS (Elith et al., 2006). Ten predictions were generated per species: one current projection and nine future forecasts using three SSP pathways to 2100 (Table S3).
Table S3.
Summary and breakdown of the number of weighted ensemble SDM models computed per species, including temporal time frame, spatial extent, future climate pathway, and model type. In total, for the fungal wilt L. calophylli and host C. paniculatum, 20 ensembles were produced (ten per species), a single trained ensemble under current climatic conditions, and nine representing various future pathways and time periods.
	[bookmark: _Hlk214870737] Species
	Time frame
	Spatial extent
	Climate pathway*
	Model type
	No. of models

	Incipient fungal wilt
L. calophylli (from Verticillium and Leptographium genera level occurrences)
	1981-2010
	Independent training area (Mainland Africa, Figure 1 - extent A)
	Recorded climate
	Training and initial projection
	1

	
	2011-2040
	Independent test area (Figure 1, extent B - Madagascar)
	SSP1
SSP3
SSP5
	Future prediction
	9

	
	2041-2070
	Independent test area (Figure 1, extent B - Madagascar)
	SSP1
SSP3
SSP5
	Future prediction
	

	
	2070-2100
	Independent test area (Figure 1, extent B - Madagascar)
	SSP1
SSP3
SSP5
	Future prediction
	

	
	
	
	
	
	TOTAL: 10

	Endemic host 
(C. paniculatum)
	1981-2010
	Global native range (Figure 1, extent B - Madagascar)
	Recorded climate
	Training and initial projection
	1

	
	2011-2040
	Global native range (Figure 1, extent B - Madagascar)
	SSP1
SSP3
SSP5
	Future prediction
	9

	
	2041-2070
	Global native range (Figure 1, extent B - Madagascar)
	SSP1
SSP3
SSP5
	Future prediction
	

	
	2070-2100
	Global native range (Figure 1, extent B - Madagascar)
	SSP1
SSP3
SSP5
	Future prediction
	

	
	
	
	
	
	TOTAL: 10


*SSP1-RCP2.6 (SSP1), SSP3-RCP7 (SSP3), and SSP5-RCP8.5 (SSP5). These pathways were generated through statistical downscaling and bias correction of Coupled Model Intercomparison Project (CMIP6) Global Climate Model output from GFDL-ESM4 (Krasting et al., 2018), processed using the ISIMIP3b framework (Lange, 2021) with ISIMIP3BASD v2.5.0 methodology (Lange, 2019) and calibrated against the W5E5 v2.0 observational reference dataset (Cucchi, 2020). 

Calculating distributional changes
Binary maps were used to calculate total presence area (km²). Cell-by-cell differencing classified changes as: stable (suitable in both periods), expansion (newly suitable), or contraction (losing suitability), expressed as cumulative percentages. Range centroids were calculated as mean coordinates of presence cells. Shifts were expressed as distance (km) and direction, with velocity calculated per decade. Elevation changes were extracted from DEM overlays to assess vertical range displacement (Lenoir and Svenning, 2015). Habitat exposure measured the proportion of current range experiencing novel conditions (Choe et al., 2017). Potential Area of Occupancy (pAOO) was calculated following IUCN protocols with minimum 4km² threshold (Cazalis et al., 2024, Iucn, 2022) using 2×2 km grid resampling (Figure S1). All metrics were computed as cumulative changes from baseline using R Statistical Software v4.3.2 (R Core Team, 2023) with terra package (Hijmans, 2025).
[image: A screenshot of a computer program

AI-generated content may be incorrect.]Figure S1.
 Conceptual diagrams visualising two standardised range shift metrics used to assess the changing geographic distributional properties of wilt pathogen L. calophylli and host C. paniculatum (a) predicted area of occupancy, measured as the area in standardised 2 x 2 km grid cells (IUCN) and (b) habitat exposure index, calculated as the difference between the current area range and the area of intersection between current and future range, divided by current range. The habitat exposure metric determines how different the future climate conditions are compared to those in the current projected habitat. These two methods of measuring geographic change are compared between a range of area under a hypothetical current and a future climate scenario.
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Collinearity of predictor variables
[image: A diagram of a number of data

AI-generated content may be incorrect.]Figure S2.
 Correlation matrix of the 19 CHELSA bioclimatic predictor variable values extracted from L. calophylli occurrence data across the African mainland. Darker values of blue correspond to higher positive correlation coefficients between a predictor pair, and darker values of red indicate negative highly correlated pairs. With a threshold at (|r| > 0.7), the strongest positive correlations were mean temperature of warmest quarter with maximum temperature of warmest month (|r| = 0.88) and precipitation of wettest quarter with precipitation of wettest month (|r| = 0.85), indicating a strong link between moisture availability and thermal extremes. Temperature seasonality showed strong negative correlations with minimum temperature of coldest month (|r| = -0.91) and also isothermality (|r| = -0.82), demonstrating that environments with greater temperature fluctuations throughout the year tend to have less consistent day-to-night temperature patterns and significantly lower temperature extremes during cold periods.

[image: ]Figure S3.
 Correlation matrix of the 19 CHELSA bioclimatic predictor variable values extracted from C. paniculatum occurrence data endemic to Madagascar. Darker values of blue correspond to higher positive correlation coefficients between a predictor pair, and darker values of red indicate negative highly correlated pairs. Amongst the strongest positive correlations were between the mean temperature of the wettest quarter and the mean temperature of the driest quarter (r = 0.93), and the precipitation of the driest quarter with the precipitation of the driest month (|r| = 0.77), indicating strong collinearity in thermal patterns between seasons Temperature extremes are also correlated, particularly the maximum temperature of the warmest month and annual temperature range (|r| = 0.93), and the former and mean temperature of the warmest quarter Highly negative correlations exist between precipitation seasonality and the precipitation of the driest month (|r| = -0.89) and precipitation of the driest quarter (|r| = -0.77), demonstrating that environments with more variable rainfall throughout the year tend to experience more drier conditions during the dry season Occurrence data used in the extraction of environmental data considered in this matrix were built by combining duplicate-free presence and background points. The background sampling method was random generation sampled from across the whole of Madagascar equating to ten times the number of presences, n = 62; background points, n = 619). Using this matrix, all pairs showing strong correlations (|r| > 0.7) were removed.

[bookmark: _Toc198037649][bookmark: _Toc210404602]Ensemble SDM performance evaluation
[image: ]Figure S4. 
 Smooth Receiver Operating Curves (ROC) showing mean AUC values for both training and test data for each model algorithm within the trained L. calophylli ensemble model across each of the ten bootstrapping replicates. Curves for the training data are shown in red, and test data in blue. The value of Specificity (1 - the false positive rate) is shown on the x-axis, and Sensitivity (true positive rate) is shown on the y-axis. The black dashed line represents a random prediction. The random forest (RF) model replicates performed the best overall with the training and test datasets (training mean AUC = 1, test mean AUC = 0.975), followed by MaxEnt (training mean AUC = 0.991, test mean AUC = 0.945) and boosted regression trees (training mean AUC = 0.982, test mean AUC = 0.931).
[image: ]Figure S5.
 Smooth Receiver Operating Curves (ROC) showing mean AUC values for both training and test data for each model algorithm within the trained C. paniculatum ensemble model across each of the ten bootstrapping replicates. Curves for the training data are shown in red, and test data in blue. The value of Specificity (1 - the false positive rate) is shown on the x-axis, and Sensitivity (true positive rate) is shown on the y-axis. The black dashed line represents a random prediction. The random forest (RF) model replicates performing the best overall with the training and test datasets (training mean AUC = 1, test mean AUC = 0.995), followed by boosted regression trees (training mean AUC = 0.994, test mean AUC = 0.978), and MaxEnt (training mean AUC = 0.984, test mean AUC = 0.971).

[bookmark: _Toc198037652][bookmark: _Toc210404603]Model projections of continuous probability of presence 
Figure S6.(a)
(b)

 Continuous projections of probability of presence (2010 as baseline) from the top SDM ensemble for (a) L. calophylli and (b). C. paniculatum. Colour scale shows high probability of presence (yellow) for Ranomafana National Park (RNP) which is highlighted with a dashed green rectangle. Presence scales are separate for each model output (maximum presence value of 0.8 for C. paniculatum, and 0.6 for L. calophylli).


[image: ]Future predictions of continuous probability of presence
Figure S7.
 Continuous predictions of probability of presence for L. calophylli across three future time periods (rows) under three socioeconomic pathway scenarios (columns). Areas in bright yellow are habitats with environmental conditions most suitable to this fungal pathogen. These predictions were produced from the top performing weighted ensemble according to a weighted ranking of AUC and TSS.
[image: ]Figure S8.
 Continuous predictions of probability of presence for C. paniculatum across three future time periods (rows) under three socioeconomic pathway scenarios (columns). Areas in bright yellow are habitats with environmental conditions and forest cover most suitable to this host tree. These predictions were produced from the top performing weighted ensemble according to a weighted ranking of AUC and TSS. Scaling for individual distributions is altered as conditions.
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Figure S9.
[bookmark: _Toc198037651][bookmark: _Toc210404607] Variable importance for the top-performing model for fungal pathogen L. calophylli (vertlept_2far_thresh_0.7_forest_alg4.sdm). The blue bars represent the mean importance score for each environmental variable based on the correlation test. Black error bars indicate 95% confidence intervals, reflecting the statistical uncertainty in importance estimates. Model performance: AUC = 0.968 ± 0.025. Precipitation of the driest month is the most important predictor (importance score ~0.35), much higher than all the other predictors. Precipitation of the coldest quarter and mean temperature of the coldest quarter showed moderate importance scores (~0.2) while precipitation seasonality showed lower influence. Forest cover contributed minimally to this top-performing model and was therefore removed from the final selection for ensemble modelling.
[image: ]Figure S10.
 Variable importance for the top-performing model for host C. paniculatum (calo_whole_thresh_0.7_forest_alg3.sdm). The blue bars represent the mean importance score for each environmental variable based on the correlation test. Black error bars indicate 95% confidence intervals, reflecting the statistical uncertainty in the importance estimates. Model performance: AUC = 0.982 ± 0.016. This analysis showed annual temperature range as the most influential predictor (importance score ~0.13), with precipitation of the coldest quarter and temperature seasonality. Forest cover showed moderate importance to the model, but with large uncertainty estimates and substantial overlap.
Response curves
[bookmark: _Toc210729455][image: A graph of a graph

AI-generated content may be incorrect.]Figure S11.
 Pathogen 2D response curves for the four most important predictor variables for the top trained L. calophylli SDM ensemble showing (a) precipitation of the driest month (mm), (b) precipitation of the coldest quarter (mm), (c) mean temperature of the coldest quarter (°C), and (d) precipitation seasonality. Each predictor variable has a different response scale (y-axis). Blue band: +/- 1 standard error (SE). light grey band: 95% confidence interval (CI). Precipitation of the driest month (a) shows a rapid increase in pathogen occurrence probability from very low values to a peak (~0.6) at approximately 20-30mm, followed by a gradual decline as precipitation increases further. Precipitation of coldest quarter (b) sharply increases from near zero to ~0.5 when precipitation reaches approximately 100mm, then maintaining that level across higher precipitation values. The mean temperature of the coldest quarter (c) shows a negative relationship with pathogen occurrence at higher temperature values. The probability remains relatively stable (~0.6) between 5-15°C, then declines to ~0.3 at around 30°C. Precipitation seasonality (d) shows a modest peak in response (~0.6) at intermediate seasonality values (~60-80), with slightly lower probabilities at both lower and higher seasonality. The confidence intervals for precipitation seasonality are wide, suggesting less certainty in areas of consistent rainfall.
[image: ]Figure S12.
 Host 2D response curves for the four most important predictor variables of the top-trained SDM ensemble for host C. paniculatum showing (a) annual temperature range (°C), (b) precipitation of the coldest quarter (mm), (c) temperature seasonality, and (d) forest cover (forest cover% for each cell). Each predictor variable has a different response scale (y-axis). Blue band: +/- 1 standard error (SE). light grey band: 95% confidence interval (CI). Annual temperature range (a), shows a clear negative relationship with species occurrence, with the highest response values (~0.5) at the lowest temperature ranges (~8°C) and steadily declining to ~0.2 at ranges above 18°C. Precipitation of the coldest quarter (b) displays a slightly bimodal pattern with modest probability peaks around 150mm and 800mm. Temperature seasonality (c) shows a dual response curve with higher probabilities at both low (~100) and high (~250+) seasonality values. Forest cover (d) shows a gradual positive relationship, showing this secondary forest host species benefits from existing forest habitat.
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Figure S14.
	
	
	



 Multi Environmental Similarity Surface (MESS) analysis plots showing similarity between training and projection environments for (a) fungal pathogen L. calophylli and (b) host C. paniculatum. Novel environments are shown in red on the righthand map. The L. calophylli pathogen MESS analysis shows a low percentage of novel environments (0.005%), likely due to the training environment across Africa having a much broader range of environments compared to Madagascar. Current and future study environments were calculated to be <1% (0.93%) different between training environment and future projections for the endemic host tree.
	
	
	



Table S4.
 Cut-off binary presence/absence threshold optimisation and values produced for each chosen ensemble projection (no. of suitable cells based on the 1km pixel) for Calophyllum and Verticillium and Leptographium, and the percentage (%) of the Madagascar study area correctly classified using the “current” climate pathway. 
	[bookmark: _Hlk218006121]Cut-off threshold
optimisation
	Measure
	Madagascar ensemble SDM prediction

	
	
	L. calophylli 
	C. paniculatum

	Minimum distance to ROC curve criterion ("minROCdist")
(opt 4)
	Threshold value
	0.26396
	N/A×

	
	No. of suitable pixels (1km)
	191218
	N/A×

	
	% correct classification
	N/A*
	N/A×

	Max sum of sensitivity and specificity ("max(se+sp)") (opt 2)
	Threshold value
	N/A×
	0.33759

	
	No. of suitable pixels (1km)
	N/A×
	30334

	
	% correct classification
	N/A×
	95.52 %


×N/A – thresholds are species specific.
*L. calophylli ensemble SDM models were trained across Africa, outside of the prediction area (Madagascar) therefore result for % correct classification is not applicable.

	
	
	



Table S5.
 Summary of predicted current and future distribution area including stable, expansion, net area (km²), percentage area changes across species, climate scenarios and time periods. Area change calculations were made after applying species-specific binary optimisation thresholds (Bin opt) to create predicted presences and absences. L. calophylli predictions were binarised optimising for Matthews Correlation Coefficient (MC), and C. paniculatum, maximised for TSS (Max TSS).
	Species
	SSP
	Time period
	Bin opt
	Current projected range area (km²)
	Future predicted range area (km²)
	Stable area (km²)
	Expansion area (km²)
	Contraction area (km²)
	Net area change (km²)
	% Area change

	L. calophylli
	126
	2011-2040
	MC
	198712
	183511
	183268
	243
	15444
	-15201
	-7.650

	
	
	2041-2070
	
	
	184272
	183844
	428
	14868
	-14440
	-7.267

	
	
	2071-2100
	
	
	182394
	182121
	273
	16591
	-16318
	-8.212

	
	370
	2011-2040
	
	
	179386
	179295
	91
	19417
	-19326
	-9.726

	
	
	2041-2070
	
	
	166673
	166663
	10
	32049
	-32039
	-16.123

	
	
	2071-2100
	
	
	139488
	139488
	0
	59224
	-59224
	-29.804

	
	585
	2011-2040
	
	
	182507
	181548
	959
	17164
	-16205
	-8.155

	
	
	2041-2070
	
	
	167420
	167406
	14
	31306
	-31292
	-15.747

	
	
	2071-2100
	
	
	136080
	136080
	0
	62632
	-62632
	-31.519

	C. paniculatum
	126
	2011-2040
	Max TSS
	30334
	37153
	22481
	14672
	7853
	6819
	22.480

	
	
	2041-2070
	
	
	15728
	7900
	7828
	22434
	-14606
	-48.151

	
	
	2071-2100
	
	
	17875
	7325
	10550
	23009
	-12459
	-41.073

	
	370
	2011-2040
	
	
	26640
	19705
	6935
	10629
	-3694
	-12.178

	
	
	2041-2070
	
	
	24819
	10864
	13955
	19470
	-5515
	-18.181

	
	
	2071-2100
	
	
	11109
	6487
	4622
	23847
	-19225
	-63.378

	
	585
	2011-2040
	
	
	23768
	16793
	6975
	13541
	-6566
	-21.646

	
	
	2041-2070
	
	
	23507
	10400
	13107
	19934
	-6827
	-22.506

	
	
	2071-2100
	
	
	10354
	5165
	5189
	25169
	-19980
	-65.867
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