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Extended Data Fig. 1 Variations of (A) La/Yb versus 10000*Eu/Ti, (B) Ti/Ti* versus
Hf/Hf*, (C) H/Hf* versus 10000*Eu/Ti, and (D) La/Yb versus Hf/Hf* for the studied
Neoarchean basalts. Elemental anomalies are calculated as follows: Ti/Ti* =
Tin/(Smn ~ %953 x Ndy 9333 x Gdn °722), Hf/Hf* = Hf\/(Smn x Ndn)3, where the

subscript N means normalized to the primitive mantle.
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Extended Data Fig. 2 Isotopic and elemental ratios constrain the origins of carbon
and fluids. (A) Plots of 8’Li versus Ba/La, (B) Plots of 3*Mg versus Th/Yb and (C)

Plots of 8’Li versus ¥’Sr/%Sr.



Cold subduction
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Extended Data Fig. 3 The temporal change in the subduction P-T field under the
condition of Tp = 1350°C (modern).



Hot subduction

€
P
=
a
35
c o g Tp=1500°C
S 2 35 2 2
B — ~ 0 o
3
3 [ Teonm
] 4.7Ma
w L L L L N " A
0 100 200 300 400 500 600 700 800 900 1000
Width (km)
E
4
z
a
[}
el
=
S
3
=3
el
S 9.7Ma
wn L L L L L " n N .
0 100 200 300 400 500 600 700 800 900 1000
Width (km)
€
e
&=
a
(]
el
| o=
S
3
=) [
© It
S 250} 1 14.9Ma
w C n " L " ll " [
0 100 200 300 400 500 600 700 800 900 1000
Width (km)
{E, 0
< 50f
Q
100
5150
S 200
kel
S 250
w n n " n " h: L L N
0 100 200 300 400 500 600 700 800 900 1000
Width (km)
§, 0
£ 50
Q
2100
§150
S 200
2
S 250
w ) " " " " o " YA
0 100 200 300 400 500 600 700 800 900 1000
Width (km)
g 0
< 50
= SO0F
2100
§150
S 200
el
S 250
w L " L "
0 100 200 300 400 500 600 700 800 900 1000
Width (km)

Extended Data Fig. 4 The temporal change in the subduction P-T field under the

condition of Tp = 1500°C (Archean-Paleoproterozoic).
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Extended Data Fig. 5 Formation Temperature and Pressure of Primary Arc Basalts
over Time (3-2.5 Ga)
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Extended Data Fig. 6 The tests of different initial MOR degassing and CH4
concentrations in C-O box models collectively demonstrate the moderating effect of
enhanced subduction biogeodynamic carbon cycling on temperature. The green
background is a reference range in previous studies.
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Extended Data Fig. 7 The tests of different initial MOR degassing and proportion of
organic carbon in sediment in C-O box models collectively demonstrate the
moderating effect of enhanced subduction biogeodynamic carbon cycling on O
levels.



