5 Supplementary Information

We describe the details of the FEAD system in this section.
We start with our data acquisition system, which is based on a
commercial L2 autonomous truck. We then formally define the
objective for fuel optimization. It is followed by a complete dis-
section of our FEAD system, with detailed design motivation,
exact formulation, and thorough analysis.

5.1 Data Acquisition

As a data-driven approach, it is crucial to obtain an abun-
dance of real driving data. We utilize a fleet of commercial
Level 2 (L2) autonomous trucks for this task. The truck trac-
tors are manufactured by well-established commercial vehicle
original equipment manufacturers (OEMs) within China. The
sensor suite of these tractors comprises three LiDAR units,
seven cameras, five mmWave radars, and a GPS unit (Fig. 5).
A forward-facing long-range LiDAR is mounted above the
front windshield, covering up to 200 meters with a 120-degree
field of view. Three cameras with short-, medium-, and long-
range capabilities are installed at the top of the windshield,
while four additional cameras—including forward middle-
range and rearward fisheye units—are mounted above the truck
doors. Five long-range mmWave radars are situated on the
bumper, providing forward, left-forward, right-forward, left-
rear, and right-rear views, with GPS installed on the roof. An
autonomous driving control unit is also installed to provide the
computing and data storage capability.

The trucks operate in either AD or MD mode. AD mode
can only be activated on highways, providing features such as
autonomous navigation, lane keeping, automatic lane change,
and cruise control. As a L2 system, a driver remains onboard
at all times to intervene when necessary.

We collected data in two ways: first, by recording full driv-
ing data, including raw sensor data, at 10 Hz; and second, by
recording sub-sampled data at 1 Hz. There are two types of
full driving datasets. The first dataset, Large-Scale-Detailed
(LSD), was collected on nationwide routes across China from
March to December 2023. This data was used offline to train the
NTM and NPM models. The second dataset, Laiwu-Detailed
(LWD), was collected along a controlled test route between
Laiwu City and Jinan City, in Shandong Province, China. This
route was designed to evaluate the trained models’ performance
in controlled, open-road scenarios, enabling a comprehensive
comparison of different baselines. The route contains no traffic
signals, maintains a speed limit of at least 100 km/h, and fea-
tures varied terrain, including flat sections, uphill climbs, and
downhill slopes, as illustrated in the first subplot of Fig. 4b.
We recorded multiple test runs with full data recording on
this route to create the LWD dataset. The Large-Scale-Concise
(LSC) dataset was used for a large-scale field deployment test.
This test involved more than 800 heavy-duty trucks and over
1,000 professional drivers over eight months (January—August
2024), accumulating over 50.17 million kilometers of opera-
tional data. Similar to the LSD dataset, LSC was collected on
nationwide routes, but during the different period of January to
August 2024. In addition, it was collected online via Wi-Fi and
sub-sampled to reduce transmission costs. Table 1 summarizes

the data collected to train and evaluate the effectiveness of our
approach.
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Fig. 5: Sensor suite configuration on a representative test
truck. The system includes three LiDAR units (one long-range
forward-facing), seven cameras (short-, medium-, and long-
range), five mmWave radars (forward and rear coverage), and a
roof-mounted GPS unit, providing comprehensive perception
capabilities for autonomous highway driving.

5.2 Definition of Fuel Optimization

To enhance economic efficiency and reduce carbon dioxide
emissions, lowering the fuel consumption of trucks is essen-
tial. However, for freight trucks, fuel savings must be achieved
without compromising transportation timeliness. In practical
applications, optimizing fuel consumption requires address-
ing both time constraints and boundary conditions. Firstly, due
to spatiotemporal limitations in accessing geographic infor-
mation, as well as hardware memory and computation time
constraints, the optimization is restricted to aroad segment with
a fixed future distance. Furthermore, the analysis is conducted
under highway driving conditions, where vehicle speeds are
constrained by regulatory limits, and the relationship between
speed and acceleration follows Newton’s second law of motion.
Additionally, an auxiliary constraint is introduced to penalize
excessive braking, ensuring the optimization favors smooth and
fuel-efficient driving behavior.
The optimization problem is formulated as follows:

n
min P;) As + BB?
M0, ;fF( ) As + BB;
st. Vmin(si) < vi < vmax(si), i=0,...,n,
1 ¢ ey
- Z Vi 2 Virg,
i
vfﬂ =v%+2a,~As, i=0,...,n—-1,
a; = fo(Bi, P)
where P = {P;}!'  denotes the engine power sequence,

B = {B;}!, denotes the brake sequence, and both can be



Name Large-Scale-Detailed (LLSD)

Laiwu-Detailed (LWD)

Large-Scale-Concise (LSC)

Route
Time Period

Nationwide, China
Mar. to Dec. 2023

Collection Frequency 10Hz
Collection Method Disk copy
Data Volume ~1.01 GB/s
Mileage 0.17 million km
Usage Model training

Laiwu Jinan, Shandong, China

Nationwide, China

Feb. to Jun. 2024 Jan. to Aug. 2024

10Hz 1Hz
Disk copy Online upload via 4G
~1.01 GB/s ~0.36 KB/s
16,000 km 50.20 million km
Evaluation Large-scale evaluation

Table 1: Overview of the three datasets used in this study: Large-Scale-Detailed (LSD), Laiwu-Detailed (LWD), and Large-
Scale-Concise (LSC), including their geographic scope, collection period, frequency, method, volume, mileage, and intended

usage.

treated as control commands. S = 37", As represents the opti-
mization horizon in distance, which is set to § = 5000m
in this study. The function fr(P;) represents the fuel con-
sumption model, typically obtained from the manufacturer in
conventional approaches. The coefficient 8 serves as a brak-
ing penalty factor, encouraging the minimization of braking.
The lower and upper speed bounds, viin(s;) and viax (s;), are
determined by road speed limits, traffic conditions, and vehi-
cle constraints, with s; denoting the position corresponding to
v;. The parameter v, corresponds to the target average speed,
determined by the global speed planning method [39]. The
vehicle speed sequence v = {v;}!, is governed by the accelera-
tion sequence a = {a;}!" |, which is calculated by the dynamics
model fp(B,P).

Conventional methods describe vehicle dynamics as a =
fo(B,P;m, ¢y, cq), where m is the vehicle mass, ¢, is the rolling
resistance coefficient, and ¢4 is the aerodynamic drag coef-
ficient. In contrast, the FEAD system employs NTM as both
the dynamics and fuel consumption model, jointly formulated
as [a,F] = NTM(B, P), where F denotes the fuel consump-
tion sequence. From a fuel-efficiency standpoint, braking and
propulsion do not occur simultaneously. To simplify the for-
mulation, we define a unified control variable, termed the
desired power P, which represents both braking and propulsion
operations:

-B;, if B; >0 (braking),

P; @

P;, if B;=0 (propulsion).
Accordingly, in conventional methods, the models can be
expressed as F = fr(P) and a = fp(P), whereas in FEAD,
both are integrated as [a,F] = NTM(P). Rather than solv-
ing this optimization directly, FEAD employs a reinforcement
learning framework (NPM) that learns an optimal policy by
interacting with NTM in an iterative trial-and-error process.

5.3 FEAD system

Regarding the problem described in Equation 1, autonomous
driving techniques can comprehensively benefit highway trucks
in terms of fuel saving. We summarize the impacts of
autonomous driving on fuel saving according to the effective
scenarios.
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5.3.1 Fuel-Efficient Full-Trip Speed Planning

Fuel-efficient full-trip speed planning relies on an operational
speed strategy to determine target velocities, aiming to enhance
fuel conservation for autonomous vehicles while meeting strict
time constraints. The fuel consumption of an operational truck
is closely linked to its cruising speed, while variations in speed
profiles can also influence fuel efficiency, even when main-
taining the same average speed on identical road conditions.
Therefore, it is crucial to minimize the average speed within the
allowable time constraints while optimizing the speed profile
for maximum fuel efficiency, incorporating environmental fac-
tors such as terrain and traffic conditions. The above challenge
can be formulated as an optimization problem [39], where the
primary objective is to minimize fuel consumption and travel
time by refining target speed profiles. To solve this problem,
we adopt the Dynamic Programming (DP) approach as out-
lined in [40], enabling the determination of an optimal speed
profile over the entire trip. By systematically evaluating all
possible control sequences, DP minimizes the objective func-
tion, yielding an optimal speed trajectory that enhances fuel
efficiency.

5.3.2 Fuel-Efficient Local Navigation

Fuel-efficient local traffic interaction is crucial for optimizing
fuel consumption in autonomous vehicles and ADAS while
maintaining safety and smooth traffic flow. To address local
traffic interaction, we employ the behavior planner [43], which
is composed of three main processes: guided branching, sce-
nario realization, and evaluation. Guided branching predicts
action sequences and the intentions of other participants, which
together form traffic scenarios. Scenario realization then uses
multi-agent forward simulation to execute these steps in real
time. This enables the system to adapt to dynamic traffic con-
ditions. Through this process, the model is enhanced to ensure
safer and more efficient driving in complex, noisy traffic envi-
ronments. Moreover, in car-following scenarios, it is important
to manage the following distance. A large gap may lead to fre-
quent cut-ins, while a smaller gap increases the risk of rear-end
collisions and driver discomfort, often prompting excessive
braking [41]. To mitigate these issues, we incorporate a cost
related to the relaxation zone during the evaluation phase,
ensuring the vehicle maintains an optimal following distance
for fuel efficiency. Furthermore, lane changing, a fundamental



but complex driving maneuver, requires coordinated control
of both longitudinal and lateral vehicle movements [42]. This
maneuver allows the vehicle to adjust its driving conditions,
optimizing speed and space satisfaction. To further enhance
fuel efficiency, we introduce a braking-related cost term dur-
ing the evaluation phase, encouraging decisions that minimize
braking.

5.3.3 Fuel-Efficient Cruise Control

Fuel-efficient cruise control optimize speed profiles and reg-
ulate throttle and brake to minimize fuel consumption, while
ensuring performance and meeting delivery time constraints. In
this section, we introduce the traditional Predictive Cruise Con-
trol (PCC) [17, 33-35] and our proposed end-to-end control
framework.

PCC enhances fuel efficiency by leveraging vehicle sen-
sors and map data to predict road conditions, such as slopes
and traffic signals, and adjust speed accordingly. This reduces
unnecessary acceleration and braking, thereby optimizing fuel
consumption. Traditional PCC methods involve three key
components: fuel modeling, dynamics modeling, and policy
formulation. Fuel modeling is used to construct the objective
function, dynamics modeling generates acceleration and speed
with the control commands, and policy formulation is responsi-
ble for deriving optimized speed profiles. While this approach
simplifies computation, it often compromises robustness and
accuracy by neglecting complex interdependencies within the
system.

To tackle fuel efficiency challenges in commercial vehi-
cles, we propose a modular end-to-end Neural Cruise Control
(NCC) framework for optimization, consisting of two key
modules: the Neural Truck Module (NTM) and the Neu-
ral Policy Module (NPM). NTM integrates offline training
on historical engine-specific data with online refinement
using real-time data (power, speed, fuel consumption) across
varying road conditions. This dual-stage approach captures
both persistent and transient dynamics and fuel consump-
tion mapping. NPM replaces traditional control methods with
reinforcement learning (RL), leveraging NTM’s data-driven
simulations to optimize operational task efficiency. During
deployment, task-specific fuel models and dynamic represen-
tations enable adaptive policy tuning via pre-trained networks.
The framework achieves sustained fuel savings and operational
efficiency in dynamic environments through its integrated,
scenario-generalizable design.

5.4 Neural Truck Module

NTM represents a paradigm shift in fuel-efficient autonomous
driving by introducing a unified neural network architecture
that implicitly and jointly models both the objective function
(fuel consumption) and constraint conditions (vehicle dynam-
ics). Unlike conventional approaches that rely on simplified,
piecemeal approximations, NTM leverages high-dimensional
feature representations to capture the complex, nonlinear inter-
actions between a truck’s fuel economy and its dynamic
behavior, as formalized in Equation 1. This holistic design
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enables unprecedented accuracy and adaptability in real-world
operating conditions.

Traditional fuel-saving control systems, grounded in opti-
mization techniques, often resort to polynomial approximations
of the fuel consumption model to render the problem computa-
tionally tractable. However, our extensive experimental results
reveal that fuel consumption characteristics exhibit significant
variability across operating conditions (e.g., engine load, ter-
rain) and vehicle wear states, necessitating high-dimensional,
nonlinear modeling. While this introduces non-convexity that
challenges direct optimization, NTM’s neural network-based
framework seamlessly handles these complexities, overcoming
a critical limitation of existing methods.

Furthermore, truck dynamics are influenced not only by
intrinsic vehicle properties but also by a multitude of extrinsic
factors—including trailer configurations, ambient wind speed
and direction, and road surface adhesion—which are often
ignored or oversimplified in physics-based models. NTM’s
data-driven approach inherently captures these interdepen-
dencies, providing a more robust and realistic representation
of operational complexity. By integrating real-world sensor
data, NTM dynamically adapts to varying conditions, ensuring
consistent performance where conventional methods fail.

5.4.1 Design Principles of Neural Truck Module

The fuel-efficient strategies employed by skilled human drivers
are inherently truck-centric, relying on an intuitive under-
standing of vehicle dynamics and environmental conditions.
By analyzing these practices, we derive three core principles
that form the foundation of NTM. Unlike traditional model-
based approaches, NTM leverages neural networks to emulate
and enhance human-like reasoning, enabling unprecedented
accuracy and adaptability in fuel optimization.

* End-to-end experiential modeling. Expert drivers develop
an implicit mapping between throttle input, vehicle speed,
and fuel consumption through continuous experience. This
end-to-end cognitive model allows them to anticipate fuel
usage across varying road conditions without explicit knowl-
edge of parameters like cargo weight. NTM replicates this
capability through its PredictionBlock, which directly maps
control inputs—engine power (P) and braking power (B)—to
real-time acceleration (a) and fuel consumption (F). By
eliminating intermediate simplifications (e.g., polynomial
approximations), NTM captures nonlinear dynamics often
overlooked by conventional optimization methods, resulting
in a more accurate and efficient fuel model.

* Truck-wise model acquisition. Human drivers rapidly
adapt to individual vehicle characteristics through iterative
learning. Similarly, NTM incorporates an Eigen Block—a
64-dimensional feature encoder—trained on large-scale his-
torical data to capture intrinsic vehicle traits such as engine
response curves and chassis dynamics. This truck-wise
encoding ensures predictions are tailored to specific vehicle
platforms, avoiding the inaccuracies of generic models. The
Eigen Block can be ensembled across different truck models,
facilitating seamless knowledge transfer and scalability.



* Task-level dynamic adaptation. During each trip, expert
drivers continuously recalibrate their strategies based on
changing conditions (e.g., cargo load, weather). NTM emu-
lates this through a Primitives Sample Block, which extracts
representative in-trip signals (e.g., power-to-acceleration
ratios) to dynamically adjust predictions. This real-time cal-
ibration allows NTM to adapt to extrinsic variations such
as wind resistance or road friction, maintaining optimal
efficiency under diverse operating conditions.

NTM’s design principles not only mirror human exper-
tise but also transcend its limitations by leveraging data-driven
neural networks. This innovative approach enables robust,
scalable, and highly accurate fuel modeling—critical for
achieving sustainable autonomy in heavy-duty trucking. By
integrating end-to-end learning, truck-specific encoding, and
dynamic adaptation, NTM sets a new standard for fuel-efficient
autonomous systems, offering significant improvements over
traditional methods in both precision and practicality.

5.4.2 Pipeline of Neural Truck Module

NTM introduces a transformative approach to modeling truck
dynamics and fuel consumption by seamlessly integrating
intrinsic engine characteristics with external environmental
influences in real-time. Unlike conventional vehicle dynam-
ics identification methods that rely on solving differential
equations from limited recent observations, NTM employs
an innovative neural formulation to reconstruct time-varying
vehicle behavior. Crucially, while traditional methods become
unscalable due to requiring dedicated models for each vehi-
cle or operational moment, NTM addresses this limitation
through a unified feed-forward design that leverages a small
number of representative data fragments, termed primi-
tives, as reference inputs. Similar to how an expert driver
infers vehicle load or wind resistance from minimal throttle
events, these dynamically updated primitives compactly encode
both vehicle-specific properties and environmental conditions.
When conditioned on these primitives, a single NTM model
can accurately predict acceleration and fuel consumption for
any given engine and braking power command in a single for-
ward pass, eliminating the need for vehicle-specific retraining
while maintaining high precision.

During inference (Fig. 6 bottom), NTM executes an effi-
cient three-stage process that begins with the Primitive Sample
Block (PSB) selecting and clustering these representative prim-
itives. These primitives are subsequently transformed by the
Eigen Block into a low-dimensional eigen feature embedding,
which captures essential vehicle-environment interactions. The
final PredictionBlock then processes this embedding to gener-
ate precise acceleration and fuel consumption predictions, with
the entire pipeline operating without any vehicle-specific or
trip-specific fine-tuning—enabling true plug-and-play deploy-
ment across diverse truck platforms.

The training methodology (Fig. 6 top) employs a sophis-
ticated two-stage approach that ensures both generalizability
and platform-specific accuracy. The initial stage leverages
primitive-based data structures from multiple vehicles to train
the PSB’s classification model in an unsupervised manner,
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while the second stage builds upon this foundation through
supervised learning to train the Eigen Block and Prediction-
Block. This hybrid approach enables the PredictionBlock to
remain fully vehicle-agnostic, while the Eigen Block incor-
porates platform-specific dynamics through ensemble models
trained on individual truck platforms with varying engines
and powertrains. This innovative training paradigm allows
NTM to capture the nuanced characteristics of different vehi-
cle types while maintaining the practical scalability essential
for real-world deployment across large, heterogeneous fleets.

5.4.3 Primitives Sample Block

The Primitives Sample Block (PSB) represents a foundational
innovation within our NTM architecture, designed to select
a minimal yet sufficient set of primitives capable of compre-
hensively capturing variations in vehicle dynamics and fuel
consumption models arising from both engine characteristics
and external environmental factors. From a full lifecycle per-
spective, a truck’s dynamic and fuel-consumption behavior can
be conceptually modeled as a superposition of five distinct sub-
models: the base model (determined by the vehicle’s design
specifications at production, shared across platforms with iden-
tical engines and powertrains), instance models (accounting
for subtle manufacturing variations among vehicles of the same
platform), aging models (capturing long-term drifts due to
wear and component degradation, with discrete changes follow-
ing maintenance), task-related models (addressing variations
from transport-specific factors like payload or trailer type that
remain constant within individual trips), and environment-
related models (handling temporary variations caused by
external conditions such as road surface, wind, or precipi-
tation). While the base model is implicitly encoded within
the Eigen Block, all other variations are dynamically repre-
sented through replaceable primitives in the PSB. Remarkably,
by leveraging the expressive power of neural networks, we
demonstrate that five minute-level in-trip primitives are suffi-
cient to capture the majority of model variations across diverse
temporal scales, representing a significant advancement in
computational efficiency. Formally, we define a primitive as
a feature extracted from a 2 km trajectory. This trajectory
is partitioned into Ny, = 40 consecutive segments of equal
length (50 m each). For each segment i, we extract a feature
vector s; that encapsulates the dynamics over that interval:
§; = {[d;t dj-t dj| | d; = {6,v,a,P,F}}, where d*, d* and
d; denote the key parameters (slope 6, speed v, acceleration
a, desired power P, and fuel consumption F) for the start of
the segment, the end of the segment, and the average over the
segment. This sophisticated primitive formulation enables the
PSB to maintain an optimal balance between representational
completeness and computational efficiency, establishing a new
standard for adaptive modeling in autonomous vehicle systems.

Primitives sample strategy

During vehicle operation, SPs are continuously accumulated,
creating a dynamic repository of operational data. However,
processing all accumulated SPs through the Eigen Block
(EB) is computationally infeasible, necessitating an intelligent
selection mechanism that limits quantity while maximizing
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Fig. 7: t-SNE visualization of K-Means clustering (K=5)
applied to 1,000 Sample Primitives (SPs). Each cluster is repre-
sented by a distinct color and marker type, demonstrating clear
separation and validating the clustering strategy for selecting
diverse SP representatives in the Primitive Sample Block (PSB)

module.

informational diversity. The primary objective of the PSB
is therefore to generate a maximally diverse SP set Cs that
enables downstream EB processing to extract comprehensive
vehicle intrinsic features across the full spectrum of operat-
ing conditions. To achieve this diversification, we implement
a sophisticated clustering approach where each SP is assigned
a category label using the K-Means algorithm (with K = 5
clusters), allowing the PSB module to select one representa-
tive SP from each category. This strategic selection ensures
that the resulting SP set encompasses the full range of vehicle
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and environmental conditions without redundant overlap. Val-
idation through t-SNE dimensionality reduction visualization
(Fig. 7) confirmed that our K-Means classifier effectively cat-
egorizes SPs with clear inter-cluster separation across 1,000
samples.

To validate the effectiveness of our proposed selection
strategy, we developed and evaluated three distinct SP selec-
tion strategies to optimize this process: Diverse-Close (DC),
which selects SPs from each cluster based on their minimum
distance to the cluster centroid; Recently (R), which simply
selects the five most recent SPs without clustering; and Diverse-
Recently (DR), which selects the most recent SP from each
cluster after K-means categorization. Fig. 8 (top three rows)
presents the visualized eigen features and the corresponding
velocity and fuel consumption errors obtained from different
SP selection strategies. All three experiments were derived
from data collected by the same vehicle along an identical
route, with different SP combinations producing distinct speed
and fuel consumption profiles. Comparison of the first and
third columns reveals a clear association between the fluctua-
tions in eigen features and the selected SPs. It can be observed
that selecting SPs using the DR strategy results in the small-
est deviations in speed and fuel consumption from the ground
truth, providing a more accurate representation of the vehicle
characteristics. During the real-world operation of NTM, the
DR strategy was employed, with a queue maintained for each
cluster to facilitate SP selection.

Crucially, the PSB module incorporates a redundancy
check that discards SPs exhibiting excessive overlap with
current samples of the same label, ensuring minimal dupli-
cation while maintaining category coverage. During training,



we further enhance robustness through a one-to-many data
augmentation strategy where the PSB module generates mul-
tiple distinct SP sets through repeated selection, enabling
the model to learn consistent intrinsic features across varied
SP combinations. The resulting NTM sample structure inte-
grates a normalized current state, optimally diverse SP set,
future engine power, and slope data as inputs, with corre-
sponding motion states and fuel consumption values serving
as ground truth—creating a comprehensive foundation for
accurate vehicle dynamics modeling.

5.4.4 Eigen Block

The Eigen Block (EB) represents a critical innovation within
our neural architecture, designed to address the simultaneous
processing of historical vehicle data and real-time operational
information. We have developed a sophisticated two-stage neu-
ral network model comprising the Eigen Block and Prediction
Block to achieve this integration. During the training phase,
the EB is engineered to discern and learn complex mapping
relationships that capture both intrinsic vehicle characteris-
tics and extrinsic environmental factors from the dataset. This
capability enables the EB during inference to parse and extract
essential eigen features from the Sample Primitives (SPs) that
represent the vehicle’s current operational state. Our imple-
mentation leverages a Transformer-based encoder-decoder
architecture for the EB, specifically chosen for its exceptional
ability to process sequential data through multi-head attention
mechanisms. The multi-head self-attention (MHSA) and multi-
head cross-attention (MHCA) components work in concert to
effectively distill the intrinsic vehicle characteristics embedded
within the SP set. This process can be formally represented as

ctx = fpg (MHCA(Z, MHSA(Cg))), 3)
where Z denotes learnable queries of the transformer model,
Cgs represents the SP set, and the resulting eigen context ctx €
RNe constitutes a one-dimensional feature vector that com-
prehensively encodes the vehicle’s intrinsic properties. This
innovative approach enables our system to generate a rich, con-
textualized representation that captures both persistent vehicle
characteristics and transient operational conditions, providing a
robust foundation for accurate prediction and control decisions
within the broader autonomous driving system.

Validation test of Eigen Block

Within the NTM framework, we hypothesize that the eigen fea-
tures generated by the EB effectively capture both the intrinsic
characteristics of the vehicle and external environmental influ-
ences. To validate this premise and assess the efficacy of the
EB, we conducted a comprehensive analysis using the large-
scale truck dataset, employing the trained EB in conjunction
with various SP selection strategies within the PSB module.
The eigen features extracted from each sample were subse-
quently visualized to enable clear interpretation and detailed
analysis, as illustrated in Fig. 8. This experiment systemati-
cally evaluates the impact of diverse SP selection strategies,
vehicle types, and route configurations on the performance of
the EB, ensuring robustness across operational scenarios. As
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the vehicle progresses along its trajectory, the eigen features
dynamically evolve; to discern overarching patterns, we com-
puted the distance-based mean of these features for each trip.
The resulting profiles exhibit consistent trends across these
randomly selected trips, with a prominent peak observed at
index 36, while variations in specific dimensions reflect trip-
specific distinctions in eigen feature distributions, as depicted
in Fig. 11. For this test, the SP overlap threshold was set to zero,
meaning that for each sample, new SPs of a given class replace
existing ones in the construction of Cg; all eigen feature val-
ues were min-max normalized to a [0, 1] range for consistent
visualization. As shown in Fig. 9, eigen feature values corre-
late strongly with vehicle weight, while sensitivity analyses in
Fig. 10 confirm the stability of eigen context values, indicating
the EB’s ability to reliably encode input SPs and map vehicle
characteristics to specific output contexts. Although the eigen
context maintains overall uniformity throughout trips, observed
variations are attributable to fluctuating external environmen-
tal conditions. This consistent and interpretable eigen context
implicitly encapsulates critical vehicle parameters and histori-
cal data, thereby empowering the prediction module to generate
accurate, context-aware inferences and forecasts, underscoring
the novelty and practical impact of our approach for real-world
autonomous driving applications.

5.4.5 Prediction Block

The Prediction Block (PB) serves as the critical forecasting
component within our architecture, designed to infer the vehi-
cle’s future state across the next N, = 100 steps (equivalent
to 5 km) by holistically processing historical, current, and
anticipated trajectory information. To achieve this, we imple-
ment a Recurrent Neural Network (RNN) architecture that
simultaneously models both fuel consumption and dynamic
vehicle behavior, with each cell in the network correspond-
ing to a discrete 50-meter distance interval. This design
choice is strategically motivated by the RNN’s lightweight
computational footprint and superior efficiency in processing
sequential data, making it exceptionally suitable for deployment
on resource-constrained vehicle-mounted chips where opera-
tional efficiency is paramount. The core RNN cell is formally
modeled as:

[ai+1sFi+1] = fPB(ﬁi+1’0tx’ V?t’ei’0i+1)’ i € [09 Np_ 1] (4)

where F denotes the fuel consumption over a 50-meter inter-
val, a represents average acceleration, 6 is the road slope, P the
desired power, and v*' the segment’s end speed. A key innova-
tion in our approach is the incorporation of a physical constraint
to maintain realism in velocity predictions: if the computed
acceleration yields a negative velocity, we enforce a feasibility
condition via:

Vi, = \/max (0,2a;41As + (vSH)?), (5)
where As = 50 meters, thereby eliminating non-physical out-
comes and enhancing predictive robustness. This integrated
design enables NTM to generate comprehensive future state

projections, which are subsequently processed by NPM. The
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two-stage network architecture — featuring a complex, high-  and real-time performance. This novel partitioning ensures
parameter EB for feature extraction and a simpler, efficient PB  that our system achieves state-of-the-art predictive capabil-
for forecasting — not only provides strong interpretability and ity while maintaining the practicality required for in-vehicle
modularity but also allows for deployment at varying computa-  implementation.

tional frequencies, optimizing the trade-off between accuracy
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Fig. 11: Eigen context spatial profiles. Spatial averages of
the 64-dimensional eigen features are shown for four ran-
domly selected trips from the large-scale operational truck
dataset. Each value represents a distance-based average of the
corresponding feature dimension, illustrating variation across
journeys.

5.4.6 Training Details

EB and PB are trained using the Large-Scale-Detailed dataset,
from which a total of 1.77 million samples are extracted,
each containing future fuel consumption and speed values as
supervisory ground truth. Both networks are optimized using
the mean squared error (MSE) loss function. The models are
implemented in PyTorch and trained with the Adam optimizer,
incorporating a weight decay of 0.08 and a multi-step learning
rate scheduler initialized at 10~*. Training proceeds for 100
epochs with a batch size of 128, taking approximately 34 hours
to complete on a high-performance workstation equipped with
an Intel 19-13900KF CPU, an NVIDIA RTX 4090 GPU, and
128 GB of RAM.
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5.5 Neural Policy Module

NPM optimizes vehicle actions—including engine power,
speed, and fuel consumption — to minimize fuel usage under
time constraints. Unlike traditional PCC, which is limited to
short-distance optimization (typically a few kilometers) and
exhibits uncertain long-term performance, our approach uses
Reinforcement Learning (RL) to enable long-horizon plan-
ning while incorporating long-term rewards. PCC requires
multiple optimization iterations often constrained by real-time
computational limits, especially when using, leading to sub-
optimal results, whereas RL facilitates deeper optimization
through simulated environments, accelerating adaptation to
real-world conditions. Moreover, while NTM offers superior
modeling accuracy, its computational complexity challenges
real-time PCC optimization; RL efficiently handles these
complex models by continuously integrating environmental
feedback, enabling adaptive policy refinement. Consequently,
we integrate RL into our neural policy framework to achieve
a robust and scalable solution for fuel-efficient autonomous
driving

5.5.1 Reinforcement policy learning framework

The FEAD system formulates fuel-efficient driving as a rein-
forcement learning problem, where the autonomous truck
functions as an intelligent agent interacting with its environ-
ment, a novel approach that significantly advances traditional
control methodologies. Within this framework, the agent’s
decision-making process is governed by our NPM, which
generates control actions u € U based on comprehensive
observations 0 € O of the vehicle’s current state. The envi-
ronment (ENV) incorporates our NTM to achieve high-fidelity
simulation of vehicle dynamics and fuel consumption, creat-
ing a realistic training platform that accurately mirrors actual
truck behavior under diverse operating conditions. This inte-
gration represents a key innovation, as it enables the policy to
learn from physically accurate simulations while maintaining
computational feasibility for real-time deployment.

A particularly innovative aspect of our framework is the
strategic balance between prediction horizon and computa-
tional efficiency. Although NTM can predict vehicle behavior
over a 5 km horizon, NPM’s action horizon is deliberately
limited to 500 meters based on three critical considerations
that ensure practical implementation. First, accumulated speed
estimation errors over longer distances would compromise opti-
mization reliability. Second, longer horizons demand more
complex models that conflict with the limited computational
resources available in onboard systems. Third, downstream
control modules typically manage only 200-300 meter hori-
zons, making longer control sequences unnecessary in practice.
This intentional design enables effective optimization across
the full 5 km range through reward accumulation while
maintaining real-time performance required for deployment.

The NPM policy will be optimized to maximize accumu-
lated rewards over a 5 km horizon, aligning with our objective
to enhance fuel efficiency across operationally meaningful dis-
tances while respecting practical constraints, as formalized in
Equation 1.



Truck control action

An action represents the control decision made by the agent at
each step, determined by its current observation and policy. In
this work, each action is formulated as a sequence of desired
power commands P applied over the 500 m policy horizon.
Since the trajectory is discretized into 50 m segments, the action
comprises Ny, = 10 consecutive execution steps. Specifically,
the action at step k, denoted as u; € RN is defined as the
sequence Uy = [Pii1, Prya, ..., Pryn,], where each element
corresponds to the desired power command applied over one
50 m segment, collectively covering the full 500 m horizon.
In the simulation, a perfect-control setting is assumed, where
only one command Py is executed at each step.

Observation

An observation represents the integrated perception of the
agent’s internal state and external environmental information,
captured at each step k as a comprehensive vector ox =
{Ex,Cr, I, Vi} € RN corresponding to the spatial position
sk. The first component, Ex = ctx € R, encapsulates latent
features extracted from the encoder of NTM, with a fixed
dimension d. = 64 to ensure consistent representation of vehi-
cle dynamics. The second component, Cy = [6y, v‘}{‘],describes
the current vehicle state, where 6y denotes the average road
slope over a 50 m segment and vi‘ represents the vehicle’s speed

at the segment end. The third component, I, = 01’: € R, incor-
porates future road information derived from high-definition
maps, with each element encoding the average slope over
50m segments across a 5km horizon (Ny = 100). The final
component, Vx = [V, via“], integrates velocity-related data,
including the target speed vy and the historical average speed
viaSt. Collectively, these elements form a rich observational
vector with a total dimension of N, = 168, enabling the agent to
make informed decisions based on a holistic view of immediate

and anticipated conditions.

Environment

The environment defines the world in which the agent oper-
ates, including all elements and interaction rules. It receives the
agent’s action and returns observation of the updated state and
reward, formalized as 0y, 7(0x, ur) = ENV(0g, ur). We use
this environment to train NPM by generating training scenarios
from recorded data. As shown in Fig. 3, our data-driven NTM
accurately simulates vehicle fuel consumption and dynamics,
outperforming conventional BSFC maps and system identifi-
cation methods. Thus, the trained NTM serves as the fuel and
dynamics model within the environment. Using Equation 4
with observation o and action uy , we predict acceleration ay
and fuel consumption Fy . From the acceleration, we derive
viislt and v¢', . while slope information 6,1 and 6f | is mea-
sured from the scenario. These updated parameters are used to
construct 0x,1. The objective is to minimize fuel consumption
while meeting time constraints, adhering to speed limits, and
maintaining power stability. Accordingly, the reward function
is defined as:

F(Ok,llk) :robj+/llrtrg+/12rlim+/l3rreg’ (6)

where r°b = — ny:”l Fiin + BBiin 1s the primary objective

from Equation 1, "¢ = — ZNZUI max (0, vyg — vi‘m) penalizes

n
speeds below the target vy, , plim = —ZnN;‘l [max (0, vipin —

et et :
Vi) T max(0, v, — vmax)] enforces speed constraints, and

ree = — ¥ max (0, (Psn — Prsn—1)* — 6) promotes con-
trol smoothness by limiting power changes. The coefficients
A1, A2, A3 are tunable weights.

Policy training

We adopt NPM as the policy within our RL framework, training
it end-to-end in a closed-loop simulation using the soft actor-
critic algorithm [45, 46]. The training process jointly optimizes
a policy network NPM4 and two Q-value networks Q,, and
0 y,- The policy network defines a stochastic action distribution
74 (ug | of), with actions generated via the reparameterization
trick:

uy; = NPMy (x; 01), € ~ N(0, 1). @)

During deployment, actions are selected deterministically as
the mean of the learned distribution:

u; = NPMy(0x) = Bz, (-jop) [0k, )

representing the expected action under the trained policy. The
use of two Q-value networks helps mitigate overestimation bias
and improves training stability.

The policy network NPMy is implemented as a two-layer
multilayer perceptron (MLP). Its parameters ¢ are updated by
minimizing the loss:

Le(@)= B |alog(ms(NPMy(er:0r) | 00)) o
= 04 (06, NPMy (e 00) |

where D is the experience replay buffer and is used in gradient
steps and « is a temperature parameter that balances exploration
(via entropy) and exploitation (via reward), thereby regulat-
ing the stochasticity of the optimal policy. The Q-function
Qy(og,ur) = min(Qy,,Qy,) is computed as the minimum
of two three-layer MLP critics Qy, and Qy, to further guard
against overestimation. The Q-critics are trained by minimizing
the soft Bellman residual:

LQ(‘/’Z) = (0k I.E)~Z) (Qlﬂi(olwuk) - QW; (0k,llk))2 i€ {172}7

(10)
where the target value is given by:

Qy; (0r, ur) =r ok, wg)+

E | minQy:(0x+1, NPMy (€x+15 0k+1))
Ek~N lﬂ‘- !

-« log(ﬂ'zp(NPMqﬁ(ka 30k+1)[0k41)) |-

Here, l,bi, a,bé are the parameters of target networks, updated
periodically to stabilize training. The temperature parameter «



regulates the algorithm’s emphasis on entropy maximization
versus reward optimization. If « is too small, the algorithm
reduces to a standard Actor-Critic method, prioritizing reward
accumulation without sufficient exploration. Conversely, an
excessively large a causes the algorithm to focus solely
on maximizing entropy, disregarding environmental rewards
and compromising control performance. Thus, we adjust «
automatically using the loss

L(a) = @ I~ED [-log(my(-lo,)) +dim(w)]. (11

The RL algorithm outlined in Algorithm 1 alternates between
gathering experience from the environment using the current
policy and updating policy network NPM 4, the two value net-
works Q,, and the temperature parameter ¢ via stochastic
gradients computed from batches of size b = 256 sampled from
the replay buffer D.

Algorithm 1 RL training algorithm

Require: 1, Y2, ¢, @
Y =YYy <Y
D0
for each iteration do
for each environment step do
uy; = NPMy (er; 01), ex ~ N (0, 1),
0k+1, 7 (0k, uy) «— ENV(0x, u)
D — D U {(ox,ur, r(0k, ug), 0r41) }
end for
for each gradient step do
random select batch size b samples from D
compute V4L (), Vy, Lo (Y1), Vy,Lo(¥2), Vala
from the selected b samples
¢ —¢- /lﬂV¢Lﬂ(¢)
Vi — Y — /lQVwiLQ(lpi) fori € {1,2}
a — a—-AV,L(a)
Yl — 1+ (1 —1)y fori € {1,2}
end for
end for

To ensure alignment with the optimization objective
defined in Equation 1, we constructed 270 distinct simulation
environments, each representing a 5km route segment sys-
tematically extracted from 11 large-scale real-world driving
scenarios spanning approximately 50 km each. This compre-
hensive environmental configuration enables the policy to learn
optimal control strategies within the specified 5 km planning
horizon while ensuring exposure to diverse operational condi-
tions. The policy network undergoes training using the Adam
optimization algorithm with a learning rate of 1074,

5.5.2 Policy Test for NPM

We conducted a detailed comparison and visualization of the
strategies adopted by NPM and human drivers on Seg[5-25]
of the Laiwu route, aiming to elucidate the fine-grained advan-
tages of FEAD in local decision-making. Fig. 12 presents three
subplots corresponding to different strategy configurations: a,
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full trip with FEAD; b, uphill with the MD strategy and down-
hill with FEAD; and c, uphill with FEAD and downhill with
MD, In panels b and v, the power trajectories are constructed
by concatenating real data from FEAD and Driver-WT, while
the velocity and fuel consumption curves for all three subplots
are computed by NTM. Due to the variations in power profiles,
the mean velocities across the three cases differ. To enable a
fair fuel consumption comparison, we performed linear nor-
malization to align the mean velocities of all methods with that
of Driver-WT-3, and the corresponding power, speed, and fuel
consumptions are denoted as (SN).

As shown in the figure, during uphill driving, FEAD accel-
erates earlier than MD, effectively avoiding high-fuel-cost
compensations caused by insufficient power. At the hilltop and
in the subsequent flat or downhill sections, FEAD predomi-
nantly relies on inertial coasting, refraining from maintaining
a small throttle input, whereas MD tends to sustain minor
throttle engagement, leading to additional fuel consumption.
These behaviors arise from NTM’s precise modeling of vehi-
cle dynamics and fuel consumption characteristics, enabling
FEAD to optimize throttle engagement and release timing
with greater accuracy, thereby achieving higher fuel efficiency
within a single uphill-downhill cycle.

Under the condition of matched average speed, adopting
MD-uphill + FEAD-downhill reduces fuel usage by 0.07 L
(0.35 L/100 km); using FEAD-uphill + MD-downhill achieves
a reduction of 0.16 L (0.8 L/100 km); and employing FEAD
for both uphill and downhill yields the greatest improvement,
saving 0.33 L (1.65 L/100 km). These results demonstrate
that FEAD outperforms MD across both uphill and downhill
scenarios, and that the combined strategy achieves synergis-
tic fuel-saving effects beyond the linear sum of individual
gains—highlighting the global coordination emerging from
FEAD'’s local optimization capability.

5.6 The Optimal Control Baseline
5.6.1 Longitudinal Dynamics Model

Predictive Cruise Control (PCC) represents an advanced driv-
ing assistance system for autonomous trucks, designed to
optimize fuel efficiency and vehicle performance through antic-
ipatory road condition analysis. The core objective of PCC is
to maximize fuel efficiency during both ascent and descent
on graded terrains, necessitating a precise longitudinal behav-
ior prediction model for heavy-duty vehicles. Within the PCC
framework, accurate vehicle dynamics modeling is essential.
Considering road gradient, aerodynamic drag, and rolling resis-
tance, the longitudinal dynamics a = fp(P;m,c,cq) are
formulated through Newton’s second law as:

P; . Cd air AVZ
'r’n—v' —gsinf; — c,gcosf; — %,
if P; <0

a; = -
cp Py,
(12)

where m is the vehicle mass, a represents the vehicle’s acceler-
ation, c; is the driving resistance coefficient, cq is the air drag
coefficient, n is the engine power efficiency, g is the gravity
acceleration, p,i; is the air density, A is the front area of vehi-
cle, ¢y is the brake coeflicient. where m denotes vehicle mass, a

lfﬁ, >=0,
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Fig. 12: Policy test for NPM. Extended version of Fig. 4d, illustrating the complete power and speed profiles, and fuel consumption

deviations across Seg[5-25] for different methods.

represents acceleration, ¢, is the driving resistance coefficient,
cq is the aerodynamic drag coefficient, i is engine efficiency,
g is gravitational acceleration, p,;; is air density, A is vehicle
frontal area, and cy, is the brake coefficient. The critical param-
eters m, cr, and cq are estimated by system identification with
the Kalman Filter methodology described in [47].

The optimal control formulation for eco-cruising on vary-
ing slopes must simultaneously address fuel efficiency, timeli-
ness, and control smoothness. To enhance numerical stability
during optimization, we incorporate a regularization term
penalizing large power changes. Expanding upon Equation 1
and taking into account the vehicle’s dynamics, speed limits
and control limits, we formulate the complete optimal control
problem as:

n
. 2 2
pmn, D (e (Pi) +kpP) As + BB;
PhEL =]
st. Pi <P, i=1,....1,
Vmin(si) <v; < Vmax(si), i=0,...,n,
1 & (13)
;Zvi 2 Virg,
i=1
V0 = Vinit»
2 _ .2 .
Vi =vi+2a;As, i=0,...,n-1,

where viyi¢ denotes the initial speed and Pp,x the maximum
engine power. To ensure stable convergence and facilitate the
computation of an optimal solution, it is desirable for fr(P;) to
be continuous, differentiable, and convex. The BSFC map pro-
vided by the manufacturer is a discrete lookup table describing
the relationship among engine speed, torque, and fuel effi-
ciency. To enable optimization in a continuous engine power
space, the optimal fuel efficiency corresponding to each engine
power value is extracted from the BSFC map. The result-
ing discrete pairs of engine power and optimal fuel efficiency
are then fitted with a quartic polynomial, producing a smooth
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and continuous representation of fuel efficiency as a func-
tion of engine power. Consequently, fr(P;) is modeled as a
fourth-order polynomial with respect to P;.

20 °® — GT L 800
_ Bsrc £ 1997 E
< 154 £ - 600 =
=) T 900 1 )
] o I3
T 10 A \ & 800 - 400 S
I o A 2
L o5 §’ L 200 2

\ w700 1 [iT

0 o

T T T
10 20 20

Time [s] Time [s]

Fig. 13: Fuel consumption rate predicted by a BSFC map during
rapid transitions in vehicle operation, such as abrupt acceler-
ation or load changes. The BSFC model, typically calibrated
under steady-state conditions, may exhibit increased error (left)
during such dynamic events due to unaccounted engine tran-
sient effects in both engine speed and engine torques (right).

5.6.2 Predictive Cruise Control Optimizer

The original formulation in Equation 13 results in a nonlinear
optimization problem that is inherently challenging to solve
directly due to its nonconvex objective and nonlinear con-
straints. Such formulations typically face high computational
costs and convergence difficulties, making them unsuitable
for real-time or large-scale engineering applications. To over-
come this limitation, we reformulate the problem as a quadratic
programming (QP) problem. The key insight involves first
discretizing the continuous-time vehicle dynamics into a
finite horizon, yielding the discretized optimization objec-
tive function J(P) = YL, (fr(P;) + k,P?)As + BB2. Next,
we locally approximate the nonlinear objective function and
associated constraints through linearization and second-order
Taylor expansion, specifically J(P + €) ~ J(P) + VJ(P)Te +
%ETVZJ (P)e, resulting in a convex quadratic cost function



subject to linear equality and inequality constraints. This
transformation produces a sequence of QP subproblems. To
solve these efficiently, we employ the primal-dual interior-
point method (IPM) [48], which is particularly suited for
convex quadratic programming as it leverages the problem
structure to achieve polynomial-time complexity and stable
convergence. By iteratively solving these QP subproblems with
IPM, the method converges to an approximate optimal solution
while maintaining low computational complexity and numer-
ical stability. This approach effectively balances accuracy and
efficiency, ensuring that the optimized PCC strategy can be
reliably deployed in real-world operational settings.

5.6.3 Vehicle Coastdown Experiment

Accurate fuel consumption control within the PCC framework
critically depends on the precise values of the coefficients c,
and c4 in Equation (12). To determine these road load param-
eters for a fully loaded truck weighing 42,000 kg — consistent
with the vehicle used in our FEAD experiments — we conducted
a series of vehicle coastdown tests following the standardized
procedures outlined in [49] and [50]. The experimental pro-
cess began by warming up the test truck through a 30-minute
driving period at 60 km/h to stabilize tire and driveline temper-
atures. The truck was then accelerated to 90 km/h, stabilized
at this speed, and the accelerator pedal was released to idle
before shifting the transmission into neutral. Data recording
captured the speed versus distance coastdown curve until the
truck came to a complete stop, and each run was repeated in
the opposite direction to cancel out the effects of headwinds.
Given the requirement for a long, constant-grade road segment
to accommodate a full 90-0 km/h coastdown and the limita-
tions of available test sites, we employed a split-run technique,
dividing each coastdown into four phases: 87-70 km/h, 70-55
km/h, 55-30 km/h, and 30-0 km/h, as illustrated in Fig. 14a. To
estimate ¢, and ¢4 from the collected data, we formulated the
energy equation during coasting as

1 15 15
Em(v§ ) +/ ¢ mgy dt+/ cqAVidr=0, (14
1 1

where v| and v, represent the longitudinal speeds at times ?;
and 1, , respectively. This equation was rewritten in linear form
as

[Hi Ha] [er ca]” =7, (15)

with Hy = fr]t2 mgvdt , Hy = ftllz Avidr,and Y = —%(m +
Meot) (V3 — v?), transforming the parameter estimation into a
multiple linear regression problem. Using the RANSAC algo-
rithm [51] with a minimum sample size of 2, a relative residual
threshold of 5%, and a maximum of 2000 iterations and impos-
ing bounds of [0.25,0.50] for ¢4 and [-0.01, 0.05] for ¢, we
fitted the data from 8 sample points (two tests in opposite direc-
tions, each with four split runs). The results, shown in Fig. 14b,
yielded estimated values of ¢; = 0.4037 and ¢, = 0.0033 ,
with the RANSAC algorithm achieving a 75% inlier rate. These
parameters are essential for optimizing fuel economy in the
PCC system and are utilized throughout this study.
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Fig. 14: Vehicle coastdown experiment. a Speed curve for the
coastdown test. b Data fitting result.

5.7 The Low-level Controller

The acceleration sequence predicted by NTM, based on the
engine power sequence generated by NPM, is transformed into
executable vehicle control commands. However, the physical
limitations of common truck actuators lead to discontinuities
in the mapping between desired and executed accelerations. To
address this, the Branch and Bound algorithm [52] is integrated
with the MPC framework [53] to compute the optimal control
acceleration sequence. Within this framework, the MPC for-
mulation explicitly enforces constraints on acceleration, jerk,
braking force, and vehicle speed. When the acceleration a;
exceeds the coasting acceleration, the required driving force
is calculated according to Newton’s second law, from which
the corresponding torque is derived. Based on the pedal map
provided by the manufacturer, the torque is then converted
into a throttle opening. Conversely, when the acceleration a;
falls below the braking threshold (-0.05 m/ s2), a deceleration
command is directly issued.

5.8 Evaluation via Simulation

Initializer

Fig. 15: Simulation pipeline. Initializer initializes vehicle state,
control signals, and map data. Predictor estimates speed and
fuel consumption using current state and control inputs. Truck
Manager updates vehicle state based on predicted dynamics,
and Scenario Manager handles map and scenario-related data.
Optimizer computes optimal control signals for the next simu-
lation step.

To train and evaluate optimization methods, we constructed
a universal simulation framework (see Fig. 15). During ini-
tialization, the simulator extracts the desired power sequence
P, vehicle state Z, and the most recent 5 km slope informa-
tion @ from each scenario. A predictor module then estimates
speed and fuel consumption based on these inputs. The truck
manager updates the vehicle state to Z*, while the scenario
manager computes an updated slope sequence 6 from the
map data. Finally, the optimizer determines the optimal engine
power based on Z* and the terrain profile. All simulations
were executed on the high-performance workstation previously
described.



In the FEAD configuration, the state vector Z
[ctx,a,v, F,s] includes eigen context, acceleration, speed,
fuel consumption, and longitudinal position. The predictor
employs NTM to compute updated acceleration a* and fuel
consumption F*, and the truck manager updates the state
to Z* = [ctx,a*,v*,F*, s*]. NPM, serving as the opti-
mizer, computes the optimized engine power P* for the next
step. For conventional methods, the state is defined as Z =
[m,c,,cq,a,v, F,s], encompassing mass, resistance coeffi-
cients, and kinematic variables. The predictor uses Equation 12
and Equation 13 to update acceleration and fuel consumption,
respectively, and the truck manager produces the updated state
Z*. The PCC optimizer then generates the next engine power
command.
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Fig. 16: Closed-loop simulation validation on the Laiwu route
during driver command replay. The top subplot shows elevation
profile and engine power input; the middle and bottom subplots
compare actual (labeled Driver) and simulated (labeled Sim)
speed profiles and fuel consumption rates, respectively.

Simulation accuracy is critical for reliable evaluation. We
validated the FEAD closed-loop simulation on the Laiwu test
route (Fig. 16), where inputting road gradient and engine
power yielded simulated speed and fuel consumption val-
ues. Although some variance occurred between simulated and
actual speeds (R> = 0.86), the results were highly aligned
in most cases. Fuel consumption rates were nearly identi-
cal to actual values (R?> = 0.99), confirming the simulation’s
accuracy.

5.8.1 Ablation study

To evaluate the effectiveness of the objective, dynamics,
and policy modules, we extracted 10 scenarios from the
Large-Scale-Detailed dataset and 1 scenario from the Laiwu-
Detailed(LWD) dataset, resulting in a total of 11 test scenarios,
each approximately 52km in length. We implemented six
configurations of the core modules, in which the objective,
dynamics, and policy components were realized using differ-
ent methods (see Table 2). These configurations were designed
to analyze the contribution of each component to the overall
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Exp. Objective  Dynamics Policy f:’/gs']s"eed 3:2;’32’6 E_‘ﬁ'ofkr;‘n‘]"'
1 BSFCmap Sl PCC 2023 J 26.30
2 BSFCmap Sl NPM  19.92 J 2533
3 NTM si NPM 2043 J 24.04
4 BSFCmap NTM NPM 2058 J 23.96
5 NTM NTM PCC 2067 J 2330
6 NTM NTM NPM  20.87 J 22.22

Table 2: Ablation study of FEAM modules. Objectives,
Dynamics, and Policy indicate the modules used in each
experimental configuration. Objectives correspond to either
the BSFC map or the NTM-based fuel estimator; Dynamics
refer to either the system identification model or NTM-
based dynamics model; and Policy represents either the
rule-based Predictive Cruise Control (PCC) or the learned
NPM policy. Avg. Speed [m/s] denotes the average vehi-
cle speed, with values > 19.25 m/s satisfying the delivery
time constraint. Delivery deadline indicates whether the
time requirement is met (v'). Fuel csmpt. [L/100 km] refers
to the average fuel consumption per 100km. All results
are averaged over 11 simulation environments, each span-
ning approximately 52 km. Among all configurations, Exp.
6 (NTM+NTM+NPM) achieves the best fuel-saving perfor-
mance.

performance of the operational speed planning system. Specif-
ically, the objective module was implemented using either a
fourth-order polynomial fitting of the BSFC map or NTM,;
the dynamics module employed either system identification or
NTM; and the policy module adopted either NPM or PCC. The
implementations of the BSFC map, system identification, and
PCC are described in Sec. 5.6. Each configuration represents a
hybrid integration of model-based and data-driven approaches.

In terms of implementation, Exp. 1 was optimized using
CasADi, whereas Exp. 2, 3, 4, and 6 utilized pre-trained NPM
models trained with the soft-SAC algorithm on the same sce-
nario set as NTM+NPM. Exp. 5 was optimized using the Adam
algorithm. All models were evaluated under identical NTM-
based simulation environments comprising 11 scenarios, each
approximately 50km in length.

By comparing Exp. 1 and Exp. 6 in Table 2, our FEAD
system with NTM and NPM could reduce fuel consumption by
16.28% (4.28 L/100 km) compared to PCC. Based on the pre-
ceding discussion, NTM demonstrates greater fuel efficiency
in both objectives and dynamics compared to the conventional
fuel-saving pipeline. Comparing Exp. 2&3 with Exp. 2&4
demonstrates that the reduction in fuel consumption achieved
by replacing the dynamics module is more pronounced. Upon
comparing Exp. 1 with Exp. 2 in Table 2, it is observed that
replacing PCC with NPM in the policy formulation, while
keeping the objectives and dynamics constant, still manages to
enhance average speed while reducing fuel consumption. Fur-
ther employing NTM to replace the objectives and dynamics
modules, the fuel-saving effect of NPM is not nullified; on the
contrary, the overall system can achieve an additional reduc-
tion in fuel consumption of 3.32 /100 km by comparing Exp.
2 and Exp. 6 in Table 2.



The results show that introducing data-driven estimation
modules (NTM) and learned policies (NPM) consistently
improve fuel efficiency while maintaining travel time. In par-
ticular, the fully learned configuration (NTM+NTM+NPM)
achieves the best overall performance, indicating the advantage
of joint optimization between perception, dynamics modeling,
and policy learning.

5.8.2 Controlled open-road simulation

We compared NPM against PCC, a method recognized for its
superior control performance in recent studies. PCC formulates
the fuel-optimal control problem in real time by minimizing
consumption along a given altitude profile derived from high-
definition mapping data while satisfying temporal constraints.
This process generates an optimized speed trajectory and com-
mand sequence to enhance efficiency. However, as a method
grounded in optimal control theory, PCC relies on an accu-
rate quantitative model of the underlying dynamics, which
depends heavily on explicit environmental modeling. In prac-
tice, available environmental information is often limited to
local regions, constraining PCC to locally optimal solutions and
hindering its ability to achieve global optimality. In contrast,
NPM leverages reinforcement learning (RL) by incorporat-
ing long-term rewards into the objective function, enabling
the discovery of control strategies that may exhibit subopti-
mal short-term performance but yield greater fuel savings over
extended distances.

To evaluate both approaches, we conducted tests on the 52
km Laiwu route. For a fair comparison, the PCC policy was
computed using the BSFC map for fuel estimation and Sys-
tem Identification (System ID) for dynamics modeling, and
the NPM policy was computed under the same modeling con-
straints. When comparing the fuel consumption of the resulting
PCC and NPM policies, we used NTM as the evaluation metric
due to its superior predictive accuracy (Fig. 3). The PCC pol-
icy recorded a fuel consumption of 27.76 L/100 km, while the
NPM policy achieved a lower consumption of 25.91 L/100 km.
As shown in Fig. 17, although NPM initially exhibited higher
fuel consumption than PCC, its relative advantage grew with
mileage, underscoring its capacity for sustained optimization
over long hauls.

The PCC framework requires solving a complex, nonlinear,
and nonconvex optimization problem that integrates vehicle
dynamics, fuel efficiency, and speed constraints. This typically
necessitates iterative numerical methods to approximate opti-
mal solutions. However, real-time decision-making imposes
strict computational limits, forcing a trade-off between solu-
tion accuracy and responsiveness. We analyzed the impact of
iteration count on PCC’s performance (Fig. 18a), measuring
both fuel consumption and computation time. Initially, PCC’s
fuel consumption decreased significantly as the number of
iterations increased, stabilizing after approximately 25 iter-
ations—indicating convergence. However, computation time
grew linearly with the iteration count. In real-world appli-
cations, the iteration limit is typically restricted to 15 due
to runtime constraints, meaning optimization may terminate
before full convergence. In contrast, NPM achieves lower
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Fig. 17: Simulation-based comparison of speed and fuel con-
sumption profiles between NPM and PCC on the Laiwu
test route. The first subplot shows elevation and road slope
variations, with orange (6 > 0.01) and blue (6 < —0.01) back-
grounds indicating uphill and downhill segments. The second
and third subplots display average speed and fuel consumption
per slope section: solid blue (NPM) and dashed gray (PCC)
lines represent actual values (thin) and normalized segment
averages (thick) where normalization is performed by dividing
actual values by road gradient to enable cross-slope com-
parison. Green/red rectangles highlight sections where NPM
achieves higher/lower fuel efficiency relative to PCC. The final
subplot shows historical average speed deviations (green/red:
NPM faster/slower) and cumulative fuel consumption differ-
ences (blue/orange: NPM lower/higher).

overall fuel consumption without iterative computation dur-
ing inference, drastically reducing runtime and highlighting its
suitability for real-time deployment (Fig. 18a).

Although incorporating NTM into PCC has the potential to
improve fuel modeling accuracy (Fig. 3), it also introduces a
more extensive parameter space, which increases the problem’s
nonlinearity and nonconvexity. This amplifies the computa-
tional burden: while the original PCC (using BSFC and System
ID) converges rapidly, PCC with NTM exhibits a slower con-
vergence rate. As shown in Fig. 18b, the computational time
required for 15 iterations of the original PCC is comparable to
that for 10 iterations of PCC with NTM. Consequently, under
real-time constraints, PCC with NTM is limited to just 10 iter-
ations —a point at which its fuel efficiency is actually inferior to
that of the original PCC after 15 iterations. Conversely, NPM
with NTM achieves further reductions in fuel consumption
without increasing computational complexity during inference.
This combination delivers superior optimization performance
while maintaining the runtime efficiency required for practical
deployment.
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5.9 Large-Scale Evaluation

To rigorously evaluate the fuel-saving potential of the FEAD
system under diverse, real-world conditions, we deployed the
system across a fleet of more than 800 vehicles and conducted
an extensive eight-month evaluation from January 1 to August
26, 2024. This large-scale implementation accumulated a total
driving distance of 50.17 million kilometers with participa-
tion from over 1,000 professional drivers. To establish a robust
performance baseline, drivers periodically assumed manual
control of the vehicles, resulting in 15.96 million kilome-
ters (31.81% of the total distance) driven manually and 34.21
million kilometers (68.19% of the total) under autonomous
control using the FEAD system. Our analysis revealed that
the FEAD system achieved an average fuel consumption of
23.44 L/100 km in autonomous driving (AD) mode, compared
to 25.45 L/100 km under manual driving (MD), yielding an
average fuel reduction of 2.01 L/100 km. Extrapolating this
fuel reduction rate to the entire accumulated distance indi-
cates that fully autonomous operation would have conserved
1 million liters of diesel and mitigated over 2,700 metric tons
of CO, emissions [54]. Projecting these results to the U.S.
heavy-duty truck fleet, which traveled 526 billion kilometers in
2021 [55], widespread adoption of autonomous driving could
achieve annual fuel savings of 10.4 billion liters and reduce
CO; emissions by more than 28 million metric tons.

Data analysis basis

Conventional synchronized fleet testing, which requires two
trucks to operate in parallel under aligned conditions to
enable precise fuel consumption comparison, is infeasible for
large-scale evaluation scenarios. To ensure a fair and robust
comparison of fuel efficiency between autonomous driving
(AD) and manual driving (MD), we developed a compre-
hensive data processing and analysis methodology that aligns
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data across three critical dimensions: road conditions, vehicle-
related variations (such as payload per trip), and environmental
variations (including traffic flow and weather conditions).
Given that comparisons must be conducted on identical road
sections to ensure consistency in slope, surface friction, and
other factors, we adopted a geo-spatial data organization
approach, partitioning the entire test region into 4.9 km X
4.9 km geo-tiles. During testing, driving mode (AD or MD),
instantaneous fuel consumption, GPS location, vehicle speed,
and perception results were recorded at 1-second intervals and
uploaded in real-time via a 4G network, with data subsequently
grouped by geo-tile. Each geo-tile may contain bidirectional
highway sections or multiple routes; data points from the
same route and direction are defined as a comparable section,
and each section can comprise multiple trips (referred to as
section samples). A section sample is labeled as AD if over
95% of its mileage was driven autonomously and as MD if
over 95% was driven manually. Environmental data —including
temperature, wind speed, and precipitation — for each section
sample were obtained through a commercial web service using
timestamp and GPS coordinates and bound to the sample for
integrated analysis. This structured approach enabled the con-
struction of 17,320 valid geo-tiles with 34,170 unique sections,
corresponding to 5.35 million accumulated section samples
under AD mode (covering 26.53 million kilometers) and 2.17
million samples under MD mode (covering 10.91 million kilo-
meters), ensuring a statistically robust and environmentally
contextualized comparison.

Operational condition statistical analysis

As emphasized previously, conducting fuel consumption com-
parisons on identical road sections — ensuring consistency in
slope, surface friction, and other geometric factors — is funda-
mental to a fair evaluation between autonomous driving (AD)
and manual driving (MD). We therefore began by analyzing the
road section distribution under both modes across our large-
scale dataset. The geographic density distributions for AD and
MD, illustrated in Fig. 20, exhibit highly similar spatial pat-
terns, indicating that road-related variables were effectively
controlled in our comparison. This alignment confirms that
any observed differences in fuel efficiency are attributable to
driving mode rather than infrastructural variations.

Beyond road conditions, we extended our analysis to
vehicle load and environmental factors, extracting seven oper-
ational features to represent driving conditions: payload, wind
speed, temperature, proportion of slippery road surfaces, pro-
portion of snowy conditions, proportion of rainy conditions,
and proportion of daytime driving. To quantify the distribu-
tional similarity of these features between AD and MD, we
employed the Jensen-Shannon (JS) divergence, which ranges
from O (identical distributions) to 1 (maximally dissimilar).
As demonstrated in Fig. 21, the JS divergence values decrease
consistently with increasing data volume, indicating that
operational conditions—including payload and environmental
factors—converge toward similarity at scale. This convergence
ensures that these variables exert negligible influence on the
fairness of fuel consumption comparisons between AD and
MD in our large-scale evaluation.
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Fuel efficiency analysis: direct comparison

For fuel efficiency analysis, we adopted a direct road section-
wise comparison approach. Each road section’s fuel consump-
tion was computed as the average across all corresponding AD
or MD road section samples. To ensure statistical reliability
and minimize outlier effects from anomalous operating condi-
tions, we included only road sections with at least two samples
for both AD and MD modes. Aggregating results across all
valid road sections, we found that FEAD achieved an average
fuel consumption of 24.27 L/100 km in autonomous mode,
compared to 25.74 L/100 km under manual driving, yielding a
reduction of 1.47 L/100 km (5.71%). This result underscores
the efficacy of autonomous systems in enhancing fuel economy
under real-world conditions.

Fuel efficiency analysis: difference-in-differences

To address the potential confounding effects of drivers’
individual styles on fuel consumption, we implemented a
difference-in-differences (DID) approach to isolate the impact
of driving mode (autonomous driving, AD, versus manual driv-
ing, MD). In this design, vehicle V switches from manual to
autonomous operation between two time periods, while vehi-
cle W maintains manual driving throughout as a control. Fuel
consumption was measured for vehicle V under manual oper-
ation in period #; (in road section R;) and under autonomous
operation in period f, (in road section R,), with vehicle W
driven manually in both periods under identical regional con-
ditions (in road sections R; and R;) to control for external
factors like weather and terrain. Denoting fuel consumption as
Fy, and Fy, for vehicle V, and Fw, and Fy, for vehicle W,
the DID estimator is computed as (Fy, — Fy,) — (Fw, — Fw,),
which subtracts changes under consistent manual driving from
the treated vehicle’s changes to isolate the mode-switch effect.
Based on 7,206,989 sample pairs (6.94% of the full dataset)
identified, results showed that AD reduced fuel consumption by
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an average of 1.57 L/100 km relative to MD, representing the
pure effect after adjusting for temporal and regional variations.

Fuel efficiency analysis: regression

Fuel consumption is influenced not only by driver behavior
but also by a range of external factors, including payload,
road conditions, topography, ambient temperature, and wind.
To ensure a valid comparison between autonomous driving
(AD) and manual driving (MD), it is essential to control for
these boundary conditions. While the difference-in-differences
(DID) approach can partially address confounding variables,
it relies on a limited subset of comparable samples — approx-
imately 6.94% of the full dataset — which may constrain
the representativeness of the results. To overcome this lim-
itation, we adopted CatBoost, a machine learning algorithm
designed for high-precision modeling in complex, heteroge-
neous datasets [44]. CatBoost utilizes a gradient boosting
framework that integrates multiple weak learners to achieve
robust nonlinear prediction capabilities. It excels in handling
categorical variables through target encoding, which trans-
forms discrete inputs into continuous representations, and
reduces computational complexity and model bias via sym-
metric decision trees (oblivious trees) and an ordered boosting
mechanism.

Due to divergent driving strategies, AD and MD can exhibit
varying fuel consumption even at identical speeds (as illus-
trated in Fig. 12). In the large-scale dataset, data aggregation
over 5 km intervals was necessary due to precision constraints,
but this approach may obscure strategy-level details. To address
this, we conducted separate fuel consumption regressions for
AD and MD. Samples with an AD percentage exceeding 95%
were used to train the CatBoost model for AD, while those with
an AD percentage below 5% were used for MD. The AD model
achieved a mean error of 0.015 L/100 km (0.06% of the mean),
whereas the MD model had an error of 0.44 L/100 km (1.73%).
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We assessed the consistency between predicted and observed
values using the Spearman rank correlation coefficient [56],
which ranges from -1 (inverse correlation) to 1 (perfect corre-
lation). The AD model yielded a correlation of p; = 0.92, and
the MD model p; = 0.80, indicating strong alignment in rela-
tive fuel rankings. The CatBoost models predicted average fuel
consumption of 23.62 L/100 km for AD and 24.98 L/100 km
for MD, resulting in a saving of 1.36 L/100 km (5.44%) under
autonomous operation. Regional differences further support
AD’s superiority, as shown in Fig. 20b, where AD consistently
outperforms MD in fuel efficiency across various areas.

Further data mining and analysis

We assessed the performance of AD relative to MD on both flat
and gradient roads within the large-scale dataset. Road sections
were classified as “flat” if the proportion of flat-road coverage
exceeded 95%, and as “gradient” if this proportion fell below
5%. Under these criteria, AD consistently demonstrated supe-
rior fuel efficiency, achieving a reduction of 1.90 L/100 km on
flat roads and 1.64 L/100 km on gradient roads, with an average
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fuel saving of 1.68 L/100 km across all road sections. Further
analysis across a continuous range of flat-road coverage ratios
revealed a statistically significant monotonic trend: the rela-
tive fuel efficiency advantage of AD over MD increased with
the proportion of flat road (see Fig. 19b). This trend suggests
that AD is better equipped to capitalize on reduced variability
and resistance associated with flatter road profiles, likely due
to its more accurate resistance modeling and adaptive throt-
tle control, even when high-level driving strategies are similar
between AD and MD.

Across all months, AD consistently maintained lower fuel
consumption than MD (see Fig. 19c), with peak consump-
tion occurring in February, attributable to lower temperatures.
When temperatures ranged from —5°C to 15°C, fuel consump-
tion decreased substantially with rising temperatures; however,
in the 15°C to 35°C range, the effect of temperature on fuel
usage was markedly attenuated (see Fig. 19d). Throughout
the full temperature interval from —-5°C to 35°C, AD exhib-
ited superior fuel efficiency, and its consumption remained
more stable than MD under extreme thermal conditions (see
Fig. 19e). Temperature influences tire rubber hardness, tire
pressure, and tire-road contact area, thereby affecting rolling
resistance, while temperature-induced variations in air density
alter aerodynamic drag. The enhanced accuracy of AD’s resis-
tance model in predicting these factors likely contributes to its
improved fuel economy.

Under adverse weather conditions, AD achieved signif-
icantly lower fuel consumption: 25.09 L/100 km in rainy
conditions (compared to MD’s 26.57 L/100 km) and 26.76
L/100 km in snowy conditions (compared to MD’s 29.45 /100
km), when the proportion of rainy or snowy days exceeded
95% (see Fig. 19f). This improvement is attributed to AD’s
precise speed control and avoidance of abrupt acceleration and
braking, whereas human drivers often make frequent speed
adjustments due to caution or inexperience, increasing fuel



consumption. Braking energy loss was also evaluated, formu-
lated as Eprake = /(acoast(t) = Qiocal (1)) - m - v(t) dt, where
Evrake is the total braking energy loss in joules, dcoqst(f) iS
the natural acceleration during coasting, @jocq1(?) is the actual
acceleration, m is vehicle mass, v(¢) is speed, and dt is the time
differential. AD’s braking losses were 1.20 kWh per 100 km
in rain and 0.52 kWh per 100 km in snow, compared to MD’s
losses of 2.46 kWh and 2.12 kWh, respectively. These reduc-
tions are statistically significant, indicating that AD dissipates
less kinetic energy through braking and leverages its accurate
resistance prediction model to conserve fuel more effectively
under rainy and snowy conditions. Overall, AD achieves lower
fuel consumption and braking energy loss, highlighting the
effectiveness of its advanced control models.
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