

Supplementary material: Controlling for background genetic effects using polygenic scores improves the power of genome-wide association studies

September 3, 2021

1 Theory

2 The following supplement gives more technical arguments that conditioning on a poly-
3 genic gene score, that is constructed from SNPs on off-target chromosomes, selected
4 for significance of association with the outcome, improves statistical power while con-
5 serving type I error in a standard linear mixed model. To simplify arguments, we will
6 compare the two approaches fastGWA and fastGWA-PGS. The argument will be in
7 3 stages. First, we derive an expression for the variance of the association estimate
8 when the PGS is not adjusted for. Second, we derive an expression for the variance
9 of the association estimate in the PGS adjusted model, under the assumption that the
10 genetic and environmental residuals remain independent of the target SNP genotype
11 conditional on the PGS - importantly, this independence condition also implies that the
12 association parameter being estimated is the same in the models with and without ad-
13 justment for PGS. This PGS-adjusted association will be seen to have smaller variance
14 than the corresponding estimator from the unadjusted model. Finally, we argue this in-
15 dependence condition (of the residuals in the PGS-adjusted model and SNP genotype)
16 is approximately true assuming that the PGS is statistically independent of the selected

17 SNP. In practice, the PGS should be approximately independent of the selected SNP
 18 under the null hypothesis of no causal association at the target SNP, since the off-target
 19 SNPs that constitute the polygenic score are selected independently and are on differing
 20 chromosomes (that is they are not in LD with the target SNP and there is no-collider
 21 bias between the target SNPs and off-target SNPs since the null hypothesis is true).
 22 This proves the conservation of type I error. Under the alternative hypothesis that the
 23 target SNP has a causal association with the outcome, collider bias might result in some
 24 correlation between the PGS and target SNP genotype; however, the extent of this cor-
 25 relation is likely extremely weak when there are a large number of variants that are
 26 associated with the trait in question, and unlikely to invalidate the following argument.
 27 We first list the assumptions and notation we will use for the remainder of the
 28 argument.

29 **Assumptions**

- 30 • Let X correspond to the standardized SNP genotype at a particular location
- 31 • Without loss of generality, assume that $Var(X) = 1$ and $E(X) = 0$ (that is if X^*
 32 is the original genotype data, $X = (X^* - E(X^*))/SD(X^*)$)
- 33 • Similarly, the outcome Y is standardized, so that $E(Y) = 0$ and $Var(Y) = 1$
- 34 • Data collected on outcome, Y , target SNP X , and offtarget genetic SNPs, G_1, \dots, G_K
 35 for samples $i = 1 \dots N$
- 36 • The estimated LOCO polygenic score, $\hat{P} = \sum_{k \in \hat{S}} \hat{\beta}_k G_k$, constructed over SNPs in
 37 the selection set \hat{S} . Again SNP variables G_k for $k \in S$ are standardized to have
 38 mean 0, variance 1. By construction, \hat{P} has expected value 0. We assume that $\hat{\beta}_k$
 39 are scaled so that the empirical variance of \hat{P} over samples $i \leq N$ is 1.
- 40 • Finally, we consider the LOCO polygenic score P that corresponds to SNPs in S
 41 but weighted according to their "true" associations β_k , $P = \sum_{k \in \hat{S}} \beta_k G_k$

42 • Subscript notation. i and j refer to individuals $i, j \leq N$; $k \leq K$ refers to genetic
 43 location

44 **Variance of $\hat{\beta}$ in fastGWA model**

45 The fastGWA model takes the form:

$$Y = \beta X + g^{(0)} + \varepsilon^{(0)} \quad (1)$$

46 where $Var(\varepsilon_1^{(0)}, \dots, \varepsilon_N^{(0)}) = \sigma_0^2 I$ and $Var(\mathbf{g}^{(0)}) = Var(g_1^{(0)}, \dots, g_N^{(0)}) = \Pi \tau_0^2$, where the fam-
 47 ily matrix Π is assumed known (or can be estimated using the original genotypes). The
 48 overall variance matrix of $Var(\mathbf{Y}) = (Y_1, \dots, Y_N)$ in (1) accounting for both the envi-
 49 ronmental variance and genetic random effect is $V = \sigma_0^2 I + \Pi \tau_0^2$. Assuming consistent
 50 REML estimates, $\hat{\tau}_0$ and $\hat{\sigma}_0$, of τ_0 and σ_0 , estimated by fastGWA, fastGWA estimates
 51 β by generalized least squares:

$$\hat{\beta} = \mathbf{X}' \hat{V}^{-1} \mathbf{Y}$$

52 Since, $\hat{\beta}$ is computed using generalized least squares, it is easily shown that:

$$Var(\hat{\beta}) = (\mathbf{X}' \hat{V}^{-1} \mathbf{X})^{-1}$$

53 with \mathbf{X} being the vector of the target SNP over $i = 1, \dots, N$

54 Henceforth, we will assume that estimation error in the estimated variance com-
 55 ponents: $\hat{\sigma}_0$ and $\hat{\tau}_0$ is negligible, so can effectively leave out the hat-notation when
 56 referring to variance components.

57 To examine the effect of the extent of family correlation structure on $Var(\hat{\beta})$ in a
 58 simplistic setting, we will assume that Π has a compound symmetry structure (implying
 59 that all individuals are equally related. That is

$$\Pi = \rho \mathbf{J} + (1 - \rho) \mathbf{I}$$

60 where J is the $N \times N$ matrix of 1's. That is Π has elements $-1 \leq \rho \leq 1$ on its off
 61 diagonals and 1 on its diagonals. It follows that the matrix V has also a compound
 62 symmetry form:

$$V = \rho \tau_0^2 \mathbf{J} + ((1 - \rho) \tau_0^2 + \sigma_0^2) \mathbf{I}$$

63 The inverse of V (if it exists) can be calculated analytically and is equal to:

$$V^{-1} = \mathbf{I} / ((1 - \rho) \tau_0^2 + \sigma_0^2) - \mathbf{J} \frac{\rho \tau_0^2}{((1 - \rho) \tau_0^2 + \sigma_0^2)((1 - \rho) \tau_0^2 + \sigma_0^2 + N\rho \tau_0^2)}$$

It follows that:

$$Var(\hat{\beta}) = (\mathbf{X}' \hat{V}^{-1} \mathbf{X})^{-1} = \left[\frac{\sum_{i \leq N} X_i^2}{(1 - \rho) \tau_0^2 + \sigma_0^2} - \frac{\sum_{i, j \leq N} X_i X_j \rho \tau_0^2}{((1 - \rho) \tau_0^2 + \sigma_0^2)((1 - \rho) \tau_0^2 + \sigma_0^2 + N\rho \tau_0^2)} \right]^{-1}$$

64 Now, noting that $E(X_i^2) = 1$ and assuming that $E(X_i X_j) = \rho$, the genetic correlation,
 65 for large N one can show that the above is approximately equal to

$$Var(\hat{\beta}) = \frac{\sigma_0^2 + (1 - \rho) \tau_0^2}{N(1 - \rho)} \tag{2}$$

66 indicating that $Var(\hat{\beta})$ is smallest when fastGWA is run on unrelated individuals,
 67 that is where $\rho = 0$. From this, we see that the inclusion of a genetic-random effect
 68 (with a particular correlation matrix) in fastGWA does little to increase power (although
 69 the association estimate will be slightly more efficient than the corresponding estimate
 70 from a regression not taking into account family structure when $\rho \neq 0$. The goal in Fast-
 71 GWA is instead to properly incorporate family structure in the estimation of $Var(\hat{\beta})$.
 72 In particular, related-ness in the GWAS reduces the power of finding associated SNPs

73 (which is indicated in that $Var(\hat{\beta})$ is a increasing function of ρ).

74 **Variance of $\hat{\beta}$ in fastGWA-PGS model**

75 The fastGWA-PGS model takes the form:

$$Y = \beta X + g^{(1)} + \gamma \hat{P} + \varepsilon^{(1)} \quad (3)$$

76 where $\hat{P} = P + \varepsilon_P$ is the estimated polygenic risk score, assumed to be independent
77 of X , and estimated in a LOCO fashion. We will later justify that the modified residual
78 terms $\varepsilon^{(1)}$ and $g^{(1)}$, are zero mean random variables that are independent of X con-
79 ditional on \hat{P} provided \hat{P} is independent of X . Comparing with equation (1) we have
80 that:

$$Var(\varepsilon^{(0)}) + Var(g^{(0)}) = Var(\varepsilon^{(1)}) + Var(g^{(1)}) + \gamma^2 \quad (4)$$

81 Importantly, these independence conditions imply that conditional on \hat{P} , $Cov(X, Y | \hat{P}) =$
82 $\beta Var(X | \hat{P}) = \beta Var(X)$. Noting then that $Cov(X, Y | \hat{P})$ is constant, it must equal $Cov(X, Y)$,
83 which implies that $\beta = Cov(X, Y) / Var(X)$. This indicates that the coefficient β multi-
84 plying the SNP genotype is the same in (3) and (1). Note that the variances of both
85 residual terms may be reduced due to addition of the polygenic risk score, that is
86 $Var(\varepsilon^{(1)}) = \sigma_1^2 < Var(\varepsilon^{(0)}) = \sigma_0^2$ and $Var(g^{(1)}) = \tau_1^2 < Var(g^{(0)}) = \tau_0^2$. As vector equa-
87 tions we again assume that $Var(\varepsilon_1^{(0)}, \dots, \varepsilon_N^{(0)}) = \sigma_1^2 I$ and $Var(\mathbf{g}^{(1)}) = Var(g_1^{(1)}, \dots, g_N^{(1)})$
88 $= \Pi \tau_1^2$. Comparing equations (1) and (3), it follows that adjustment for the polygenic
89 score will reduce the variance of the environmental noise and genetic components in
90 (1), by the quantities: $Corr(\hat{P}, \varepsilon^{(0)})$ and $Corr(\hat{P}, g^{(0)})$. Note if we instead adjusted for
91 the "true" polygenic score, P , in the regression, we might reduce more of the noise
92 in the genetic random effect but would not reduce noise in the environmental random
93 effect.

94 The model can be approximately fit in 2 stages. First, we orthogonalize the out-
 95 come, Y with respect to \hat{P} . That is we set $Y^{(1)} = Y - Y_{\hat{P}} = Y - \hat{Y}\hat{P}$, where $Y_{\hat{P}}$ is the
 96 predicted outcome from a regression using \hat{P} . Second, we orthogonalize X with re-
 97 spect to \hat{P} , that is calculate $X^{(1)} = X - X_{\hat{P}}$. Assuming X is truly independent of \hat{P} one
 98 would expect that $X^{(1)} \sim X$. Finally, β is estimated by a generalized least squares fit,
 99 regressing $Y^{(1)}$ on $X^{(1)}$, in the following model

$$Y^{(1)} = \beta X^{(1)} + g^{(1)} + \varepsilon^{(1)} \quad (5)$$

where the variance matrix

$$V^{(1)} = \sigma_1^2 + \Pi \tau_1^2. \quad (6)$$

100 Similarly to before, $\hat{\beta} = \mathbf{X}^{(1)T} \mathbf{V}^{(1)-1} \mathbf{Y}^{(1)}$ and the variance of $\hat{\beta}$ is

$$Var(\hat{\beta}) = [\mathbf{X}^{(1)T} \mathbf{V}^{(1)-1} \mathbf{X}^{(1)}]^{-1} \quad (7)$$

101 and under the circumstance that the off-diagonal elements of Π are all equal to ρ ,
 102 and $X^{(1)} \sim X$, this is approximately

$$Var(\hat{\beta}) = \frac{\sigma_1^2 + (1 - \rho) \tau_1^2}{N(1 - \rho)} \quad (8)$$

103 noting that $\sigma_1^2 < \sigma_0^2$ and $\tau_1^2 < \tau_0^2$ and comparing to (2) indicates the variance of $\hat{\beta}$ is
 104 reduced by adding the informative (and independent) estimated PGS to the regression.
 105 Because of near-orthogonality of X and \hat{P} , one would not expect the absolute-size of $\hat{\beta}$
 106 to be altered (indeed we argued previously that the β coefficient in the two regression
 107 formulae (1) and (5) should be equal), indicating that a test based on $\hat{\beta}^2 / Var(\hat{\beta})$ should
 108 have improved power.

109 **Justification of independence of modified residuals and SNP geno-**
110 **type X under approximate independence of X and \hat{P}**

As previously noted, if residuals, $\varepsilon^{(1)}$ and $g^{(1)}$ and genotype, X , in equation (3) are truly independent of each other, and $\varepsilon^{(1)}$ and $g^{(1)}$ are zero mean and finite variance, standard calculations as demonstrated later show that the variance calculated as (7) is asymptotically correct. In addition, the β parameters will 'match' in equations (1) and (3), and hence the PGS adjusted model will have improved power under the alternative whilst conserving type I error under the null. The following is an argument to justify this condition. By assumption, in equation (1), the residual terms $\varepsilon^{(0)}$ and $g^{(0)}$ are independent of the genotype vector X . We also have assumed that the selected polygenic score, \hat{P} is statistically independent of X . This implies that once standardized to have mean 0, X and \hat{P} should be approximately orthogonal. Now, conditional on the vector of polygenic scores, $\hat{\mathbf{P}}$ Let $Y_{\hat{P}} = \hat{\gamma}\hat{\mathbf{P}}$ be the projection of the response vector Y onto the vector $\hat{\mathbf{P}}$. By examining the right hand side of equation (1), and the approximate orthogonality of X and $\hat{\mathbf{P}}$, this projection is also equal to the sum of the projections of the vectors $\varepsilon^{(0)}$ and $g^{(0)}$ onto $\hat{\mathbf{P}}$, which we denote $\varepsilon_{\hat{P}}^{(0)} + \gamma_{\hat{P}}^{(0)}$. Now denoting $\varepsilon^{(1)} = \varepsilon^{(0)} - \varepsilon_{\hat{P}}^{(0)}$ and $g^{(1)} = g^{(0)} - g_{\hat{P}}^{(0)}$, we have the equation:

$$Y_i - \hat{\gamma}\hat{P}_i \approx \beta X_i + \varepsilon^{(1)} + g^{(1)} \quad (9)$$

111 where β is the same coefficient as in equation (1). Noting that conditional on $\hat{\mathbf{P}}$, the
112 vectors $\varepsilon^{(1)}$ and $g^{(1)}$ are functions of the vectors $\varepsilon^{(0)}$ and $g^{(0)}$, which are all independent
113 of X , $\varepsilon^{(1)}$ and $g^{(1)}$ are also independent of X . In addition, $\varepsilon^{(0)}$, $g^{(0)}$ and \hat{P} are 0-mean
114 random variables by assumption. Since, as vectors $\varepsilon^{(1)}$ and $g^{(1)}$ can be viewed as the
115 difference of a zero mean vector and a projection onto a zero mean vector they can also
116 be viewed as zero mean vectors, which completes the argument.

117 Conservation of Type I error, after adjustment for \hat{P} , assuming in-
118 dependence of X and modified residuals

119 Under the scenario that we have sucessfully reduced residual noise by incorporating a
120 polygenic risk score as above, the association test checks the orthogonality of the geno-
121 type vector for the SNP, X with the noise reduced outcome vector (after subtracting off
122 the predicted outcome based on the polygenic score). Since the polygenic risk score
123 is approximately othogonal to the SNP in question, and was constructed with no refer-
124 ence to the SNP, the Type I error of this test should not be affected. This follows in a
125 straightforward way from the observations that the modified genetic and environmental
126 residuals are independent of X and have 0 mean and the variance matrix listed above
127 as we have justified above.

128 In more detail, suppose that $\beta = 0$. If $E(\hat{\beta}) = 0$ and the variance of $Var(\hat{\beta})$ is really
129 given by (7), it follows that the test statistic: $\hat{\beta}^2/Var(\hat{\beta})$ should be approximately chi-
130 squared with 1 degree of freedom, and p-values will be uniform as required for a valid
131 statistical test.

132 First $E(\hat{\beta}) = E(\mathbf{X}^{(1)T} \mathbf{V}^{(1)-1} \mathbf{Y}^{(1)}) = \mathbf{X}^{(1)T} \mathbf{V}^{(1)-1} E(\mathbf{Y}^{(1)})$. Now since $\beta=0$, $E(\mathbf{Y}^{(1)})$
133 $= E(g^{(1)} + \varepsilon^{(1)}) = 0$ from the model.

134 Second, $Var(\hat{\beta}) = Var(\mathbf{X}^{(1)T} \mathbf{V}^{(1)-1} \mathbf{Y}^{(1)}) = \mathbf{X}^{(1)T} \mathbf{V}^{(1)-1} Var(\mathbf{Y}^{(1)}) \mathbf{V}^{(1)-1} \mathbf{X}^{(1)}$. Now
135 $Var(\mathbf{Y}^{(1)}) = Var(\varepsilon^{(1)}) + Var(\mathbf{g}^{(1)})$, which by definition is given by (6), implying that
136 $Var(\hat{\beta})$ is indeed given by (7)

137 Supplementary figures & Tables

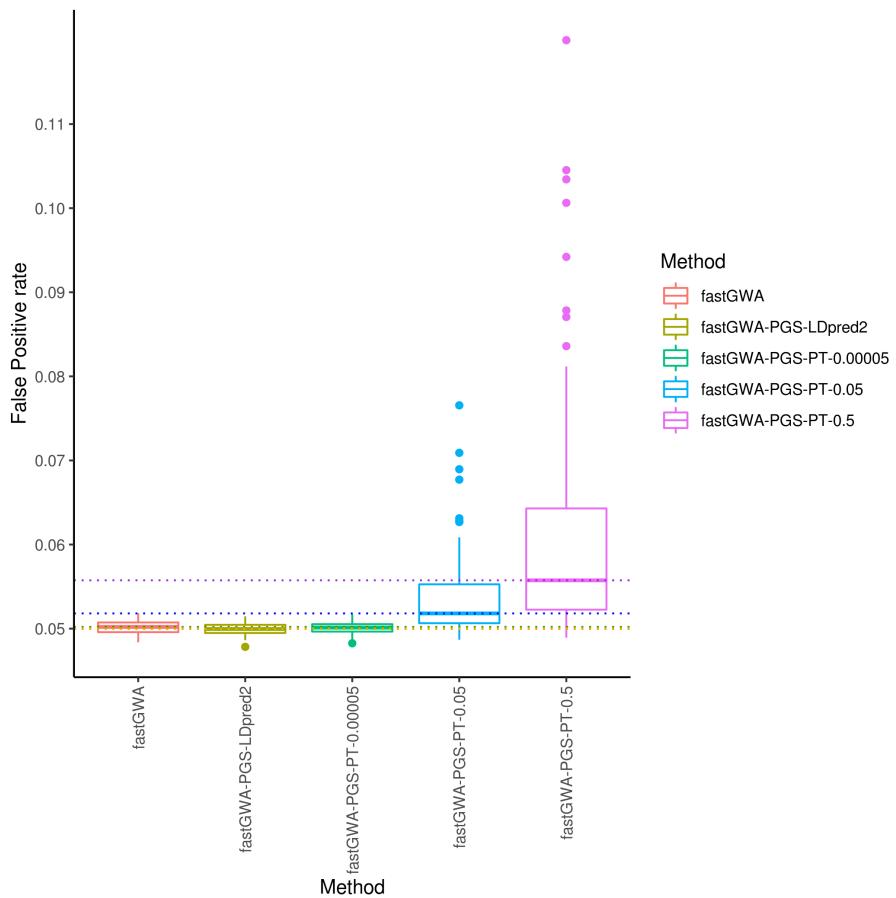


Figure S1: Assessment of the false positive rate in 100 simulations, causal variants were simulated on the even chromosomes leaving the odd chromosomes to carry information on the false positive rate. The results of fastGWA-PGS are shown for three P&T P-value thresholds (LOCO PGS is calculated using 5×10^{-5} , 0.05 & 0.5 pvalue cut off points) and LDpred2.

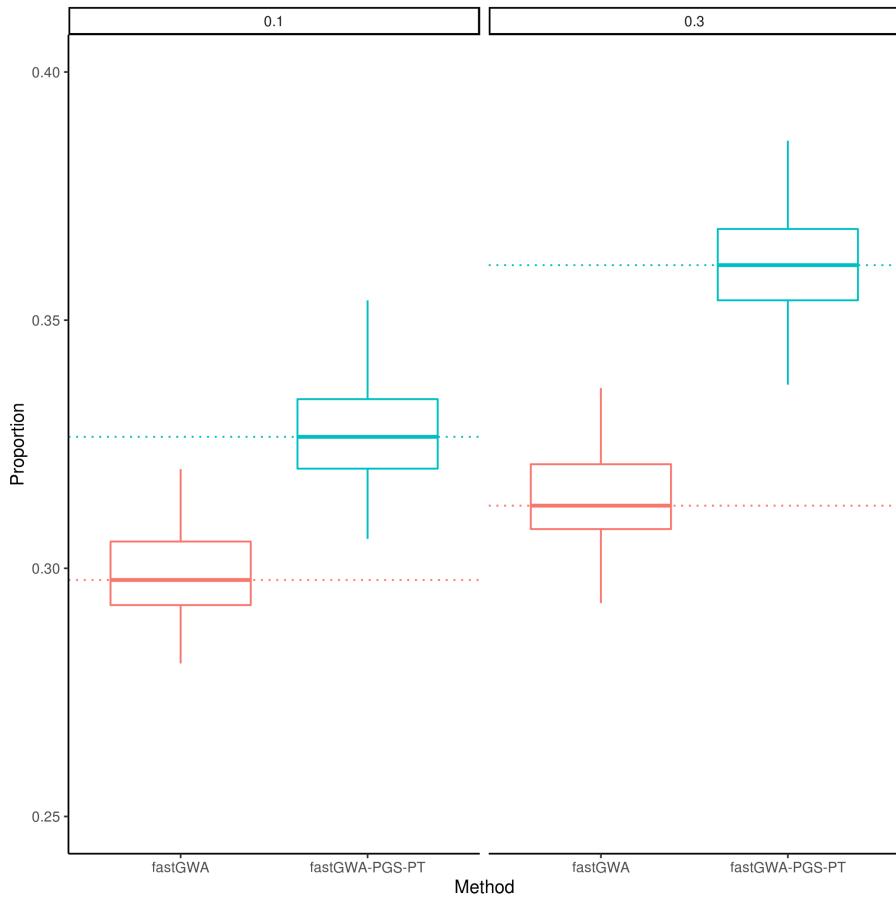


Figure S2: Proportion of causal variants recovered in 100 case-control simulations of a disease with prevalence 0.1 (left) or 0.3 (right), heritability of 0.5 and 1,000 causal variants.

Table S1: Mean proportion of causal variants recovered in 100 simulations of a quantitative trait ($h^2=0.5$, $N=100,000$ & 1,000 causal loci).

Method	Mean	Change (%) relative to fastGWA
fastGWA	0.445	0.00
fastGWA-PGS-PT	0.527	18.4
fastGWA-PGS-LDpred2	0.561	25.9
BOLT-LMM-165	0.491	10.3
BOLT-LMM-165-PGS-PT	0.545	22.4
BOTL-LMM-664	0.558	25.3
REGENIE	0.481	8.1
REGENIE-PGS-PT	0.485	8.9

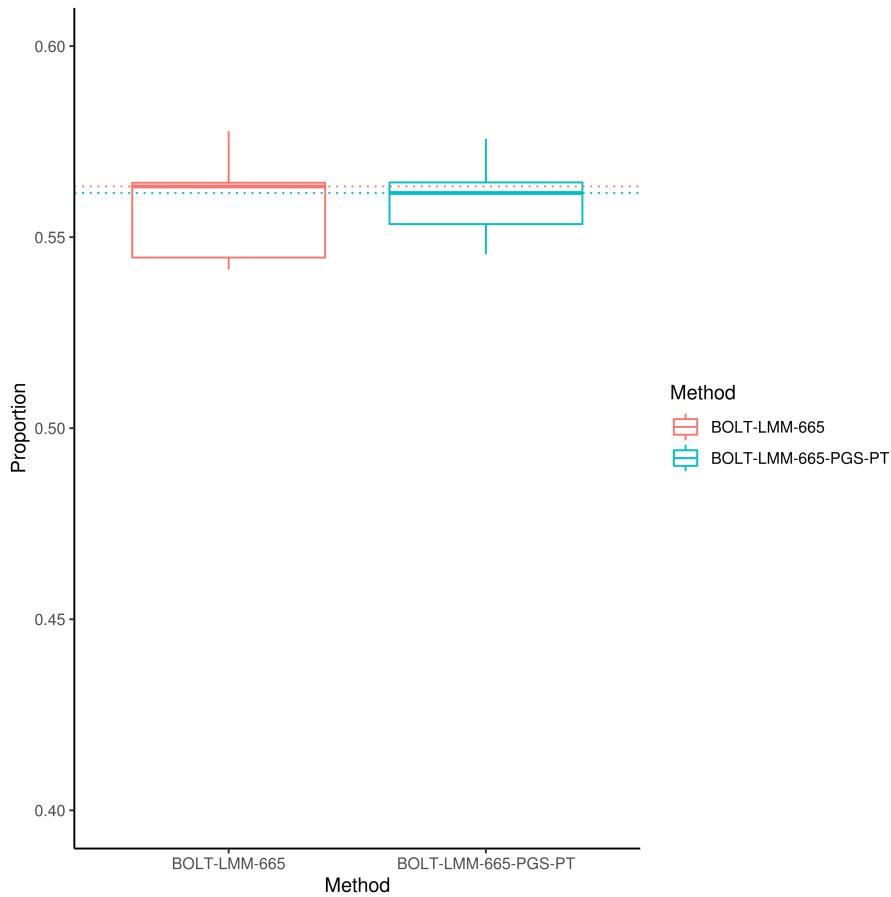


Figure S3: The effect on power of adding the LOCO PGS fixed effect to BOLT-LMM with a GRM that included all variants in the simulation. The LOCO PGS is calculated using the P&T method. The plot shows the proportion of causal variants recovered over 10 simulations.

Table S2: Paired t-tests for fastGWA vs all other methods (based on 100 simulations of a quantitative trait with $h^2=0.5$, $N=100,000$ & 1,000 causal loci).

Method	Mean difference	Conf-95	Conf+95	P-value
fastGWA-PGS-PT	82	78	86	3e-32
fastGWA-PGS-LDpred2	115	110	120	2.3e-36
BOTL-LMM-664	112	108	116	2.3e-40
BOLT-LMM-165	45	42	47	3.1e-31
BOLT-LMM-165-PGS-PT	100	96	103	1.4e-39
REGENIE	36	34	39	3e-28
REGENIE-PGS-PT	39	34	43	3.9e-20

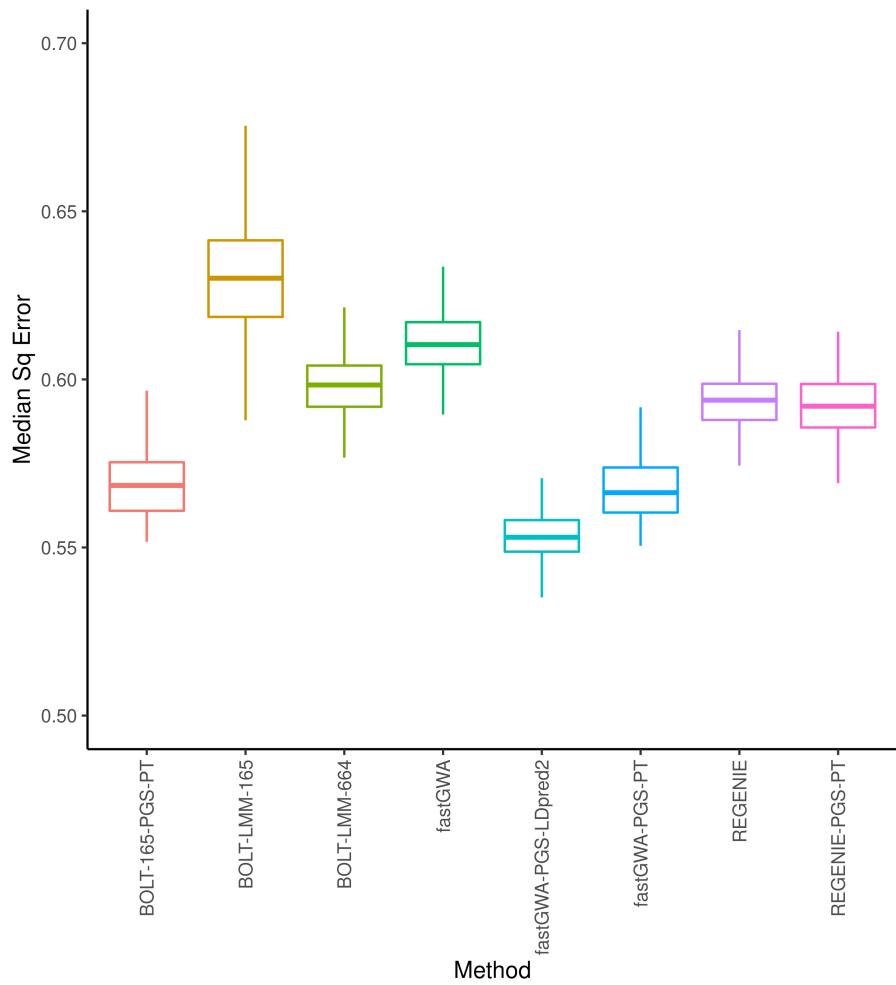


Figure S4: Median squared error of effect size estimates over 100 simulations of a quantitative trait with heritability of 0.5 and 1,000 causal variants in 100,000 individuals .

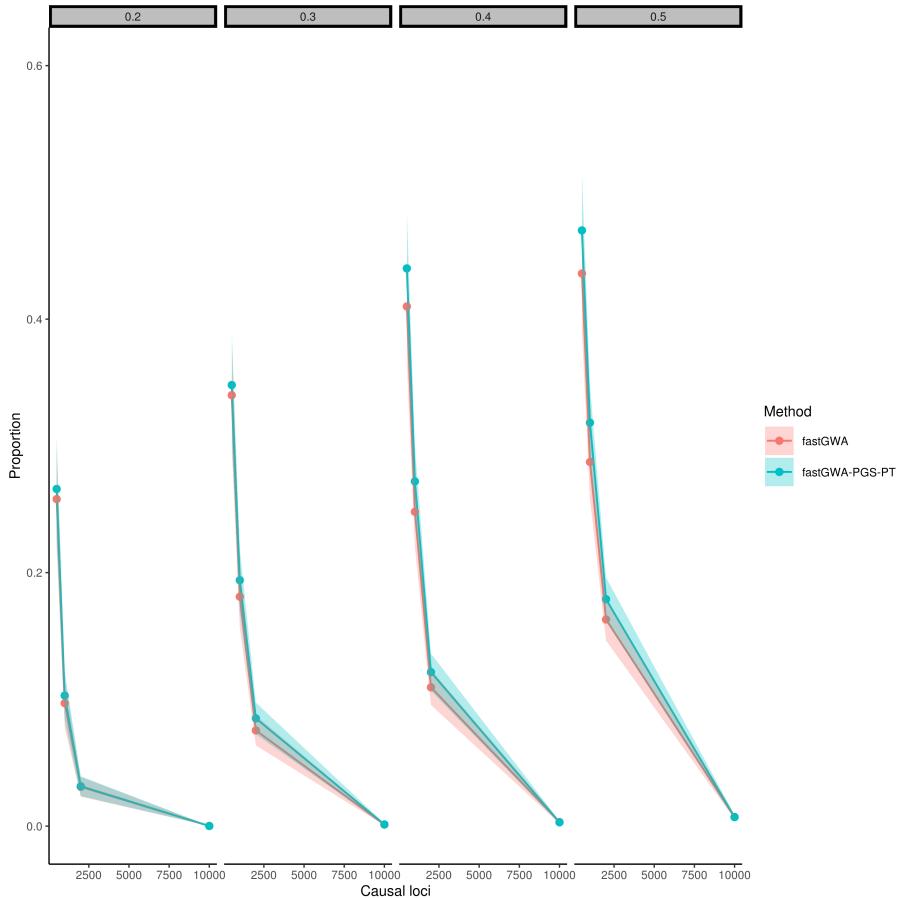


Figure S5: The proportion of causal variants recovered as a function of the number of causal variants in case-control simulations of a disease with prevalence 0.1. The plots show the results for h^2 ranging from 0.2 to 0.5.

Table S3: Paired t-tests for BOLT-LMM-664 vs all other methods (based on 100 simulations of a quantitative trait with $h^2=0.5$, $N=100,000$, & 1,000 causal loci).

Method	Mean difference	Conf-95	Conf+95	P-value
fastGWA	112	108	116	2.3e-40
fastGWA-PGS-PT	30	26	34	3.1e-18
fastGWA-PGS-LDpred2	-2.7	-5.9	0.47	0.092
BOLT-LMM-165	68	65	70	2.9e-37
BOLT-LMM-165-PGS-PT	12	9.9	15	1.9e-12
REGENIE	76	73	79	1.7e-37
REGENIE-PGS-PT	73	69	77	1.4e-31

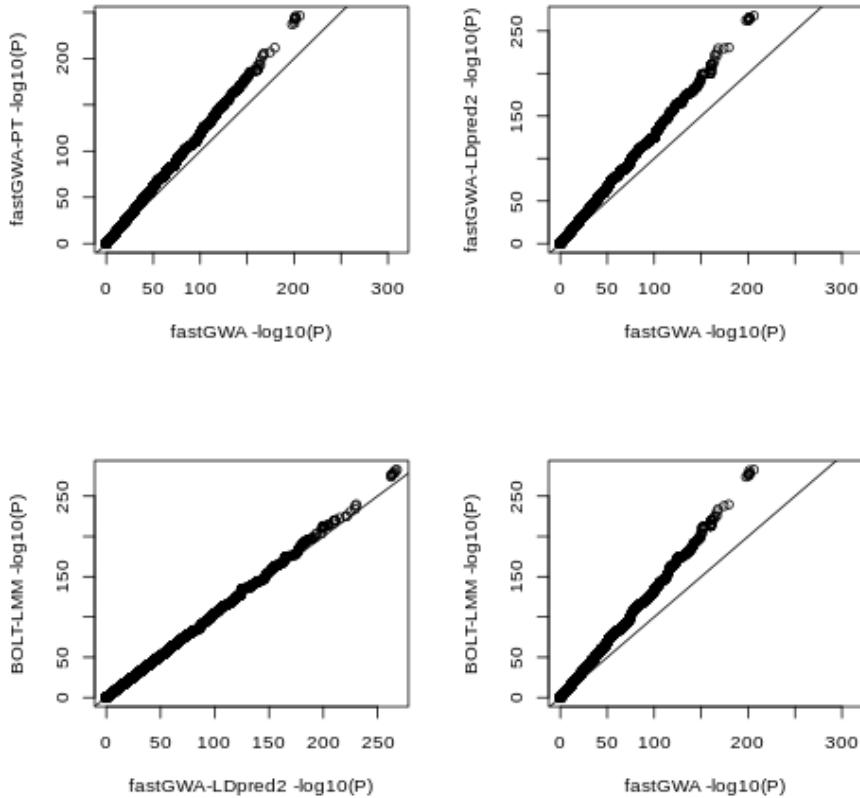


Figure S6: QQ plots comparing the distributions of the negative logarithm of the P-values obtained when different methods were applied to the height phenotype from the UK Biobank.

Table S4: Median proportion of recovered variants in 100 case control simulations with disease prevalence of 0.1 & 0.3 ($h^2=0.5$, $N=100,000$, & 1,000 causal loci).

Method	Prevalence	Median
fastGWA	0.10	0.30
fastGWA	0.30	0.31
fastGWA-PGS-PT	0.10	0.33
fastGWA-PGS-PT	0.30	0.36

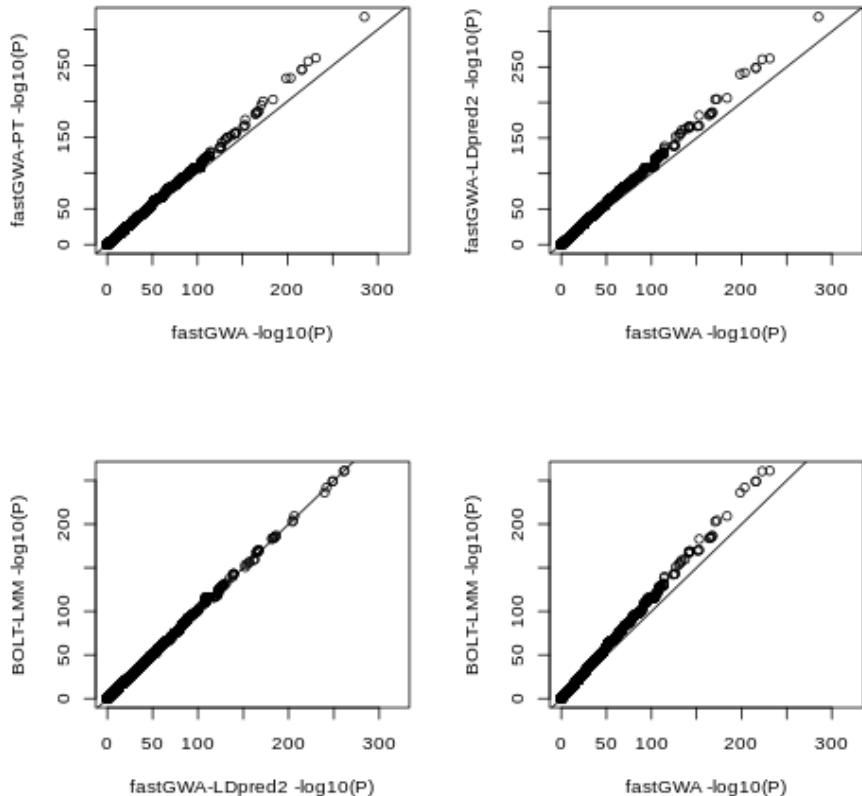


Figure S7: QQ plots comparing the distributions of the negative logarithm of the P-values obtained when different methods were applied to the heel bone mineral density (HBMD) phenotype from the UK Biobank

Table S5: Paired t-tests for 100 case control simulations with a disease prevalence of 0.1 & 0.3 ($h^2=0.5$, $N=100,000$ & 1,000 causal loci).

Method	Prevalence	Mean difference	Conf-95	Conf+95	P-value
fastGWA-PS-PT	0.1	29.3	28.1	30.6	2.17e-65
fastGWA-PS-PT	0.3	38.2	32.9	43.5	3.66e-25

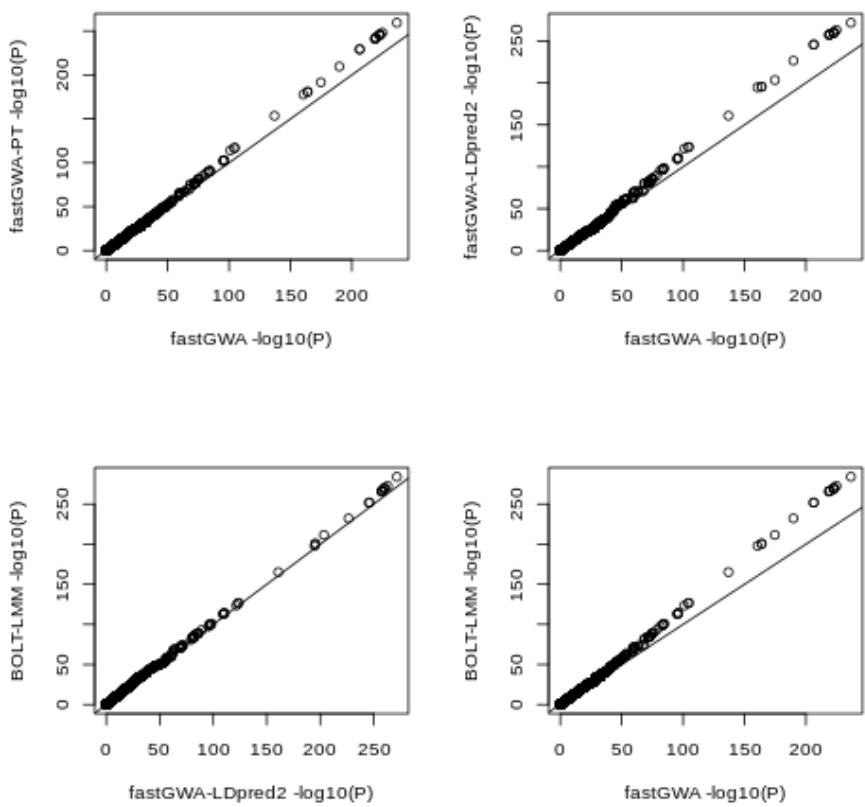


Figure S8: QQ plots comparing the distributions of the negative logarithm of the P-values obtained when different methods were applied to the body mass index (BMI) phenotype from the UK Biobank

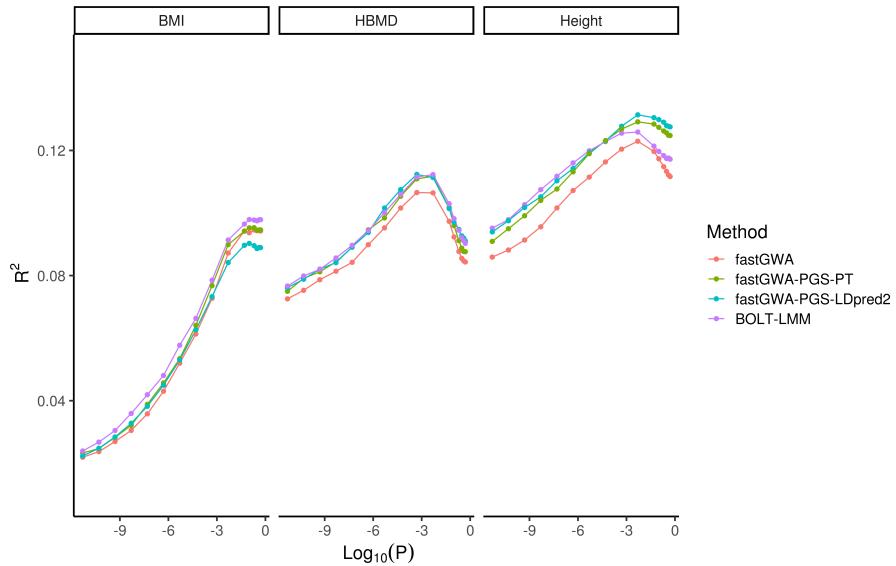


Figure S9: Proportion of phenotypic variance (in height, BMI, & HBMD) explained by polygenic scores, calculated using the P&T method, as a function of the P-value thresholds applied in the P&T method. The polygenic scores were calculated from summary statistics obtained using the methods shown.

Table S6: Maximum difference in sensitivity between methods, and the corresponding specificity at which this maximum occurs (from 100 simulations with $h^2=0.5$, $N=100,000$ & 1,000 causal loci).

Method comparison	Relative increase	Max Δ Sensitivity	Corresponding specificity
fastGWA-PGS-LDpred2 vs fastGWA	0.1135	0.0728	0.9988
fastGWA-PGS-LDpred2 vs BOLT-LMM-664	0.0016	0.0015	0.2000
REGENIE vs fastGWA	0.0315	0.0217	1.0000
REGENIE-PGS-PT vs fastGWA	0.0347	0.0239	1.0000
BOLT-LMM-PGS-PT vs BOLT-LMM-165	0.0419	0.0278	0.9991
BOLT-LMM-664 vs fastGWA	0.1185	0.0766	0.9986
fastGWA-PGS-PT vs fastGWA	0.0847	0.0531	0.9992
fastGWA-PGS-LDpred2 vs fastGWA-PGS-PT	0.0287	0.0208	0.9966

Table S7: Average of the median squared error (MEDSE) of effect size estimates for causal variants across 100 simulations ($h^2=0.5$, N=100,000 & 1,000 causal loci) and relative change to fastGWA.

Method	Mean	Improvement relative to fastGWA
fastGWA	0.6196	0.0%
fastGWA-PGS-PT	0.5756	7.1%
fastGWA-PGS-LDpred	0.5612	9.4%
BOLT-LMM-165	0.6510	-5.0%
BOLT-LMM-165-PT	0.5764	7.0%
BOTL-LMM-664	0.6070	2.0%
REGENIE	0.6032	2.6%
REGENIE-PT	0.6022	2.8%

Table S8: Paired t-tests applied to the median squared error (MEDSE) of effect size estimates for causal variants across 100 simulations, relative to fastGWA ($h^2=0.5$, N=100,000 & 1,000 causal loci).

Method	Mean difference	Conf-95	Conf+95	P-value
fastGWA-PGS-PT	-0.044	-0.046	-0.042	3e-76
fastGWA-PGS-LDpred2	-0.058	-0.06	-0.057	5.9e-91
BOTL-LMM-664	-0.013	-0.014	-0.011	3.7e-30
BOLT-LMM-165	0.031	0.015	0.048	0.00022
BOLT-165-PGS-PT	-0.043	-0.045	-0.041	2.6e-71
REGENIE-PGS-PT	-0.017	-0.02	-0.015	2.2e-26
REGENIE	-0.016	-0.018	-0.015	1.9e-38

Table S9: Paired t-test of MEDSE beta estimates of 100 quantitative trait simulations relative to BOLT-LMM-165

Method	Mean difference	Conf-95	Conf+95	P-value
fastGWA	-0.031	-0.048	-0.015	0.00022
fastGWA-PGS-PT	-0.075	-0.092	-0.059	5.2e-15
fastGWA-PGS-LDpred2	-0.09	-0.11	-0.073	3e-18
BOTL-LMM-664	-0.044	-0.061	-0.027	1.1e-06
BOLT-165-PGS-PT	-0.075	-0.09	-0.059	2e-15
REGENIE-PGS-PT	-0.049	-0.063	-0.034	1.8e-09
REGENIE	-0.048	-0.063	-0.033	1.2e-08

Table S10: Proportion of causal variants recovered for simulations of a quantitative trait over a range of parameter values (N=100,000; Nc = number of causal variants)

Heritability	Method	Nc	Proportion
0.1	fastGWA	500	0.25
0.1	fastGWA	1,000	0.10
0.1	fastGWA	2,000	0.03
0.1	fastGWA	5,000	0.00
0.1	fastGWA	10,000	0.00
0.1	fastGWA-PGS-PT	500	0.26
0.1	fastGWA-PGS-PT	1,000	0.11
0.1	fastGWA-PGS-PT	2,000	0.03
0.1	fastGWA-PGS-PT	5,000	0.00
0.1	fastGWA-PGS-PT	10,000	0.00
0.2	fastGWA	500	0.35
0.2	fastGWA	1,000	0.23
0.2	fastGWA	2,000	0.10
0.2	fastGWA	5,000	0.02
0.2	fastGWA	10,000	0.00
0.2	fastGWA-PGS-PT	500	0.39
0.2	fastGWA-PGS-PT	1,000	0.26
0.2	fastGWA-PGS-PT	2,000	0.12
0.2	fastGWA-PGS-PT	5,000	0.02
0.2	fastGWA-PGS-PT	10,000	0.00
0.3	fastGWA	500	0.47
0.3	fastGWA	1,000	0.33
0.3	fastGWA	2,000	0.18
0.3	fastGWA	5,000	0.04
0.3	fastGWA	10,000	0.01
0.3	fastGWA-PGS-PT	500	0.50
0.3	fastGWA-PGS-PT	1,000	0.38
0.3	fastGWA-PGS-PT	2,000	0.20
0.3	fastGWA-PGS-PT	5,000	0.05
0.3	fastGWA-PGS-PT	10,000	0.01
0.4	fastGWA	500	0.53
0.4	fastGWA	1,000	0.39
0.4	fastGWA	2,000	0.23
0.4	fastGWA	5,000	0.07
0.4	fastGWA	10,000	0.02
0.4	fastGWA-PGS-PT	500	0.58
0.4	fastGWA-PGS-PT	1,000	0.45
0.4	fastGWA-PGS-PT	2,000	0.29
0.4	fastGWA-PGS-PT	5,000	0.09
0.4	fastGWA-PGS-PT	10,000	0.02
0.5	fastGWA	500	0.56
0.5	fastGWA	1,000	0.43
0.5	fastGWA	2,000	0.28
0.5	fastGWA	5,000	0.11
0.5	fastGWA	19	0.03
0.5	fastGWA-PGS-PT	500	0.62
0.5	fastGWA-PGS-PT	1,000	0.52
0.5	fastGWA-PGS-PT	2,000	0.36
0.5	fastGWA-PGS-PT	5,000	0.16
0.5	fastGWA-PGS-PT	10,000	0.04

Table S11: Proportion of causal variants recovered for simulations of a quantitative trait over a range of parameter values (N=430,000; Nc = number of causal variants)

Heritability	Method	Nc	Proportion
0.1	fastGWA	500	0.54
0.1	fastGWA	1,000	0.40
0.1	fastGWA	2,000	0.25
0.1	fastGWA	5,000	0.08
0.1	fastGWA	10,000	0.02
0.1	fastGWA-PGS-PT	500	0.55
0.1	fastGWA-PGS-PT	1,000	0.41
0.1	fastGWA-PGS-PT	2,000	0.27
0.1	fastGWA-PGS-PT	5,000	0.08
0.1	fastGWA-PGS-PT	10,000	0.02
0.2	fastGWA	500	0.68
0.2	fastGWA	1,000	0.56
0.2	fastGWA	2,000	0.40
0.2	fastGWA	5,000	0.21
0.2	fastGWA	10,000	0.08
0.2	fastGWA-PGS-PT	500	0.69
0.2	fastGWA-PGS-PT	1,000	0.59
0.2	fastGWA-PGS-PT	2,000	0.44
0.2	fastGWA-PGS-PT	5,000	0.23
0.2	fastGWA-PGS-PT	10,000	0.09
0.3	fastGWA	500	0.73
0.3	fastGWA	1,000	0.64
0.3	fastGWA	2,000	0.50
0.3	fastGWA	5,000	0.30
0.3	fastGWA	10,000	0.15
0.3	fastGWA-PGS-PT	500	0.76
0.3	fastGWA-PGS-PT	1,000	0.68
0.3	fastGWA-PGS-PT	2,000	0.54
0.3	fastGWA-PGS-PT	5,000	0.34
0.3	fastGWA-PGS-PT	10,000	0.18
0.4	fastGWA	500	0.77
0.4	fastGWA	1,000	0.68
0.4	fastGWA	2,000	0.56
0.4	fastGWA	5,000	0.37
0.4	fastGWA	10,000	0.21
0.4	fastGWA-PGS-PT	500	0.81
0.4	fastGWA-PGS-PT	1,000	0.72
0.4	fastGWA-PGS-PT	2,000	0.62
0.4	fastGWA-PGS-PT	5,000	0.40
0.4	fastGWA-PGS-PT	10,000	0.26
0.5	fastGWA	500	0.76
0.5	fastGWA	1,000	0.70
0.5	fastGWA	2,000	0.58
0.5	fastGWA	5,000	0.41
0.5	fastGWA	20	10,000
0.5	fastGWA-PGS-PT	500	0.80
0.5	fastGWA-PGS-PT	1,000	0.74
0.5	fastGWA-PGS-PT	2,000	0.66
0.5	fastGWA-PGS-PT	5,000	0.49
0.5	fastGWA-PGS-PT	10,000	0.33

Table S12: Proportion of causal variants recovered for simulations of a binary trait over a range of parameter values (N=100,000; disease prevalence = 0.1; Nc = number of causal variants)

Heritability	Nc	Method	Proportion
0.2	10,000	fastGWA	0.0001
0.2	10,000	fastGWA-PGS-PT	0.0001
0.2	1,000	fastGWA	0.0970
0.2	1,000	fastGWA-PGS-PT	0.1030
0.2	2,000	fastGWA	0.0310
0.2	2,000	fastGWA-PGS-PT	0.0315
0.2	500	fastGWA	0.2580
0.2	500	fastGWA-PGS-PT	0.2660
0.3	10,000	fastGWA	0.0012
0.3	10,000	fastGWA-PGS-PT	0.0013
0.3	1,000	fastGWA	0.1810
0.3	1,000	fastGWA-PGS-PT	0.1940
0.3	2,000	fastGWA	0.0755
0.3	2,000	fastGWA-PGS-PT	0.0850
0.3	500	fastGWA	0.3400
0.3	500	fastGWA-PGS-PT	0.3480
0.4	10,000	fastGWA	0.0032
0.4	10,000	fastGWA-PGS-PT	0.0030
0.4	1,000	fastGWA	0.2480
0.4	1,000	fastGWA-PGS-PT	0.2720
0.4	2,000	fastGWA	0.1095
0.4	2,000	fastGWA-PGS-PT	0.1215
0.4	500	fastGWA	0.4100
0.4	500	fastGWA-PGS-PT	0.4400
0.5	10,000	fastGWA	0.0072
0.5	10,000	fastGWA-PGS-PT	0.0071
0.5	1,000	fastGWA	0.2873
0.5	1,000	fastGWA-PGS-PT	0.3183
0.5	2,000	fastGWA	0.1630
0.5	2,000	fastGWA-PGS-PT	0.1790
0.5	500	fastGWA	0.4360
0.5	500	fastGWA-PGS-PT	0.4700

Table S13: Two-sample tests of equality of proportions applied to the proportions of significant loci identified using the method shown, compared to fastGWA. The results shown are for the three UK Biobank quantitative traits analyzed. Prop 1 and Prop 2 show the proportions of significant loci for the method on the row and for fastGWA, respectively. Conf-95 and Conf+95 show the low and upper 95% confidence interval for the difference in these proportions.

Method	Phenotype	P-value	X-sq	Prop 1	Prop 2	Conf-95	Conf+95
BOLT-LMM	BMI	3.133e-05	17.3357	0.0159	0.0123	0.0019	0.0054
		0.1083	2.5795	0.0136	0.0123	-0.0003	0.0030
		0.1563	2.0093	0.0135	0.0123	-0.0005	0.0029
fastGWA-PGS-LDpred2	HBMD	0.009114	6.8004	0.0106	0.0087	0.0005	0.0033
		0.02029	5.3864	0.0104	0.0087	0.0003	0.0031
		0.1066	2.6034	0.0098	0.0087	-0.0002	0.0026
fastGWA-PGS-PT	Height	5.458e-19	79.2553	0.0493	0.0360	0.0104	0.0163
		1.953e-13	54.0515	0.0468	0.0360	0.0079	0.0138
		1.166e-06	23.6328	0.0430	0.0360	0.0042	0.0099