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Theory1

The following supplement gives more technical arguments that conditioning on a poly-2

genic gene score, that is constructed from SNPs on off-target chromosomes, selected3

for signficance of association with the outcome, improves statistical power while con-4

serving type I error in a standard linear mixed model. To simplify arguments, we will5

compare the two approaches fastGWA and fastGWA-PGS. The argument will be in6

3 stages. First, we derive an expression for the variance of the association estimate7

when the PGS is not adjusted for. Second, we derive an expression for the variance8

of the association estimate in the PGS adjusted model, under the assumption that the9

genetic and environomental residuals remain independent of the target SNP genotype10

conditional on the PGS - importantly, this independence condition also implies that the11

association parameter being estimated is the same in the models with and without ad-12

justment for PGS. This PGS-adjusted association will be seen to have smaller variance13

than the corresponding estimator from the unadjusted model. Finally, we argue this in-14

dependence condition (of the residuals in the PGS-adjusted model and SNP genotype)15

is approximately true assuming that the PGS is statistically independent of the selected16

1



SNP. In practice, the PGS should be approximately independent of the selected SNP17

under the null hypothesis of no causal association at the target SNP, since the off-target18

SNPs that constitute the polygenic score are selected independently and are on differing19

chromosomes (that is they are not in LD with the target SNP and there is no-collider20

bias between the target SNPs and off-target SNPs since the null hypothesis is true).21

This proves the conservation of type I error. Under the alternative hypothesis that the22

target SNP has a causal association with the outcome, collider bias might result in some23

correlation between the PGS and target SNP genotype; however, the extent of this cor-24

relation is likely extremely weak when there are a large number of variants that are25

associated with the trait in question, and unlikely to invalidate the following argument.26

We first list the assumptions and notation we will use for the remainder of the27

argument.28

Assumptions29

• Let X correspond to the standardized SNP genotype at a particular location30

• Without loss of generality, assume that Var(X) = 1 and E(X) = 0 (that is if X∗31

is the original genotype data, X = (X∗−E(X∗))/SD(X∗)32

• Similarly, the outcome Y is standardized, so that E(Y ) = 0 and Var(Y ) = 133

• Data collected on outcome, Y , target SNP X , and offtarget genetic SNPs, G1, ...,GK34

for samples i = 1 . . .N35

• The estimated LOCO polygenic score, P̂ = ∑k∈Ŝ β̂kGk, constructed over SNPs in36

the selection set Ŝ. Again SNP variables Gk for k ∈ S are standardized to have37

mean 0, variance 1. By construction, P̂ has expected value 0. We assume that β̂k38

are scaled so that the empirical variance of P̂ over samples i≤ N is 1.39

• Finally, we consider the LOCO polygenic score P that corresponds to SNPs in S40

but weighted according to their ”true” associations βk, P = ∑k∈Ŝ βkGk41
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• Subscript notation. i and j refer to individuals i, j ≤ N; k ≤ K refers to genetic42

location43

Variance of β̂ in fastGWA model44

The fastGWA model takes the form:45

Y = βX +g(0)+ ε
(0) (1)

where Var(ε(0)1 , ...,ε
(0)
N )= σ2

0 I and Var(g(0)) = Var(g(0)1 , ...,g(0)N ) = Πτ2
0 , where the fam-46

ily matrix Π is assumed known (or can be estimated using the original genotypes). The47

overall variance matrix of Var(Y) = (Y1, ...,YN) in (1) accounting for both the envi-48

ronmental variance and genetic random effect is V = σ2
0 I +Πτ2

0 Assuming consistent49

REML estimates,τ̂0 and σ̂0, of τ0 and σ0, estimated by fastGWA, fastGWA estimates50

β by genalized least squares:51

β̂ = XtV̂−1Y

Since, β̂ is computed using generalized least squares, it is easily shown that:52

Var(β̂ ) = (XtV̂−1X)−1

with X being the vector of the target SNP over i = 1, ...,N53

Henceforth, we will assume that estimation error in the estimated variance com-54

ponents: σ̂0 and τ̂0 is negligible, so can effectively leave out the hat-notation when55

referring to variance components.56

To examine the effect of the extent of family correlation structure on Var(β̂ ) in a57

simplistic setting, we will assume that Π has a compound symmetry structure (implying58

that all individuals are equally related. That is59
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Π = ρJ+(1−ρ)I

where J is the N×N matrix of 1’s. That is Π has elements −1 ≤ ρ ≤ 1 on its off60

diagonals and 1 on its diagonals. It follows that the matrix V has also a compound61

symmetry form:62

V = ρτ
2
0 J+((1−ρ)τ2

0 +σ
2
0 )I

The inverse of V (if it exists) can be calculated analytically and is equal to:63

V−1 = I/((1−ρ)τ2
0 +σ

2
0 )−J

ρτ2
0

((1−ρ)τ2
0 +σ2

0 )((1−ρ)τ2
0 +σ2

0 +Nρτ2
0 )

It follows that:

Var(β̂ )= (XtV̂−1X)−1 = [
∑i≤N X2

i

(1−ρ)τ2
0 +σ2

0
−

∑i, j≤N XiX jρτ2
0

((1−ρ)τ2
0 +σ2

0 )((1−ρ)τ2
0 +σ2

0 +Nρτ2
0 )

]−1

Now, noting that E(X2
i ) =1 and assuming that E(XiX j) = ρ , the genetic correlation,64

for large N one can show that the above is approximately equal to65

Var(β̂ ) =
σ2

0 +(1−ρ)τ2
0

N(1−ρ)
(2)

indicating that Var(β̂ ) is smallest when fastGWA is run on unrelated individuals,66

that is where ρ = 0. From this, we see that the inclusion of a genetic-random effect67

(with a particular correlation matrix) in fastGWA does little to increase power (although68

the association estimate will be slightly more efficient than the corresponding estimate69

from a regression not taking into account family structure when ρ 6= 0. The goal in Fast-70

GWA is instead to properly incorporate family structure in the estimation of Var(β̂ ).71

In particular, related-ness in the GWAS reduces the power of finding associated SNPs72
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(which is indicated in that Var(β̂ ) is a increasing function of ρ).73

Variance of β̂ in fastGWA-PGS model74

The fastGWA-PGS model takes the form:75

Y = βX +g(1)+ γP̂+ ε
(1) (3)

where P̂ = P+εP is the estimated polygenic risk score, assumed to be independent76

of X , and estimated in a LOCO fashion. We will later justify that the modified residual77

terms ε(1) and g(1), are zero mean random variables that are independent of X con-78

ditional on P̂ provided P̂ is independent of X . Comparing with equation (1) we have79

that:80

Var(ε(0))+Var(g(0)) =Var(ε(1))+Var(g(1))+ γ
2 (4)

Importantly, these independence conditions imply that conditional on P̂, Cov(X ,Y |P̂)=81

βVar(X |P̂)= βVar(X). Noting then that Cov(X ,Y |P̂) is constant, it must equal Cov(X ,Y ),82

which implys that β =Cov(X ,Y )/Var(X). This indicates that the coefficient β multi-83

plying the SNP genotype is the same in (3) and (1). Note that the variances of both84

residual terms may be reduced due to addition of the polygenic risk score, that is85

Var(ε(1))=σ2
1 <Var(ε(0))=σ2

0 and Var(g(1))= τ2
1 <Var(g(0))= τ2

0 . As vector equa-86

tions we again assume that Var(ε(0)1 , ...,ε
(1)
N )= σ2

1 I and Var(g(1)) = Var(g(1)1 , ...,g(1)N )87

= Πτ2
1 . Comparing equations (1) and (3), it follows that adjustment for the polygenic88

score will reduce the variance of the environmental noise and genetic components in89

(1), by the quantities: Corr(P̂,ε(0)) and Corr(P̂,g(0)). Note if we instead adjusted for90

the ”true” polygenic score, P, in the regression, we might reduce more of the noise91

in the genetic random effect but would not reduce noise in the environmental random92

effect.93
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The model can be approximately fit in 2 stages. First, we orthogonalize the out-94

come, Y with respect to P̂. That is we set Y (1) = Y −YP̂ = Y − γ̂P̂, where YP̂ is the95

predicted outcome from a regression using P̂. Second, we orthogonalize X with re-96

spect to P̂, that is calculate X (1) = X −XP̂. Assuming X is truly independent of P̂ one97

would expect that X (1) ∼ X . Finally, β is estimated by a generalized least squares fit,98

regressing Y (1) on X (1), in the following model99

Y (1) = βX (1)+g(1)+ ε
(1) (5)

where the variance matrix

V (1) = σ
2
1 +Πτ

2
1 . (6)

Similarly to before, β̂ = X(1)tV(1)−1Y(1) and the variance of β̂ is100

Var(β̂ ) = [X(1)tV(1)−1X(1)]−1 (7)

and under the circumstance that the off-diagonal elements of Π are all equal to ρ ,101

and X (1) ∼ X , this is approximately102

Var(β̂ ) =
σ2

1 +(1−ρ)τ2
1

N(1−ρ)
(8)

noting that σ2
1 < σ2

0 and τ2
1 < τ2

0 and comparing to (2) indicates the variance of β̂ is103

reduced by adding the informative (and independent) estimated PGS to the regression.104

Because of near-orthogonality of X and P̂, one would not expect the absolute-size of β̂105

to be altered (indeed we argued previously that the β coefficient in the two regression106

formulae (1) and (5) should be equal), indicating that a test based on β̂ 2/Var(β̂ ) should107

have improved power.108
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Justification of independence of modified residuals and SNP geno-109

type X under approximate independence of X and P̂110

As previously noted, if residuals, ε(1) and g(1) and genotype, X , in equation (3) are truly

independent of each other, and ε(1) and g(1) are zero mean and finite variance, standard

calculations as demonstrated later show that the variance calculated as (7) is asymptot-

ically correct. In addition, the β parameters will ’match’ in equations (1) and (3), and

hence the PGS adjusted model will have improved power under the alternative whilst

conserving type I error under the null. The following is an argument to justfify this

condition. By assumption, in equation (1), the residual terms ε(0) and g(0) are indepen-

dent of the genotype vector X . We also have assumed that the selected polygenic score,

P̂ is statistically independent of X . This implies that once standardized to have mean 0,

X and P̂ should be approximately orthogonal. Now, conditional on the vector of poly-

genic scores, P̂ Let YP̂ = γ̂P̂ be the projection of the response vector Y onto the vector P̂.

By examining the right hand side of equation (1), and the approximate orthogonality

of X and P̂, this projection is also equal to the sum of the projections of the vectors

ε(0) and g(0) onto P̂, which we denote ε
(0)
P̂

+ γ
(0)
P̂

. Now denoting ε(1) = ε(0)− ε
(0)
P̂

and

g(1) = g(0)−g(0)
P̂

, we have the equation:

Yi− γ̂P̂i ≈ βXi + ε
(1)+g(1) (9)

where β is the same coefficient as in equation (1). Noting that conditional on P̂, the111

vectors ε(1) and g(1) are functions of the vectors ε(0) and g(0), which are all independent112

of X, ε(1) and g(1) are also independent of X. In addition, ε(0), g(0) and P̂ are 0-mean113

random variables by assumption. Since, as vectors ε(1) and g(1) can be viewed as the114

difference of a zero mean vector and a projection onto a zero mean vector they can also115

be viewed as zero mean vectors, which completes the argument.116
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Conservation of Type I error, after adjustment for P̂, assuming in-117

dependence of X and modified residuals118

Under the scenario that we have sucessfully reduced residual noise by incorporating a119

polygenic risk score as above, the association test checks the orthogonality of the geno-120

type vector for the SNP, X with the noise reduced outcome vector (after subtracting off121

the predicted outcome based on the polygenic score). Since the polygenic risk score122

is approximately othogonal to the SNP in question, and was constructed with no refer-123

ence to the SNP, the Type I error of this test should not be affected. This follows in a124

straightforward way from the observations that the modified genetic and environmental125

residuals are independent of X and have 0 mean and the variance matrix listed above126

as we have justified above.127

In more detail, suppose that β = 0. If E(β̂ ) = 0 and the variance of Var(β̂ ) is really128

given by (7), it follows that the test statistic: β̂ 2/Var(β̂ ) should be approximately chi-129

squared with 1 degree of freedom, and p-values will be uniform as required for a valid130

statistical test.131

First E(β̂ ) = E(X(1)tV(1)−1Y(1)) = X(1)tV(1)−1E(Y(1)). Now since β=0, E(Y(1))132

= E(g(1)+ ε(1)) = 0 from the model.133

Second, Var(β̂ ) = Var(X(1)tV(1)−1Y(1)) = X(1)tV(1)−1Var(Y(1))V(1)−1X(1). Now134

Var(Y(1)) = Var(ε(1))+Var(g(1)), which by definition is given by (6), implying that135

Var(β̂ ) is indeed given by (7)136
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Supplementary figures & Tables137

Figure S1: Assessment of the false positive rate in 100 simulations, causal variants
were simulated on the even chromosomes leaving the odd chromosomes to carry in-
formation on the false positive rate. The results of fastGWA-PGS are shown for three
P&T P-value thresholds (LOCO PGS is calculated using 5 x 10−5, 0.05 & 0.5 pvalue
cut off points) and LDpred2.
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Figure S2: Proportion of causal variants recovered in 100 case-control simulations of
a disease with prevalence 0.1 (left) or 0.3 (right), heritability of 0.5 and 1,000 causal
variants.

Table S1: Mean proportion of causal variants recovered in 100 simulations of a quan-
titative trait (h2=0.5, N=100,000 & 1,000 causal loci).

Method Mean Change (%) relative to fastGWA
fastGWA 0.445 0.00

fastGWA-PGS-PT 0.527 18.4
fastGWA-PGS-LDpred2 0.561 25.9

BOLT-LMM-165 0.491 10.3
BOLT-LMM-165-PGS-PT 0.545 22.4

BOTL-LMM-664 0.558 25.3
REGENIE 0.481 8.1

REGENIE-PGS-PT 0.485 8.9
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Figure S3: The effect on power of adding the LOCO PGS fixed effect to BOLT-LMM
with a GRM that included all variants in the simulation. The LOCO PGS is calculated
using the P&T method. The plot shows the proportion of causal variants recovered
over 10 simulations.

Table S2: Paired t-tests for fastGWA vs all other methods (based on 100 simulations of
a quantitative trait with h2=0.5, N=100,000 & 1,000 causal loci).

Method Mean difference Conf-95 Conf+95 P-value
fastGWA-PGS-PT 82 78 86 3e-32

fastGWA-PGS-LDpred2 115 110 120 2.3e-36
BOTL-LMM-664 112 108 116 2.3e-40
BOLT-LMM-165 45 42 47 3.1e-31

BOLT-LMM-165-PGS-PT 100 96 103 1.4e-39
REGENIE 36 34 39 3e-28

REGENIE-PGS-PT 39 34 43 3.9e-20

11



Figure S4: Median squared error of effect size estimates over 100 simulations of a
quantitative trait with heritability of 0.5 and 1,000 causal variants in 100,000 individu-
als .
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Figure S5: The proportion of causal variants recovered as a function of the number of
causal variants in case-control simulations of a disease with prevalence 0.1. The plots
show the results for h2 ranging from 0.2 to 0.5.

Table S3: Paired t-tests for BOTL-LMM-664 vs all other methods (based on 100 sim-
ulations of a quantitative trait with h2=0.5, N=100,000, & 1,000 causal loci).

Method Mean difference Conf-95 Conf+95 P-value
fastGWA 112 108 116 2.3e-40

fastGWA-PGS-PT 30 26 34 3.1e-18
fastGWA-PGS-LDpred2 -2.7 -5.9 0.47 0.092

BOLT-LMM-165 68 65 70 2.9e-37
BOLT-LMM-165-PGS-PT 12 9.9 15 1.9e-12

REGENIE 76 73 79 1.7e-37
REGENIE-PGS-PT 73 69 77 1.4e-31
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Figure S6: QQ plots comparing the distributions of the negative logarithm of the P-
values obtained when different methods were applied to the height phenotype from the
UK Biobank.

Table S4: Median proportion of recovered variants in 100 case control simulations with
disease prevalence of 0.1 & 0.3 (h2=0.5, N=100,000, & 1,000 causal loci).

Method Prevalence Median
fastGWA 0.10 0.30
fastGWA 0.30 0.31

fastGWA-PGS-PT 0.10 0.33
fastGWA-PGS-PT 0.30 0.36
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Figure S7: QQ plots comparing the distributions of the negative logarithm of the P-
values obtained when different methods were applied to the heel bone mineral density
(HBMD) phenotype from the UK Biobank

Table S5: Paired t-tests for 100 case control simulations with a disease prevalence of
0.1 & 0.3 (h2=0.5, N=100,000 & 1,000 causal loci).

Method Prevalence Mean difference Conf-95 Conf+95 P-value
fastGWA-PS-PT 0.1 29.3 28.1 30.6 2.17e-65
fastGWA-PS-PT 0.3 38.2 32.9 43.5 3.66e-25
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Figure S8: QQ plots comparing the distributions of the negative logarithm of the P-
values obtained when different methods were applied to the body mass index (BMI)
phenotype from the UK Biobank

16



Figure S9: Proportion of phenotypic variance (in height, BMI, & HBMD) explained
by polygenic scores, calculated using the P&T method, as a function of the P-value
thresholds applied in the P&T method. The polygenic scores were calculated from
summary statistics obtained using the methods shown.

Table S6: Maximum difference in sensitivity between methods, and the correspond-
ing specificity at which this maximum occurs (from 100 simulations with h2=0.5,
N=100,000 & 1,000 causal loci).

Method comparison Relative increase Max ∆Sensitivity Corresponding specificity
fastGWA-PGS-LDpred2 vs fastGWA 0.1135 0.0728 0.9988
fastGWA-PGS-LDpred2 vs BOTL-LMM-664 0.0016 0.0015 0.2000
REGENIE vs fastGWA 0.0315 0.0217 1.0000
REGENIE-PGS-PT vs fastGWA 0.0347 0.0239 1.0000
BOLT-LMM-PGS-PT vs BOLT-LMM-165 0.0419 0.0278 0.9991
BOTL-LMM-664 vs fastGWA 0.1185 0.0766 0.9986
fastGWA-PGS-PT vs fastGWA 0.0847 0.0531 0.9992
fastGWA-PGS-LDpred2 vs fastGWA-PGS-PT 0.0287 0.0208 0.9966
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Table S7: Average of the median squared error (MEDSE) of effect size estimates for
causal variants across 100 simulations (h2=0.5, N=100,000 & 1,000 causal loci) and
relative change to fastGWA.

Method Mean Improvement relative to fastGWA
fastGWA 0.6196 0.0%
fastGWA-PGS-PT 0.5756 7.1%
fastGWA-PGS-LDpred 0.5612 9.4%
BOLT-LMM-165 0.6510 -5.0%
BOLT-LMM-165-PT 0.5764 7.0%
BOTL-LMM-664 0.6070 2.0%
REGENIE 0.6032 2.6%
REGENIE-PT 0.6022 2.8%

Table S8: Paired t-tests applied to the median squared error (MEDSE) of effect size
estimates for causal variants across 100 simulations, relative to fastGWA (h2=0.5,
N=100,000 & 1,000 causal loci).

Method Mean difference Conf-95 Conf+95 P-value
fastGWA-PGS-PT -0.044 -0.046 -0.042 3e-76

fastGWA-PGS-LDpred2 -0.058 -0.06 -0.057 5.9e-91
BOTL-LMM-664 -0.013 -0.014 -0.011 3.7e-30
BOLT-LMM-165 0.031 0.015 0.048 0.00022

BOLT-165-PGS-PT -0.043 -0.045 -0.041 2.6e-71
REGENIE-PGS-PT -0.017 -0.02 -0.015 2.2e-26

REGENIE -0.016 -0.018 -0.015 1.9e-38

Table S9: Paired t-test of MEDSE beta estimates of 100 quantitative trait simulations
relative to BOLT-LMM-165

Method Mean difference Conf-95 Conf+95 P-value
fastGWA -0.031 -0.048 -0.015 0.00022

fastGWA-PGS-PT -0.075 -0.092 -0.059 5.2e-15
fastGWA-PGS-LDpred2 -0.09 -0.11 -0.073 3e-18

BOTL-LMM-664 -0.044 -0.061 -0.027 1.1e-06
BOLT-165-PGS-PT -0.075 -0.09 -0.059 2e-15
REGENIE-PGS-PT -0.049 -0.063 -0.034 1.8e-09

REGENIE -0.048 -0.063 -0.033 1.2e-08
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Table S10: Proportion of causal variants recovered for simulations of a quantitative
trait over a range of parameter values (N=100,000; Nc = number of causal variants)

Heritability Method Nc Proportion
0.1 fastGWA 500 0.25
0.1 fastGWA 1,000 0.10
0.1 fastGWA 2,000 0.03
0.1 fastGWA 5,000 0.00
0.1 fastGWA 10,000 0.00
0.1 fastGWA-PGS-PT 500 0.26
0.1 fastGWA-PGS-PT 1,000 0.11
0.1 fastGWA-PGS-PT 2,000 0.03
0.1 fastGWA-PGS-PT 5,000 0.00
0.1 fastGWA-PGS-PT 10,000 0.00
0.2 fastGWA 500 0.35
0.2 fastGWA 1,000 0.23
0.2 fastGWA 2,000 0.10
0.2 fastGWA 5,000 0.02
0.2 fastGWA 10,000 0.00
0.2 fastGWA-PGS-PT 500 0.39
0.2 fastGWA-PGS-PT 1,000 0.26
0.2 fastGWA-PGS-PT 2,000 0.12
0.2 fastGWA-PGS-PT 5,000 0.02
0.2 fastGWA-PGS-PT 10,000 0.00
0.3 fastGWA 500 0.47
0.3 fastGWA 1,000 0.33
0.3 fastGWA 2,000 0.18
0.3 fastGWA 5,000 0.04
0.3 fastGWA 10,000 0.01
0.3 fastGWA-PGS-PT 500 0.50
0.3 fastGWA-PGS-PT 1,000 0.38
0.3 fastGWA-PGS-PT 2,000 0.20
0.3 fastGWA-PGS-PT 5,000 0.05
0.3 fastGWA-PGS-PT 10,000 0.01
0.4 fastGWA 500 0.53
0.4 fastGWA 1,000 0.39
0.4 fastGWA 2,000 0.23
0.4 fastGWA 5,000 0.07
0.4 fastGWA 10,000 0.02
0.4 fastGWA-PGS-PT 500 0.58
0.4 fastGWA-PGS-PT 1,000 0.45
0.4 fastGWA-PGS-PT 2,000 0.29
0.4 fastGWA-PGS-PT 5,000 0.09
0.4 fastGWA-PGS-PT 10,000 0.02
0.5 fastGWA 500 0.56
0.5 fastGWA 1,000 0.43
0.5 fastGWA 2,000 0.28
0.5 fastGWA 5,000 0.11
0.5 fastGWA 10,000 0.03
0.5 fastGWA-PGS-PT 500 0.62
0.5 fastGWA-PGS-PT 1,000 0.52
0.5 fastGWA-PGS-PT 2,000 0.36
0.5 fastGWA-PGS-PT 5,000 0.16
0.5 fastGWA-PGS-PT 10,000 0.04

19



Table S11: Proportion of causal variants recovered for simulations of a quantitative
trait over a range of parameter values (N=430,000; Nc = number of causal variants)

Heritability Method Nc Proportion
0.1 fastGWA 500 0.54
0.1 fastGWA 1,000 0.40
0.1 fastGWA 2,000 0.25
0.1 fastGWA 5,000 0.08
0.1 fastGWA 10,000 0.02
0.1 fastGWA-PGS-PT 500 0.55
0.1 fastGWA-PGS-PT 1,000 0.41
0.1 fastGWA-PGS-PT 2,000 0.27
0.1 fastGWA-PGS-PT 5,000 0.08
0.1 fastGWA-PGS-PT 10,000 0.02
0.2 fastGWA 500 0.68
0.2 fastGWA 1,000 0.56
0.2 fastGWA 2,000 0.40
0.2 fastGWA 5,000 0.21
0.2 fastGWA 10,000 0.08
0.2 fastGWA-PGS-PT 500 0.69
0.2 fastGWA-PGS-PT 1,000 0.59
0.2 fastGWA-PGS-PT 2,000 0.44
0.2 fastGWA-PGS-PT 5,000 0.23
0.2 fastGWA-PGS-PT 10,000 0.09
0.3 fastGWA 500 0.73
0.3 fastGWA 1,000 0.64
0.3 fastGWA 2,000 0.50
0.3 fastGWA 5,000 0.30
0.3 fastGWA 10,000 0.15
0.3 fastGWA-PGS-PT 500 0.76
0.3 fastGWA-PGS-PT 1,000 0.68
0.3 fastGWA-PGS-PT 2,000 0.54
0.3 fastGWA-PGS-PT 5,000 0.34
0.3 fastGWA-PGS-PT 10,000 0.18
0.4 fastGWA 500 0.77
0.4 fastGWA 1,000 0.68
0.4 fastGWA 2,000 0.56
0.4 fastGWA 5,000 0.37
0.4 fastGWA 10,000 0.21
0.4 fastGWA-PGS-PT 500 0.81
0.4 fastGWA-PGS-PT 1,000 0.72
0.4 fastGWA-PGS-PT 2,000 0.62
0.4 fastGWA-PGS-PT 5,000 0.40
0.4 fastGWA-PGS-PT 10,000 0.26
0.5 fastGWA 500 0.76
0.5 fastGWA 1,000 0.70
0.5 fastGWA 2,000 0.58
0.5 fastGWA 5,000 0.41
0.5 fastGWA 10,000 0.26
0.5 fastGWA-PGS-PT 500 0.80
0.5 fastGWA-PGS-PT 1,000 0.74
0.5 fastGWA-PGS-PT 2,000 0.66
0.5 fastGWA-PGS-PT 5,000 0.49
0.5 fastGWA-PGS-PT 10,000 0.33
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Table S12: Proportion of causal variants recovered for simulations of a binary trait
over a range of parameter values (N=100,000; disease prevalence = 0.1; Nc = number
of causal variants)

Heritability Nc Method Proportion
0.2 10,000 fastGWA 0.0001
0.2 10,000 fastGWA-PGS-PT 0.0001
0.2 1,000 fastGWA 0.0970
0.2 1,000 fastGWA-PGS-PT 0.1030
0.2 2,000 fastGWA 0.0310
0.2 2,000 fastGWA-PGS-PT 0.0315
0.2 500 fastGWA 0.2580
0.2 500 fastGWA-PGS-PT 0.2660
0.3 10,000 fastGWA 0.0012
0.3 10,000 fastGWA-PGS-PT 0.0013
0.3 1,000 fastGWA 0.1810
0.3 1,000 fastGWA-PGS-PT 0.1940
0.3 2,000 fastGWA 0.0755
0.3 2,000 fastGWA-PGS-PT 0.0850
0.3 500 fastGWA 0.3400
0.3 500 fastGWA-PGS-PT 0.3480
0.4 10,000 fastGWA 0.0032
0.4 10,000 fastGWA-PGS-PT 0.0030
0.4 1,000 fastGWA 0.2480
0.4 1,000 fastGWA-PGS-PT 0.2720
0.4 2,000 fastGWA 0.1095
0.4 2,000 fastGWA-PGS-PT 0.1215
0.4 500 fastGWA 0.4100
0.4 500 fastGWA-PGS-PT 0.4400
0.5 10,000 fastGWA 0.0072
0.5 10,000 fastGWA-PGS-PT 0.0071
0.5 1,000 fastGWA 0.2873
0.5 1,000 fastGWA-PGS-PT 0.3183
0.5 2,000 fastGWA 0.1630
0.5 2,000 fastGWA-PGS-PT 0.1790
0.5 500 fastGWA 0.4360
0.5 500 fastGWA-PGS-PT 0.4700
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Table S13: Two-sample tests of equality of proportions applied to the proportions of
significant loci identified using the method shown, compared to fastGWA. The results
shown are for the three UK Biobank quantitative traits analyzed. Prop 1 and Prop 2
show the proportions of significant loci for the method on the row and for fastGWA,
respectively. Conf-95 and Conf+95 show the low and upper 95% confidence interval
for the difference in these proportions.

Method Phenotype P-value X-sq Prop 1 Prop 2 Conf-95 Conf+95
BOLT-LMM BMI 3.133e-05 17.3357 0.0159 0.0123 0.0019 0.0054

fastGWA-PGS-LDpred2 0.1083 2.5795 0.0136 0.0123 -0.0003 0.0030
fastGWA-PGS-PT 0.1563 2.0093 0.0135 0.0123 -0.0005 0.0029

BOLT-LMM HBMD 0.009114 6.8004 0.0106 0.0087 0.0005 0.0033
fastGWA-PGS-LDpred2 0.02029 5.3864 0.0104 0.0087 0.0003 0.0031

fastGWA-PGS-PT 0.1066 2.6034 0.0098 0.0087 -0.0002 0.0026
BOLT-LMM Height 5.458e-19 79.2553 0.0493 0.0360 0.0104 0.0163

fastGWA-PGS-LDpred2 1.953e-13 54.0515 0.0468 0.0360 0.0079 0.0138
fastGWA-PGS-PT 1.166e-06 23.6328 0.0430 0.0360 0.0042 0.0099
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