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Supplementary Information

Supplementary information for Methods: Predictive Modeling with Graph Theory Indexes
This supplement details preprocessing, cross-validation, feature selection, tuning, and reporting for Models 1–3. Throughout, we use the term graph theory indices and the following notation:  (average shortest path length),  (mean local clustering),  (global clustering).  denotes average normalized ΔF/F area per 100 s for Habituation (H), Sociability (SB), and Social Novelty (SN). Spectral distances between session-specific connectivity matrices are defined as , , and .
1. Outcome definitions and model-specific notes
Model 1. Predicts genotype (Shank3fx vs WT) using graph theory indexes only.
Model 2. Predicts the behavior label using graph theory indexes only.
Model 3. Predicts the behavior label using genotype plus graph theory indexes to assess incremental value of genotype.

Functional connectivity threshold selection. Session-specific functional networks were constructed by computing pairwise Pearson correlations between normalized calcium traces and applying a threshold of 0.15 to define binary connections. 
Behavior label (Models 2 and 3). A composite social motivation score, , was computed per session as the mean of sociability (SB) and social novelty (SN). An ROC analysis was conducted to identify the  threshold that best discriminates social behavior by genotype. The binary label (low vs high social motivation) was defined from  (session-averaged sociability and social novelty) using an ROC-based cutoff (closest-to-topleft). This thresholding was performed once to create the label and then treated as fixed in all predictive analyses. Labeling occurred prior to model training. 
2. Preprocessing and feature reduction
Right-skewed variables (e.g., , ) were log-transformed, while strongly skewed  features used inverse transformation. To reduce redundancy and improve interpretability, highly correlated predictors were pruned using the findCorrelation function from the caret package. Univariate outliers, defined as > 3×MAD from the median, were winsorized using caps at ±3×MAD. Multivariate outliers were screened by Mahalanobis distance (chi-square with degrees of freedom equal to the number of retained indexes, alpha = 0.025). One observation (mouse 132213, session 2) exceeded the cutoff and was excluded from analysis. Pre-processing was done once across the full dataset to provide a consistent feature space and facilitate interpretation.
3. Feature selection and model tuning
Using caret, mtry was optimized in the inner cross-validation loop through a grid search, with values ranging up to  and the number of trees set to 500. Recursive Feature Elimination (RFE) works by iteratively removing the least important features, re-training the model, and evaluating performance until the optimal subset of features is identified. The best inner-CV configuration, defined by accuracy, was refit on the outer training set and evaluated on the outer test set. 
4. Cross-validation design and enumeration 
A nested cross-validation scheme was used to assess model performance and optimize hyperparameters. For the outer loop, an exhaustive leave-two-pairs-out cross-validation technique was used to evaluate the model’s performance on unseen data. This approach assigns two WT and two Shank3fx mice to the test set to respect mouse-level grouping across sessions and maintain genotype balance. Enumerating across all unique mice pairs yielded 1,980 unique outer splits (). Within each outer loop training set, an inner leave-one-pair-out cross-validation scheme was employed for hyperparameter tuning and recursive feature elimination, where all sessions from one WT and one Shank3fx mouse were assigned to the test set. The selected mtry value and feature subset determined through the inner-loop cross-validation was then fit to the outer loop training set and evaluation on the outer loop test set. 
5. Evaluation
To illustrate model performance across varying thresholds, an average ROC curve was constructed by pooling classification scores from all cross-validation test sets (Hogan & Adams, 2023-- J Hogan, NM Adams - Transactions on Machine Learning Research, 2023). To summarize classification performance, a confusion matrix was computed for each cross-validation fold using a default threshold of 0.5 and normalized by the number of observations in that fold’s test set. These confusion matrices were then averaged to create an average confusion matrix, with its elements rounded and multiplied by 100 to create whole numbers. Secondary metrics derived from these confusion matrices include accuracy, sensitivity, specificity, PPV, and NPV.
6. Software and reproducibility
Machine learning methods used the R software (2024-10-31) and associated packages. Pre-processing and outlier analysis used datawizard 1.0.1, performance 0.13.0, and tidyverse 2.0.0. Analyses were performed with caret 6.0-94, randomForest 4.7-1.2, and pROC 1.18.5, with random seeds fixed at 33. Plots were made using plotly 4.10.4. Graph theory indices were computed in MATLAB R2024a (custom scripts). Full code and session information are provided in the Supplement.


Supplementary Table S1: Summary of Graph Theory Indices

	Metrics
	Definition
	Formula

	Area under the curve (ROC-AUC)
	For each neuron, the amplitude of calcium traces was normalized to the maximum  value. The normalized values were summed across the recording and divided by the total recording time, then rescaled to obtain the average Ca²⁺ signal per 100 seconds (AUC/100 s). A network-level AUC/100 s was then obtained by averaging this value across all neurons in the local network.
	where  = number of time points,  = imaging interval, and  = number of neurons in the local network.

	Average Shortest Path Length () 
	 was calculated by first computing the average shortest distance for all nodes to all other nodes, then taking the mean of the resulting values.
	
where  = number of neurons in the local network.

	Local clustering coefficient ()
	For a given node , the local clustering coefficient is defined as the fraction of closed triplets over all triplets formed by the neighbors of . Triplets include all possible combinations of three neighbors (open or closed).  is the average of all node-level clustering coefficients.
	Node level:  
Network level:  

	Global clustering coefficient ()
	Cg represents the overall level of clustering (connectivity) in a graph. It is defined as the ratio of closed triplets to all triplets in the graph.
	

	Spectral distance (s)
	The Laplacian matrix of a graph is defined as , where  is the diagonal degree matrix (each  is the number of connections of neuron ) and  is the adjacency matrix (a matrix showing which pairs of neurons are connected). The eigenvalues of  (its spectrum) carry information about the network’s structure. To compare two graphs with the same neurons, the spectral distance  is calculated as the Euclidean distance between their Laplacian eigenvalue sets, normalized by the square root of the number of neurons.
	

where  is the number of neurons, and  and  are the eigenvalues of the two graphs’ Laplacian matrices.





Supplementary Table S2: Summary of Three Machine Learning Models 

	Category
	Model 1 — Genotype decoding
	Model 2 — Behavior prediction
	Model 3 — Genotype + indices → behavior

	Question
	Can network features decode genotype 
(Shank3fx vs WT)?
	Can network features predict social-behavior abnormality?
	Do graph indices add information beyond genotype for predicting behavior?

	Inputs
	Graph indices per session (, , ); Activity (AUC/100s); Spectral distances 
	Graph indices per session; Activity (AUC/100s); Spectral distances 
	Genotype; Graph indices per session; Activity (AUC/100s); Spectral distances 

	Output / Target
	Genotype 
(Shank3fx vs WT)
	Behavior label/score (low vs high social motivation)
	Behavior label/score (low vs high social motivation)

	Primary metrics to report
	AUC-ROC, accuracy, sensitivity, specificity, PPV, NPV
	AUC-ROC, accuracy, sensitivity, specificity, PPV, NPV
	AUC-ROC, accuracy, sensitivity, specificity, PPV, NPV

	Main figures
	Figure 4A–C
	Figure 4D-F 
	Figure 4G-I 

	Key drivers (examples)
	AUC(SB), s(H-SB), , s(H-SN),  
	s(H-SN), AUC(SB), s(H-SB)
	Genotype; AUC(SB), s(H-SN), s(H-SB)
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