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	ILCs/NiO-CNTs (As-prepared)

	Element
	Weight %
	Atomic %
	Error %

	Ni K
	52.18
	17.37
	3.28

	O K
	8.09
	9.28
	13.16

	C K
	38.02
	70.72
	11.91

	N K
	1.71
	2.63
	71.65

	ILCs/NiO-CNTs (After exhaustive electrolysis)

	Ni K
	49.45
	15.91
	3.31

	O K
	10.82
	11.02
	13.93

	C K
	38.11
	70.82
	11.04

	N K
	1.62
	2.25
	71.72



	
Table S1. Elemental composition of the ILCs/NiO-CNTs composite film before and after exposure to a constant applied potential of +0.85 V (vs. RHE) in 0.5 M Hyz/1.0 M KOH. Data from the EDS measurements of the surfaces displayed in Figures 1(D) and 1(E), respectively.
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[bookmark: _Hlk215746232]Figure S1. Peak current vs. square root of the scan rate relation for Ni/ILC/NiO-CNTs in 1.0 mM K4[Fe(CN)6] & 0.5 M KCl solution as electrolyte.
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Figure S2. The standard phase diagrams of NiO nanoparticles (A), and MWCNTs  (B) [1,2].
From the Scherrer equation:

Where d is the grain size; K is constant related to the shape and index of crystals is = 0.89; λ is the wavelength of the X-ray (Cu Ka, is = 1.54056 Å); θ is the diffraction angle of the peak; B represents the full width at half-height of the peaks (in radian).  B is given by:
B2 = Bm2 − Bs2 
Where Bm is the full width at half maximum (FWHM) of the sample and Bs is the half-width of a standard sample with a known crystal size. The particle size of NiO is 25.3 nm which was calculated from the spacing of the (111) plane.

Equation S1. Detailed calculation of particle size of NiO in ILCs/NiO-CNTs composite after exposure to 0.5 M Hyz/1.0 M KOH for one hour exhaustive electrolysis at +0.85 V vs. RHE. Data from XRD diffraction pattern of Figure 4.
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Figure S3. Chronoamperograms over Ni/ILCs/NiO-CNTs electrode in presence of 0.50 M Hyz/1.0 M KOH for two hours. Eapp corresponds to the onset potential for Hyz-OER.
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Figure S4. Correlated Arrhenius plot of log (anodic peak currents) vs. the reciprocal of temperature in 0.5 M Hyz /1.0 M KOH




	Type of Catalyst
	T (K)
	TOF (h-1 )
	Ea (kJ/mol)
	Reference

	TiO2@Ni
	343
	265.49
	58.67
	[3]

	Ni/CeO2
	323
	51.6
	47.0
	[4]

	PtNi/(MnOx)2-C3N4
	323
	2749
	48.7
	[5] 

	NiPt/Al2O3
	303
	16.5
	52.5
	[6] 

	NiPt/graphene
	323
	846
	23.9
	[7] 

	RhNi/Ce(OH)CO3
	303
	150
	38.8
	[8] 

	PtNi/PDA-rGO
	323
	2056
	33.3
	[9] 

	Ni0.9Pt0.1/Ce2O3
	298
	28.1
	42.3
	[10] 

	Ni-Cr (OH)3/C-TiO2
	323
	266
	54.8
	[11] 

	Ni-La(OH)3/Ti-MOF
	343
	870
	36.8
	[12] 

	NiFeMo
	298
	28.8
	50.7
	[13] 

	RhNi@CeOx/rGO
	323
	370
	58.0
	[14] 

	RhNiB
	298
	75
	-
	[15] 

	NiPt/ZrO2
	298
	296
	24.40
	[16] 

	PtNi/CNS
	323
	3928
	37.97
	[17] 

	PtNi/ Zr-MOF
	323
	1716
	33.7
	[18] 

	Ni–Pt @ MIL-101/rGO
	323
	960
	35.3
	[19,20]

	Ni0.8Pt0.2/DT-Ti3C2Tx
	323
	1220
	-
	[21]

	Ni/Fe/Pd
	313
	25.3
	32.1
	[22]

	Ni/Fe/Ag
	313
	38.4
	42.3
	[22]

	Ni/Fe/Cu
	313
	40.2
	44.6
	[22]

	Pd/Ag/Ni
	313
	30.2
	75.9
	[22]

	NiFePd
	323
	21.5
	40.0
	[23]

	Ni0.6Pd0.4-MoOx
	323
	405
	32.6/49.7
	[24]

	Ni@TNTs
	333
	96.0
	-
	[25]

	Ni0.9Fe0.1- Cr2O3
	343
	893.5
	83.6
	[26]

	ILCs/NiO-CNTs
	298
	1751
	3.91
	This work



$ Rate constant calculated when using 0.5 M hydrazine in 1.0 M KOH

Table S2. Comparison of the performance of the proposed catalyst to different Ni-containing catalysts
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