The promotion effect of - interactions in Pd NPs catalysed selective hydrogenation
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1. Supplementary methods
We derive the kinetic expressions for the proposed mechanisms of AP hydrogenation in the main text based on the conventional Langmuir–Hinshelwood model with the following assumptions: 
1) The AP molecules and hydrogen are adsorbed on different sites;
2) AP or intermediates concentration change results a negligible change in reaction rate.
In the following, the hydrogenation kinetic models of AP hydrogenation to phenyl ethanol involve adsorption, surface reaction and desorption as follows:
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Where ki is rate constant, and S represents empty Pd sites.
Assuming adsorption and desorption steps to be rate-determining does not lead to rate expressions consistent with the observed reaction orders.
When the first hydrogenation of AP is the RDS:
[image: ]
When the second hydrogenation of AP is the RDS:

Where Ki is adsorption constant.
When the reactions are carried out under low H2 pressure, the 1+[image: ] term in the denominator is approximate to 1. Therefore, the reaction order based on H2 at low H2 pressure is half order for Eq. 6 and first order for Eq. 7, respectively.


2. [bookmark: _Hlk75170082]Computational methods
We have employed the Vienna Ab Initio Package (VASP)[1,2] to perform all the density functional theory (DFT) calculations within the generalized gradient approximation (GGA) using the PBE[3] formulation. We have chosen the projected augmented wave (PAW) potentials[4,5] to describe the ionic cores and take valence electrons into account using a plane wave basis set with a kinetic energy cutoff of 400 eV. Partial occupancies of the Kohn−Sham orbitals were allowed using the Gaussian smearing method and a width of 0.05 eV. The electronic energy was considered self-consistent when the energy change was smaller than 10−5 eV. A geometry optimization was considered convergent when the force change was smaller than 0.02 eV/Å. Grimme’s DFT-D3 methodology[6] was used to describe the dispersion interactions.
The equilibrium lattice constants of hexagonal JDL P-6 unit cell were optimized, when using a 1×1×7 Monkhorst-Pack k-point grid for Brillouin zone sampling, to be a=37.617 Å, c=3.740 Å. We then use it to construct a (001) monolayer model with p(1×1) periodicity in the x and y directions and 1 stoichiometric layer in the z direction separated by a vacuum layer in the depth of 20 Å in order to separate the surface slab from its periodic duplicates. During structural optimizations, the gamma point in the Brillouin zone was used for k-point sampling, and all atoms were allowed to relax.
The equilibrium lattice constants of monoclinic CM COF unit cell were optimized, when using a 1×1×7 Monkhorst-Pack k-point grid for Brillouin zone sampling, to be a=35.503 Å, b=33.392 Å, c=4.034 Å, α=90°, β=75.6°, γ=90°. We then use it to construct a (001) monolayer model with p(1×1) periodicity in the x and y directions and 1 stoichiometric layer in the z direction separated by a vacuum layer in the depth of 20 Å in order to separate the surface slab from its periodic duplicates. During structural optimizations, the gamma point in the Brillouin zone was used for k-point sampling, and all atoms were allowed to relax.
The adsorption energy (Eads) of adsorbate A was defined as
Eads = EA/surf – Esurf - EA(g)
where EA/surf, Esurf and EA(g) are the energy of adsorbate A adsorbed on the surface, the energy of clean surface, and the energy of isolated A molecule in a cubic periodic box with a side length of 20 Å and a 1×1×1 Monkhorst-Pack k-point grid for Brillouin zone sampling, respectively.
Finally, transition states for elementary reaction steps were determined by a combination of the nudged elastic band (NEB) method[7] and the dimer method[8-10]. In the NEB method, the path between the reactant and product is discretized into a series of structural images. The image that is closest to a likely transition state structure was then employed as an initial guess structure for the dimer method.
The interaction energies between Py-COF/Be-COF and AP/CHO were carried out by using Gaussian 09 program suite.[11] All structures were optimized at the PBE0 level with Grimme’s dispersion correction at the D3 level (PBE0-D3) by employing the def2-SVP basis set for all atoms (C, H, O, N). The interaction energies were calculated at the M06-2X/def2-SVP level by including basis set superposition errors at the PBE0-D3/def2-SVP optimized structures.


3. [bookmark: _Hlk75176792]Additional catalytic results and characterization information

Table S1. Physical parameters and Pd 3d binding energies of Pd/COFs and commercial Pd/C.
	Cat.
	BET surface area (m2 g-1)
	Pd dispersion (%)a
	Pd 3d5/2 (eV)b
	Pd0/Pd2+ (%)b
	L/B ratioc

	[bookmark: _Hlk47549754]Pd/Py-COF
	567
	26.2
	335.3
	68/32
	0.14

	Pd/Be-COF
	1139
	26.1
	335.3
	68/32
	0.15

	Pd/TB-COF
	396
	24.2
	335.3
	67/33
	0.15

	Pd/C
	959
	17.8
	335.4
	58/42
	--


aData obtained from CO chemisorption results. bData obtained from XPS results. cCalculated based on in situ FT-IR of CO adsorption.




Table S2. The AP hydrogenation with Pd/COFs and commercial Pd/C.
	Cat.
	Conv. (%)
	Sel. (%)

	
	
	phenyl ethanol
	ethylbenzene
	ethylcyclohexane

	Pd/Py-COF
	>99
	>99
	0
	0

	Pd/Be-COF
	30
	>99
	0
	0

	Pd/TB-COF
	22
	>99
	0
	0

	Pd/C
	>99
	0
	99
	1


Reaction conditions: 40 oC, 10 bar of H2, 2 mL of EtOH, 0.3 mmol of substrates, Pd catalysts 0.25 mol%, 3h.






Table S3. The catalytic results of H2-D2 exchange reaction over Pd NPs.
	Cat.
	Conv. (%)
	TOF (h-1)
	Normalized Activity

	Pd/Py-COF
	14.1
	6.5*106
	57

	Pd/Be-COF
	8.0
	3.7*106
	55

	Pd/C
	7.7
	3.6*106
	100


The reaction conditions see experimental section.





Table S4. Synthesis of Py-COF under different conditions.a
	Sample 
	Solvent (V: V: V)
	State

	1
	O-dichlorobenzene: n-butanol: CH3COOH = 10: 5: 1
	Crystalline solid

	2
	O-dichlorobenzene: mesitylene: CH3COOH: 5: 5: 1
	Amorphous solid

	3
	THF: mesitylene: CH3COOH: 5: 5: 1
	Amorphous solid

	4
	1,4-dioxane: mesitylene: CH3COOH: 5: 5: 1
	Amorphous solid

	5b
	O-dichlorobenzene: n-butanol: CH3COOH = 10: 5: 1
	Crystalline solid


aConditions: Py (57 mg), DMTA (40 mg), solvent (3.2 mL), 6 M CH3COOH (0.2 mL), N2 atmosphere, 85 oC, 3 d. bPy (285 mg), DMTA (200 mg), solvent (16 mL), 5 d.











Table S5. Pd/Py-COF catalysed AP hydrogenation with different solvent.a
	Solvent
	Conv. (%)
	Sel. (%)

	EtOH
	92
	99

	Isopropyl alcohol
	69
	99

	H2O
	87
	99

	CH2Cl2
	50
	99

	Ethyl acetate
	29
	99

	n-hexane
	49
	99

	1,4-Dioxane
	20
	99


aReaction Conditions: 40 oC, 10 bar of H2, 2 mL of solvent, 0.3 mmol of AP, Pd catalysts 0.833mol%, 2h.




Figure S1. a FTIR spectrum and b top view of Py-COF. 









Figure S2. Synthesis of TB-COF 


[image: ]
Figure S3. a FT-IR spectra, b PXRD patterns, c N2 adsorption isotherms and d pore size distribution of Be-COF and TB-COF.



Figure S4. a HRTEM image of Pd/Py-COF, and TEM images of b Pd/Py-COF (10 wt%), c Pd/Be-COF and d Pd/TB-COF.



Figure S5. a HAADF-STEM image, b in situ FTIR of CO adsorption, c XPS and d AP hydrogenation results on Pd/TB-COF (40 oC, 10 bar H2).



Figure S6. PXRD patterns of Pd/Py-COF, Pd/Be-COF and Pd/TB-COF.








[image: ]
Figure S7. Calculated energy profile of the O hydrogenation step of AP hydrogenation on Pd/Be-COF (black) and Pd/Py-COF (red).





Figure S8. FT-IR spectra of (i) AP and (ii) Pd/Be-COF.

[image: ]
Figure S9. The models for the calculated interactions energies by DFT. a Py-COF/AP
b Be-COF/AP, c Py-COF/CHO and d Be-COF/CHO.



[image: ]
Figure S10. 1H-NMR spectra of (i) AP, (ii) AP + mesitylene (molar ratio: 1:2) and (iii) AP + pyrene (molar ratio: 1:2).







Figure S11. a Recycling stability of Pd/Py-COF in AP hydrogenation, b TEM image of Pd/Py-COF after the fourth cycle.
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